

Hydro Australia Hart Road Loxford NSW 2326 Attention: Richard Brown Email: Richard.Brown@hydro.com

Date 29 January 2024

Sediment Basin Compliance Report

Hydro Aluminium Kurri Kurri Pty Ltd (Hydro) engaged Ramboll to prepare this report demonstrating compliance with the requirements of Environment Protection Licence (EPL) 1548 in relation to the release of stormwater from onsite sediment basins.

Hydro operated the former aluminium smelter located off Hart Road, Loxford, which ceased operations in 2014. The Hydro Aluminium Remediation Project was approved in December 2020 as State Significant Development (SSD) 6666, which involves the construction of an on-site Engineered Containment Cell (ECC) and the relocation of smelter wastes into this ECC for long term secure storage. Hydro's EPL was updated in May 2021 to include the following conditions:

- Condition P1.2 Addition of three new monitoring points (EPA ID 12, EPA ID 13 and EPA ID 14) to monitor discharge water quality from sediment basins within the vicinity of the new containment cell
- Condition M2 Requirement to monitor concentrations of pollutants discharged
 - M2.1 For each monitoring/ discharge point..., the licensee must monitor (by sampling and obtaining results by analysis) the concentrations of each pollutant specified in Column 1. The licensee must use the sampling method, units of measure, and sample at the frequency specified in Column 1.
 - M2.2 Water and/ or Land Monitoring Requirements for EPA ID 12, 13, 14, monitoring of aluminium, cadmium, cyanide, fluoride and pH in milligrams per litre as a grab sample at Special Frequency 1
 - M2.3 For the purposes of the Licence, Special Frequency 1 means the collection of samples within the first 24 hours of any discharge event.
- Condition E3 Sediment Dam Monitoring
 - E3.1 After three discharge events at sediment basins 1, 2 and 3 (corresponding to EPA ID 12, 13 and 14), the Licensee must submit a report to the EPA that provides the monitoring results

Ramboll The Arc 45a Watt Street Newcastle NSW 2300 Australia

T +61 2 4962 5444 https://ramboll.com

Ref 318000344

required under Condition M2.2 along with any recommended actions. The report must be submitted via email to info@epa.nsw.gov.au.

These three discharge events occurred in August 2021, February 2022 and March 2022 during construction of the ECC. Ramboll prepared a letter report dated 2 May 2022 presenting water quality monitoring results from water quality monitoring of Sediment Basins 1, 2 and 3 after three discharge events, as per Condition E3.1. Water quality during these release events had the potential to be impacted by construction activities however, as transfer of aluminium smelter wastes to the ECC had not commenced, the discharge events were not representative of waste placement conditions. The following recommendations were made:

- Discharge monitoring from sediment basins is to be discontinued until the placement of aluminium smelter wastes in the ECC commences
- A second report be provided to EPA following the completion of three discharge monitoring events that occur during the placement of aluminium smelter wastes in the ECC and during ECC capping works
- EPA review the frequency and analytes required for the monitoring at EPA ID 12, 13 and 14 following receipt of the second report

Hydro's EPL was subsequently updated on 15 November 2023 as follows:

- Condition E2 Sediment Dam Monitoring
 - E2.1 Once the transfer of aluminium smelter waste into the Engineered Containment Cell has commenced and after three subsequent discharge events at sediment basins 1, 2 and 3 (corresponding to EPA ID 12, 13 and 14), the Licensee must submit a report to the EPA that provides the monitoring results required under Condition M2.2 along with any recommended actions. The report must be submitted via email to info@epa.nsw.gov.au
 - Note: Following the review of this report, it is the EPA's intention to review the frequency and analytes required for the monitoring at EPA ID 12, 13 and 14.

The purpose of this report is to present water quality monitoring results from water quality monitoring of Sediment Basins 1, 2 and 3, as per Condition E2.1.

Subsequent to revision of E2.1 and prior to the transfer of aluminium wastes to the ECC, discharge events occurred in May, July, August, September, October and November 2022. Reporting was not required for these events.

Sediment Basin Discharge & Monitoring Events

Since waste transfer to the ECC commencing in February 2023, two discharge events occurred in February 2023 and March 2023. No further discharge events occurred during the transfer of aluminium smelter waste to the ECC.

The following actions have been undertaken to manage surface water:

- Surface water has been pumped into one or two of the three available sediments basins
- Sediment load has been reduced by adding flocculant
- Surface water has been routinely tested for pH, conductivity, turbidity and total suspended solids prior to discharge
- On two occasions during waste transfer, surface water has been sampled and analysed as per Condition M2
- Upon receipt and review of test results, surface water has been discharged to Unnamed Creek

Monitoring of the two discharge events are summarised in **Table 1**. For each discharge event, laboratory analysis for pH, fluoride, cyanide, aluminium and cadmium was undertaken.

Sediment Basin 1 (EPA ID 12)		Sediment Basin 2 (E	PA ID 13)	Sediment Basin 3 (EPA ID 14)			
Date of Monitoring	Discharge Volume	Date of Monitoring	Discharge Volume	Date of Monitoring	Discharge Volume		
24 February 2023	1.6 ML	24 February 2023	1.7 ML	24 February 2023	N/A		
31 March 2023	1.6 ML	Not required	N/A	Not required	N/A		

Table 1: Summary of Two Monitoring Events

Water Quality Monitoring Results

Water quality monitoring was completed using the grab method to collect water samples directly into laboratory-supplied containers. Monitoring was completed within 24 hours after each discharge event, with samples submitted to a laboratory accredited by National Association of Testing Authority (NATA) for the analysis undertaken. The results of the two discharge and monitoring events are summarised in **Table 2**.

Table 2: Summary of Monitoring Results

Monitoring	Parameters	Sediment Basin 1	Sediment Basin 2	Sediment Basin 3	
Date		(EPA ID 12)	(EPA ID 13)	(EPA ID 14)	
	рН	*	*	*	
	Fluoride (mg/L)	0.8	1.0	2.4	
24/02/2023	Cyanide (mg/L)	0.006	<0.005	<0.005	
24/02/2023	Aluminium - dissolved (mg/L)	<0.05	<0.05	<0.05	
	Cadmium - dissolved (mg/L)	<0.0002	<0.0002	<0.0002	
	рН	7.30	-	-	
	Fluoride (mg/L)	0.632	-	-	
31/3/2023	Cyanide (mg/L)	<0.004	-	-	
51,5,2025	Aluminium - dissolved (mg/L)	<0.0001	-	-	
	Cadmium -dissolved (mg/L)	<0.001	-	-	

*pH was requested on the Chain of Custody but was not reported by the laboratory

Conclusion and Recommended Actions

Condition E2.1 Sediment Dam Monitoring requires this monitoring report to be submitted to EPA along with any recommended actions.

Capping works commenced at the ECC in December 2023 and are anticipated to be completed in June 2024. The commencement of capping works involved the placement of a 300 mm layer of clay as a seal bearing layer over waste materials within the ECC. As such, rainfall over the footprint of the ECC and subsequent stormwater runoff to the three sediment basins no longer flows over waste materials and there is low potential for generation of contaminated stormwater.

The following recommendations are made:

 Discharge monitoring from sediment basins is discontinued as the generation of contaminated stormwater has been prevented by placement of the seal bearing layer and commencement of capping works

• EPA remove Special Condition E2 Sediment Dam Monitoring from Hydro's EPL as these sediment dams will be decommissioned in the first quarter of 2024 near the completion of capping works.

Yours sincerely

KGreenfield

Kirsty Greenfield Senior Environmental Consultant

D +61 (2) 49625444 M +61 407 149 176 kgreenfield@ramboll.com

Attachments: Lab reports

Applobio

Fiona Robinson Principal

D +61 2 4962 5444 M +61 4 2131 1066 frobinson@ramboll.com

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt G3009, R7 Modified by Dr. R.Symore Approved by: Llakeland Approved on 17 Annuet 2017

Page 1of 1

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

NATA Accredited Accreditation Number 1261 Site Number 1254

Environment Testing

עיוייא

ac-mra

 $u_{\rm mb}$

NATA

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

Attention:

Kirsty Greenfield

Report
Project name
Project ID
Received Date

967002-W EPL SAMPLING 318000240 Feb 24, 2023

Client Sample ID			SED BASIN 1	SED BASIN 2	SED BASIN 3	LEACHATE POND LD1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- Fe0060694	M23- Fe0060695	M23- Fe0060696	M23- Fe0060697
Date Sampled			Feb 24, 2023	Feb 24, 2023	Feb 24, 2023	Feb 24, 2023
Test/Reference	LOR	Unit				
Cyanide (total)	0.005	mg/L	0.006	< 0.005	< 0.005	0.008
Fluoride	0.5	mg/L	0.8	1.0	2.4	1.0
Heavy Metals						
Aluminium	0.05	mg/L	0.49	0.39	2.1	5.8
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.18
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
PFASs Summations						
Sum (PFHxS + PFOS)*	0.001	ug/L	0.005	0.006	0.012	0.66
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.001	ug/L	0.005	0.006	0.012	0.674
Sum of PFASs (n=30)*	0.005	ug/L	0.007	0.008	0.014	0.783
Sum of US EPA PFAS (PFOS + PFOA)*	0.001	ug/L	0.003	0.004	0.01	0.514
Sum of WA DWER PFAS (n=10)*	0.005	ug/L	0.007	0.008	0.014	0.754
Perfluoroalkyl sulfonamido substances- Trace						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
13C8-FOSA (surr.)	1	%	63	62	67	62
D3-N-MeFOSA (surr.)	1	%	26	27	28	19
D5-N-EtFOSA (surr.)	1	%	26	24	22	17
D7-N-MeFOSE (surr.)	1	%	27	31	26	16
D9-N-EtFOSE (surr.)	1	%	25	25	23	16
D5-N-EtFOSAA (surr.)	1	%	42	31	35	36
D3-N-MeFOSAA (surr.)	1	%	43	36	48	56

Oliant Comple ID						LEACHATE
			SED BASIN 1	SED BASIN 2	SED BASIN 3	POND LD1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- Fe0060694	M23- Fe0060695	M23- Fe0060696	M23- Fe0060697
Date Sampled			Feb 24, 2023	Feb 24, 2023	Feb 24, 2023	Feb 24, 2023
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs) - Trace		•				
Perfluorobutanoic acid (PFBA) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	0.010
Perfluoropentanoic acid (PFPeA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	0.015
Perfluorohexanoic acid (PFHxA) ^{N11}	0.001	ug/L	0.002	0.002	0.002	0.037
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	^{N09} 0.006
Perfluorooctanoic acid (PFOA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	^{N09} 0.014
Perfluorononanoic acid (PFNA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
Perfluorodecanoic acid (PFDA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
13C4-PFBA (surr.)	1	%	58	55	63	53
13C5-PFPeA (surr.)	1	%	70	71	78	56
13C5-PFHxA (surr.)	1	%	90	91	98	71
13C4-PFHpA (surr.)	1	%	93	89	100	75
13C8-PFOA (surr.)	1	%	89	89	96	74
13C5-PFNA (surr.)	1	%	77	70	83	76
13C6-PFDA (surr.)	1	%	63	57	68	54
13C2-PFUnDA (surr.)	1	%	42	39	49	41
13C2-PFDoDA (surr.)	1	%	35	32	33	27
13C2-PFTeDA (surr.)	1	%	22	20	15	13
Perfluoroalkyl sulfonic acids (PFSAs)- Trace						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	0.012
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.001	ug/L	< 0.001	< 0.001	< 0.001	0.005
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.001	ug/L	< 0.001	< 0.001	< 0.001	^{N09} 0.013
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.001	ug/L	^{N09} 0.002	^{N09} 0.002	^{N09} 0.002	^{N09} 0.16
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.001	ug/L	< 0.001	< 0.001	< 0.001	^{N09} 0.011
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.001	ug/L	^{N09} 0.003	^{N09} 0.004	^{N09} 0.010	^{N09} 0.50
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
13C3-PFBS (surr.)	1	%	85	93	88	78
18O2-PFHxS (surr.)	1	%	78	75	82	65
13C8-PFOS (surr.)	1	%	60	63	63	54
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.001	ug/L	< 0.001	< 0.001	< 0.001	< 0.001
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005	< 0.005	< 0.005
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.001	ua/L	< 0.001	< 0.001	< 0.001	< 0.001
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.001		< 0.001	< 0.001	< 0.001	< 0.001
13C2-4:2 FTSA (surr.)	1	%	75	84	122	81
13C2-6:2 FTSA (surr.)	1	%	125	121	150	147
13C2-8:2 FTSA (surr.)	1	%	90	87	105	96
13C2-10:2 FTSA (surr.)	1	%	39	38	48	43

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Cyanide (total)	Melbourne	Feb 27, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
Fluoride	Melbourne	Feb 27, 2023	28 Days
- Method: in-house method LTM-INO-4390 Fluoride by Discrete Analyser			
Heavy Metals	Melbourne	Feb 27, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Melbourne	Feb 27, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Per- and Polyfluoroalkyl Substances (PFASs) - Trace			
PFASs Summations	Melbourne	Feb 27, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
Perfluoroalkyl sulfonamido substances- Trace	Melbourne	Feb 27, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
Perfluoroalkyl carboxylic acids (PFCAs) - Trace	Melbourne	Feb 27, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
Perfluoroalkyl sulfonic acids (PFSAs)- Trace	Melbourne	Feb 27, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace	Melbourne	Feb 27, 2023	28 Days

- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level

Operation Methourne Dandnong South Dandnong South Web www.uudine.com.au enait EnviroSales Beyundins.com Methourne US Levela 3/10 Dandnong South Dandsong South Witz Hest South South Witz Hest Web Web Web Web Web Web Web Web Web Web	Christchurch 13 Detroit Drive Rolleston, Shristchurch 7675 Fel: 0800 856 450 ANZ# 1290
Company Name: Address: Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 Order No.: Peport #: 967002 Received: 02 9954 8118 Feb 24, 2023 3:00 PL Due: Feb 28, 2023 Project Name: EPL SAMPLING Project ID: 518000240 Fax: 02 9954 8150 Contact Name: Kirsty Greenfield Muminium Iminium Muminium (filered) Gadmium (filered) Gadmium (filered) Far. Other No.: 02 9954 8150 Received: Due: Feb 24, 2023 3:00 PL Broke Eurofins Analytical Services Manager : And Auge Project ID: Sample Detail Auge Project ID: 1 Day Contact Name: Kirsty Greenfield	ew Black
Project ID: 318000240 Eurofins Analytical Services Manager : And Auminium (filtered)	ew Black
Per- and Polytturoalkyl Substances (PFAS Fluoride Cyanide (total) Cadmium (filtered) Aluminium Sample Detail	
Melbourne Laboratory - NATA # 1261 Site # 1254 X<	
External Laboratory	
Time LABID	
1 SED BASIN 1 Feb 24, 2023 Water M23-Fe0060694 X	
2 SED BASIN 2 Feb 24, 2023 Water M23-Fe0060695 X	
3 SED BASIN 3 Feb 24, 2023 Water M23-Fe0060696 X	
Test Counts 4 4 4 4 4 4 4	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Cyanide (total)	mg/L	< 0.005		0.005	Pass	
Fluoride	mg/L	< 0.5		0.5	Pass	
Method Blank		1				
Heavy Metals						
Aluminium	mg/L	< 0.05		0.05	Pass	
Aluminium (filtered)	mg/L	< 0.05		0.05	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Method Blank						
Perfluoroalkyl sulfonamido substances- Trace						
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.005		0.005	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.005		0.005	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.005		0.005	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE)	ug/L	< 0.005		0.005	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	ug/L	< 0.005		0.005	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.005		0.005	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.005		0.005	Pass	
Method Blank				-		
Perfluoroalkyl carboxylic acids (PFCAs) - Trace						
Perfluorobutanoic acid (PFBA)	ug/L	< 0.005		0.005	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.001		0.001	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.001		0.001	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.001		0.001	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.001		0.001	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.001		0.001	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.001		0.001	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.001		0.001	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.001		0.001	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.001		0.001	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.001		0.001	Pass	
Method Blank				-		
Perfluoroalkyl sulfonic acids (PFSAs)- Trace						
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.001		0.001	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.001		0.001	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.001		0.001	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.001		0.001	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.001		0.001	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.001		0.001	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.001		0.001	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.001		0.001	Pass	
Method Blank						
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.001		0.001	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	ug/L	< 0.005		0.005	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.001		0.001	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.001		0.001	Pass	
LCS - % Recovery	a :					
Cyanide (total)	%	112		70-130	Pass	
	%	101		70-130	Pass	

Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals							
Aluminium		%	100		80-120	Pass	
Aluminium (filtered)		%	97		80-120	Pass	
Cadmium		%	92		80-120	Pass	
Cadmium (filtered)		%	90		80-120	Pass	
LCS - % Recovery		•					
Perfluoroalkyl sulfonamido substa	inces- Trace						
Perfluorooctane sulfonamide (FOSA	()	%	100		50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)	%	119		50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)	%	121		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol(N-	%	91		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol(N-EtFOSE)	%	98		50-150	Pass	
N-ethyl-perfluorooctanesulfonamido	acetic acid (N-EtFOSAA)	%	86		50-150	Pass	
N-methyl-perfluorooctanesulfonamic	loacetic acid (N-MeFOSAA)	%	94		50-150	Pass	
LCS - % Recovery				н н			
Perfluoroalkyl carboxylic acids (Pf							
Perfluorobutanoic acid (PEBA)		%	112		50-150	Pass	
Perfluoropentanoic acid (PEPeA)		%	104		50-150	Pass	
Perfluorohexanoic acid (PEHxA)		%	98		50-150	Pass	
Perfluoroheptanoic acid (PEHpA)		%	91		50-150	Pass	
Perfluorooctanoic acid (PEOA)		%	89		50-150	Pass	
Perfluorononanoic acid (PENA)		%	88		50-150	Pass	
Perfluorodecanoic acid (PEDA)		%	95		50-150	Pass	
Perfluorotridecanoic acid (PETrDA)		%	105		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)		%	90		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)		%	103		50-150	Pass	
Perfluorotetradecanoic acid (PETeDA)		%	100		50-150	Pass	
I CS - % Recovery		70	101		00 100	1 455	
Perfluoroalkyl sulfonic acids (PFSAs)- Trace							
Perfluorobutanesulfonic acid (PEBS)		%	84		50-150	Pass	
Perfluoroponanesulfonic acid (PENS	<u>,</u>	%	58		50-150	Pass	
Perfluoropropanesulfonic acid (PEPrS)		%	90		50-150	Pass	
Perfluoropentanesulfonic acid (PEPeS)		%	93		50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)		%	87		50-150	Pass	
Perfluoroheptanesulfonic acid (PEH	nS)	%	105		50-150	Pass	
Perfluorooctanesulfonic acid (PEOS)	%	100		50-150	Pass	
Perfluorodecanesulfonic acid (PEDS)		%	57		50-150	Pass	
I CS - % Recovery	·)	/0			00 100	1 400	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace						
1H 1H 2H 2H-perfluorohexanesulfonic acid (4:2 FTSA)		%	92		50-150	Pass	
1H 1H 2H 2H-perfluorooctanesulfonic acid(6:2 FTSA)		%	107		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)		%	104		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)		%	146		50-150	Pass	
Test	Lab Sample ID QA	Units	Result 1		Acceptance	Pass	Qualifying
Spike - % Recovery		I			Linita	Linita	UUUE
Heavy Metals			Result 1				
Aluminium (filtered)	M23-Fe0051900 NCP	%	100		75-125	Pass	
Cadmium (filtered)	M23-Fe0051900 NCP	%	86		75-125	Pass	
Spike - % Recovery				· · · · ·			
Perfluoroalkyl sulfonamido substa	Inces- Trace		Result 1				
Perfluorooctane sulfonamide							
(FOSA)	M23-Fe0062224 NCP	%	103		50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M23-Fe0062224	NCP	%	125	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M23-Fe0062224	NCP	%	96	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	M23-Fe0062224	NCP	%	109	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	M23-Fe0062224	NCP	%	103	50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M23-Fe0062224	NCP	%	107	50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M23-Fe0062224	NCP	%	88	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	CAs) - Trace			Result 1			
Perfluorobutanoic acid (PFBA)	M23-Fe0062224	NCP	%	128	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M23-Fe0062224	NCP	%	117	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M23-Fe0062224	NCP	%	107	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M23-Fe0062224	NCP	%	102	50-150	Pass	
Perfluorooctanoic acid (PFOA)	M23-Fe0062224	NCP	%	105	50-150	Pass	
Perfluorononanoic acid (PFNA)	M23-Fe0062224	NCP	%	100	50-150	Pass	
Perfluorodecanoic acid (PFDA)	M23-Fe0062224	NCP	%	114	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	M23-Fe0062224	NCP	%	146	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M23-Fe0062224	NCP	%	99	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	M23-Fe0062224	NCP	%	103	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M23-Fe0062224	NCP	%	117	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonic acids (PFS/	AS)- Trace			Result			
(PFBS)	M23-Fe0062224	NCP	%	98	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	M23-Fe0062224	NCP	%	118	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M23-Fe0062224	NCP	%	104	50-150	Pass	
(PFPeS)	M23-Fe0062224	NCP	%	97	50-150	Pass	
(PFHxS)	M23-Fe0062224	NCP	%	82	50-150	Pass	
(PFHpS)	M23-Fe0062224	NCP	%	121	50-150	Pass	
Periluorooctanesulonic acid (PFOS)	M23-Fe0062224	NCP	%	115	50-150	Pass	
(PFDS)	M23-Fe0062224	NCP	%	93	50-150	Pass	
Spike - % Recovery	D 14						
n:2 Fluorotelomer sulfonic acids (r	1:2 FISAS)- Trace			Result 1			
perfluorohexanesulfonic acid (4:2 FTSA)	M23-Fe0062224	NCP	%	103	50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2							
FTSA)	M23-Fe0062224	NCP	%	110	50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M23-Fe0062224	NCP	%	108	50-150	Pass	
1H 1H 2H 2H-		1101	70		00 100	1 000	
perfluorododecanesulfonic acid (10:2 FTSA)	M23-Fe0062224	NCP	%	117	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				[
	1			Result 1	Result 2	RPD			
Fluoride	M23-Fe0055161	NCP	mg/L	0.9	0.7	26	30%	Pass	
Duplicate				D It 4	D #0				
Heavy Metals	M00 5-0054450	NOD		Result 1	Result 2	RPD	000/	Dese	
Aluminium Aluminium (filte re d)	M23-Fe0051152	NCP	mg/L	26	27	4.6	30%	Pass	
Aluminium (nitered)	M23-Fe0051900	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Cadmium (filtered)	M23-Fe0051152	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Cadmium (intered)	WI23-Fe0051900	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Perfluoroalkyl sulfonamido substa	nces-Trace			Result 1	Result 2	RPD	1		
Perfluorooctane sulfonamide (FOSA)	M23-Fe0062225	NCP	ua/l	< 0.005	< 0.005	<1	30%	Pass	
N-methylperfluoro-1-octane	M23-Fe0062225	NCP	ug/l	< 0.005	< 0.005	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M23-Fe0062225	NCP	ua/L	< 0.005	< 0.005	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	M23-Fe0062225	NCP	ug/L	< 0.005	< 0.005	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	M23-Fe0062225	NCP	ug/L	< 0.005	< 0.005	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M23-Fe0062225	NCP	ug/L	< 0.005	< 0.005	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M23-Fe0062225	NCP	ug/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (PF	-CAs) - Trace			Result 1	Result 2	RPD		_	
Perfluorobutanoic acid (PFBA)	M23-Fe0062225	NCP	ug/L	< 0.005	< 0.005	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	000
Perfluoronexanoic acid (PFHXA)	M23-Fe0062225	NCP	ug/L	< 0.001	0.017	190	30%	Fall	Q02
Perfluoroneptanoic acid (PFHpA)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Periluorooctanoic acid (PFOA)	M22 Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Periluorononanoic acid (PFNA)	M22 Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluorotridecanoic acid (PFDA)	M23 E00062225		ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluoroundecanoic acid	M23-Fe0062225		ug/L	< 0.001	< 0.001		30%	Pass	
Perfluorododecanoic acid	M23-Fe0062225		ug/L	< 0.001	< 0.001		30%	Pass	
Perfluorotetradecanoic acid	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	~1	30%	Pass	
Duplicate	11120 1 00002220	1101	ug/L	< 0.001	0.001	1	0070	1 400	
Perfluoroalkyl sulfonic acids (PFS)	As)- Trace			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	M23-Fe0062225	NCP	ug/L	< 0.005	0.027	190	30%	Fail	Q15
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M23-Fe0062225	NCP	ug/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N09	Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.
N11	Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
N15	Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).
Q02	The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black	Analytical Services Manager
Joseph Edouard	Senior Analyst-PFAS
Mary Makarios	Senior Analyst-Inorganic
Scott Beddoes	Senior Analyst-Inorganic
Scott Beddoes	Senior Analyst-Metal

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll OFFICE: 50 Glebe Road, The Jur PROJECT: EPL Sampling ORDER NUMBER:	Joratory: prease nex 7		Stafford QLD 4053 is: brisbane@alsglol indah Drive Clinton one@alsglobal.com	DML BOURN Dal.com Ph. 03 8549 96 QLD 4680 DMUDGEE 1/2: Ph. 02 6372 672	E 2-4 Westall Road 00 E: samples.melt 9 Sydney Road Mud 5 E: mudgee mai@	Springvale VIC ourne@alsglob gee NSW 2850 talsglobal.com	3171 al com	DNOWRA 4/ Dh 02 4423 2 DPERTH 1 Ph 08 9206	2 E. sampressee 13 Geary Place 063 E: nowra@ 0 Hod Way Ma 0 7655 F: samr	Woastlewarsyrv North Nowra NS Jalsglobal.com Laga WA 6090 Jass perth@alsot	N 2541	PTI: 0.2 a/04 8555 P. 1.5 and 0 TOWNSYILLE 14-15 C PTI: 07 4796 6500 E. town DM: 07 4756 6500 E. town PM: 07 4755 F. u.w.	mples sydney@arsgrobar.com Desma Court Bohle QLD 481; nesville.environmental@arsgrob (enny Street Wollongong NS) diamonom@alscripted.com	8 al com V 2500
OFFICE: 50 Glebe Road, The Jur PROJECT: EPL Sampling ORDER NUMBER:			TURNARC	OUND REQUIREMENTS :	□ Standard	TAT (List du	e date):					FOR LABORATORY USE	ONI Y (Circle)	
PROJECT: EPL Sampling ORDER NUMBER:	1ction NSW 2291		(Standard TA	T may be longer for some tests ace Ornanics)	□ Non Stand	dard or urge	nt TAT (List di	ue date):	03/04/	2023		Custody Seal Intact?	Yes	No
ORDER NUMBER:	•	PROJECT NO 3180002	40 ALS QUOT	TE NO.: SY/466/21				CO	C SEQUENC	E NUMBER	(Circle)	Free ice/ frozen ice bricks prest	ent upon) No
	PURCHASE	ORDER NO.:	COUNTRY	OF ORIGIN: Australia				coc: 1	3	4 5	9	Random Sample Temperature o	on Receipt:	ŗ
PROJECT MANAGER: Kirsty Gr	eenfield	CONTACT	PH: 0407 149	176				OF: 1	3	4 5	9	Other comment:	S.	
SAMPLER: Sam Buckley		SAMPLER	MOBILE: 048	1 384 112	RELINQUISHE	ED BY:		RECEIVE	D BY:		RE	LINQUISHED BY:	RECEIVED B	JI I VI
COC Emailed to ALS? YES	2	EDD FORM	AAT: equis, es	sdat, pdf, excel	Sam Buckley	0		٦	2	31.3.1	~	d k	5	July I
Email Reports to: sbuckley@ran	nboll.com & kgreenfield@ra	mboll.com	-		DATE/TIME:	1		DATE/TIN	ij		DA	TE/TIME: /	DATE/TIME:	
Email Invoice to: kgreenfield@ra	mboll.com		16		31/03/23	four .				1540	(*)	1/3/23 501	~	13/22/
COMMENTS/SPECIAL HANDLIN	G/STORAGE OR DISPOSAL:		×		0									
ALS USE ONLY	SAMPLE MATRIX: Solid	DETAILS ((S) Water(VV)	* *	CONTAINER INFO	DRMATION		ANALYSIS F	REQUIRED i Is are required, si	ncluding S	UITES (NB. 5	uite Codes n	 uust be listed to attract suite price) bwed (filed filtered bottle required). 	Additiona	Information
				×			(pəʌjoss	(pəʌlos				-	Comments on likely co dilutions, or samples n analysis etc.	ontaminant levels, equiring specific QC
LAB ID	SAMPLEID	DATE / TIME	MATRIX	TYPE & PRESERVATI (refer to codes below	BG T	OTAL DTTLES	siū bns lsoT) muinimul	ssiG bns lsoT) muimbs	əbinsyJ bəsinoi-n	əbiroul∃ əldulo	H			
	Sed Basin 1	31/03/2023 0:00	x	Lab bottles		4	v ×	2 × 0	n ×	s ×	d ×			
		an C				8								- AL
					-									
-								-						
				1 1			•					0	N CO H	2
														÷
е Т						-								
												Enviro	nmental Divis	sion
													k Order Reference	a C
						-		5				й 	201020	-
		ас (Р.									а. 			
	ľ													
					TOTAL	4								

Work Order

Client

Contact

Address

Telephone

Project

Sampler

Quote number

No. of samples received

No. of samples analysed

Site

CERTIFICATE OF ANALYSIS Page : ES2310901 : 1 of 2 : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney : MS KIRSTY GREENFIELD Contact : Customer Services ES Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO BOX 435 THE JUNCTION 2291 : +61 02 4934 4354 Telephone : +61-2-8784 8555 : 318000240 EPL Sampling **Date Samples Received** : 31-Mar-2023 15:42 Order number : 318001335 Date Analysis Commenced : 31-Mar-2023 C-O-C number Issue Date : -----: 03-Apr-2023 15:47 : Sam Buckley

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: -----

: 1

: 1

: SY/466/21_V5

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Ruby Buller	Laboratory Technician	Chemistry, Newcastle West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Sed Basin 1	 	
		Samplii	ng date / time	31-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2310901-001	 	
				Result	 	
EA005: pH						
pH Value		0.01	pH Unit	7.30	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	<0.01	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.24	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
EK026SF: Total CN by Segmented Flow A	nalyser					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	 	
ED009: Anions						
Fluoride	16984-48-8	0.010	mg/L	0.632	 	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle - Water, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(WATER) EA005: pH

QUALITY CONTROL REPORT

Work Order	: ES2310901	Page	: 1 of 3
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MS KIRSTY GREENFIELD	Contact	: Customer Services ES
Address	: PO BOX 435	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	THE JUNCTION 2291		
Telephone	: +61 02 4934 4354	Telephone	: +61-2-8784 8555
Project	: 318000240 EPL Sampling	Date Samples Received	: 31-Mar-2023
Order number	: 318001335	Date Analysis Commenced	: 31-Mar-2023
C-O-C number	:	Issue Date	: 03-Apr-2023
Sampler	: Sam Buckley		Hac-MRA NATA
Site	:		
Quote number	: SY/466/21_V5		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Ruby Buller	Laboratory Technician	Chemistry, Newcastle West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED009: Anions (QC	Lot: 4967333)								
ES2310901-001	Sed Basin 1	ED009-X: Fluoride	16984-48-8	0.01	mg/L	0.632	0.607	4.0	0% - 20%
EA005: pH (QC Lot:	4968555)								
ES2310860-006	Anonymous	EA005: pH Value		0.01	pH Unit	9.58	9.58	0.0	0% - 20%
ES2310913-010	Anonymous	EA005: pH Value		0.01	pH Unit	4.57	4.59	0.4	0% - 20%
EG020F: Dissolved M	letals by ICP-MS (QC Lot: 4	967521)							
ES2310858-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.27	0.26	4.0	0% - 20%
EG020T: Total Metals	by ICP-MS (QC Lot: 496754	41)							
ES2310858-007	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.06	0.06	0.0	No Limit
ES2310838-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.11	0.11	0.0	0% - 50%
EK026SF: Total CN I	by Segmented Flow Analyse	r (QC Lot: 4968112)							
ES2310728-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit
ES2310567-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	< 0.004	<0.004	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED009: Anions (QCLot: 4967333)								
ED009-X: Fluoride	16984-48-8	0.01	mg/L	<0.010	2 mg/L	105	84.0	118
EA005: pH (QCLot: 4968555)								
EA005: pH Value			pH Unit		7.6 pH Unit	100	98.5	102
EG020F: Dissolved Metals by ICP-MS (QCLot: 4967521)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	87.8	80.0	116
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	88.7	84.0	110
EG020T: Total Metals by ICP-MS (QCLot: 4967541)								
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	89.8	82.0	120
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	91.5	86.0	116
EK026SF: Total CN by Segmented Flow Analyser (QCLo	ot: 4968112)							
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	105	73.0	133

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable L	.imits (%)	
Laboratory sample ID	Sample ID	Method: Compound CA	AS Number	Concentration	MS	Low	High	
ED009: Anions (Q	CLot: 4967333)							
ES2310901-001	Sed Basin 1	ED009-X: Fluoride 16	6984-48-8	0.2 mg/L	110	70.0	130	
EG020F: Dissolved	Metals by ICP-MS (QCLot: 4967521)							
ES2310858-002	Anonymous	EG020A-F: Cadmium 74	440-43-9	0.25 mg/L	82.5	70.0	130	
EG020T: Total Meta	als by ICP-MS (QCLot: 4967541)							
EN2302950-002	Anonymous	EG020A-T: Chromium 74	440-47-3	1 mg/L	114	70.0	130	
EK026SF: Total CN	by Segmented Flow Analyser (QCLot: 4968112)							
ES2310567-001	Anonymous	EK026SF: Total Cyanide 57	7-12-5	0.2 mg/L	103	70.0	130	

QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES2310901	Page	: 1 of 4			
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney			
Contact	: MS KIRSTY GREENFIELD	Telephone	: +61-2-8784 8555			
Project	: 318000240 EPL Sampling	Date Samples Received	: 31-Mar-2023			
Site		Issue Date	: 03-Apr-2023			
Sampler	: Sam Buckley	No. of samples received	:1			
Order number	: 318001335	No. of samples analysed	: 1			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix:	WATER	

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EK026SF: Total CN by Segmented Flow Analyser						
Clear Plastic Bottle - NaOH Filtered						
Sed Basin 1				03-Apr-2023	01-Apr-2023	2

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:	×	= Holding	time	breach		~	=	Within	holding	time
		- I lolully	unie	Dieach	•		_	VVILIIII	noiunig	unie.

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time.
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH							
Clear Plastic Bottle - Natural (REGIONAL LAB) (EA005) Sed Basin 1	31-Mar-2023				31-Mar-2023	31-Mar-2023	✓
ED009: Anions							
Clear Plastic Bottle - Natural (ED009-X) Sed Basin 1	31-Mar-2023				31-Mar-2023	27-Apr-2023	✓
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) Sed Basin 1	31-Mar-2023				01-Apr-2023	26-Sep-2023	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) Sed Basin 1	31-Mar-2023	01-Apr-2023	26-Sep-2023	1	01-Apr-2023	26-Sep-2023	✓
EK026SF: Total CN by Segmented Flow Analyser							
Clear Plastic Bottle - NaOH Filtered (EK026SF) Sed Basin 1	31-Mar-2023				03-Apr-2023	01-Apr-2023	×

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Actual Expected Evaluation		
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
рН	EA005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
рН	EA005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	16	12.50	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	In house: Referenced to APHA 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM Schedule B(3)
Standard Anions -by IC (Extended Method)	ED009-X	WATER	In house: Referenced to APHA 4110B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)