Intended for Hydro Aluminium Kurri Kurri Pty Ltd

Document type Report

Date February 2023

HYDRO ALUMINIUM SMELTER CAPPED WASTE STOCKPILE, 2022 ANNUAL GROUNDWATER MONITORING REPORT

HYDRO ALUMINIUM SMELTER 2022 ANNUAL GROUNDWATER MONITORING REPORT

Revision	Final	R
Reference	318001362	Le 50
Date	7 February 2022	P
Prepared by	Jake Bourke, Jordyn Kirsch	TI
Checked by	Kirsty Greenfield (CEnvP Site Contamination Specialist No. SC40104)	N A
Approved by	Fiona Robinson (CEnvP Site Contamination Specialist No. SC40100)	A
Description	2022 Annual Groundwater Monitoring Report for the leachate plume	Т
	associated with the Capped Waste Stockpile at the former Hydro	h
	Aluminium Kurri Kurri Smelter, Loxford, NSW.	

Ramboll Level 2, Suite 18 Eastpoint 50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

CONTENTS

ABBREVIATIONS VI				
EXECUTI	/E SUMMARY	VII		
1.	INTRODUCTION	1		
1.1	Objective and Scope of Work	1		
1.2	Update on ECC and Remediation Project	2		
1.3	Limitations	2		
1.4	User Reliance	2		
2.	BACKGROUND	3		
2.1	Site Background	3		
2.2	Characterisation of the Leachate Plume	3		
2.3	Aquifer Characterisation	6		
2.4	Leachate Interception Trenches	6		
2.5	Fate and transport modelling	7		
2.6	Conceptual Site Model	7		
2.6.1	Contaminant Sources	8		
2.6.2	Contaminants of Concern	8		
2.6.3	Potential Human and Ecological Receptors	8		
2.6.4	Potential Transport Mechanisms	8		
2.6.5	Exposure Pathways	8		
3.	SAMPLING AND ANALYSIS QUALITY PLAN	10		
3.1	Objective	10		
3.2	Scope of Works	10		
3.3	Fieldwork Methodology	10		
3.4	Groundwater Well Maintenance	11		
3.5	Data Quality Objectives	11		
3.6	Data Quality Indicators	11		
4.	QUALITY ASSURANCE / QUALITY CONTROL	13		
5.	ASSESSMENT CRITERIA	16		
5.1	Groundwater Assessment Criteria	16		
5.2	Potential Beneficial Uses	16		
5.3	Appropriate Criteria for Groundwater	16		
6.	RESULTS AND TREND ANALYSIS	18		
6.1	Shallow Aquifer	18		
6.1.1	Groundwater Elevation and Flow Direction	18		
6.1.2	Groundwater pH	21		
6.1.2.1	Time Series Trends	23		
6.1.2.2	Mann-Kendall Trend Analysis	24		
6.1.3	Soluble Fluoride	25		
6.1.3.1	Time Series Trends	28		
6.1.3.2	Mann-Kendall Trend Analysis	29		
6.1.4	Free Cyanide	30		
6.1.4.1	Time Series Trends	31		
6.1.4.2	Mann-Kendall Trend Analysis	32		
6.2	Deep Aquifer	33		
6.2.1	Groundwater Elevation and Flow Direction	33		
6.2.2	Groundwater pH	36		
6.2.2.1	Time Series Trends	38		
6.2.2.2	Mann-Kendall Trend Analysis	39		
6.2.3	Soluble Fluoride	40		
6.2.3.1	Time Series Trends	42		

6.2.3.2	Mann-Kendall Trend Analysis	44
6.2.4	Free Cyanide	45
6.2.4.1	Time Series Trends	45
6.2.4.2	Mann-Kendall Trend Analysis	45
7.	HYDRO DATA	47
8.	CONCLUSIONS AND RECOMMENDATIONS	49
9.	REFERENCES	50

FIGURES

Figure 2-1: Historical Fluoride Concentrations Along the Plume 1992 - 2014	5
Figure 6-1: Groundwater Elevation – Shallow Aquifer, 2013 to 2022	19
Figure 6-2: Interpolated Groundwater Elevation and Flow Direction – Shallow Aquifer 2022	20
Figure 6-3: Interpolated Field pH – Shallow Aquifer 2022	
Figure 6-4: Field pH Values – Shallow Aquifer, Section 1 & 2 Wells	
Figure 6-5: Field pH Values – Shallow Aquifer, Section 3 & 4 Wells	
Figure 6-6: Field pH Values – Shallow Aquifer, Section 5 & Sentinel Wells	
Figure 6-7: Interpolated Soluble Fluoride - Shallow Aquifer 2022	27
Figure 6-8: Soluble Fluoride Concentrations – Shallow Aquifer, Section 1 & 2 Wells	28
Figure 6-9: Soluble Fluoride Concentrations – Shallow Aquifer, Section 3 & 4 Wells	29
Figure 6-10: Soluble Fluoride Concentrations – Shallow Aquifer, Section 5 & Sentinel Wells	29
Figure 6-11: Free Cyanide Concentrations – Shallow Aquifer, Section 1 & 2 Wells	31
Figure 6-12: Free Cyanide Concentrations – Shallow Aquifer, Section 3 & 4 Shallow Wells	32
Figure 6-13: Free Cyanide Concentrations - Shallow Aquifer, Section 5 & Sentinel Shallow Wells	:32
Figure 6-14: Groundwater Elevation – Deep Aquifer, 2013 to 2022	34
Figure 6-15: Interpolated Groundwater Elevation and Flow Direction – Deep Aquifer 2022	35
Figure 6-16: Interpolated Field pH – Deep Aquifer 2022	
Figure 6-17: Field pH Values – Deep Aquifer, Section 1 & 2 Wells	
Figure 6-18: Field pH Values – Deep Aquifer, Section 3 & 4 Wells	
Figure 6-19: Field pH Values, Section 5 & Sentinel Deep Wells (pH Units)	
Figure 6-20: Interpolated Soluble Fluoride - Deep Aquifer 2022	
Figure 6-21: Soluble Fluoride Concentrations – Deep Aquifer, W2D	
Figure 6-22: Soluble Fluoride Concentrations – Deep Aquifer, Section 1 & 2 Wells	42
Figure 6-23: Soluble Fluoride Concentrations – Deep Aquifer, Section 3 & 4 Wells	43
Figure 6-24: Soluble Fluoride Concentrations – Deep Aquifer, Section 5 & Sentinel Wells	43
Figure 6-25: Free Cyanide Concentration – Deep Aquifer, W2D	45
Figure 7-1: Fluoride Concentrations in Wells Sampled by Hydro	48

TABLES

Table 2-1: Aquifer Characteristics	6
Table 2-2: Source-Pathway-Receptor Linkages	9
Table 3-1: Field Methodology for Quarterly Groundwater Monitoring	10
Table 3-2: Data Quality Objectives	11
Table 3-3: Data Quality Indicators	12
Table 4-1: QA/QC Sampling and Analysis Methodology Assessment	
Table 4-2: QA/Q Assessment	14
Table 5-1: Groundwater Assessment Criteria	
Table 6-1: Field pH Values - Shallow Aquifer	21
Table 6-2: Mann-Kendall pH Trends - Shallow Aquifer	
Table 6-3: Soluble Fluoride Concentrations - Shallow Aquifer	
Table 6-4: Mann-Kendall Trend Analysis of Soluble Fluoride – Shallow Aquifer	30
Table 6-5: Free Cyanide Concentrations - Shallow Aquifer	

Table 6-6: Mann-Kendall Trend Analysis of Free Cyanide Trends - Shallow Aquifer	33
Table 6-7: Field pH Values – Deep Aquifer	
Table 6-8: Mann-Kendall pH Trends - Deep Aquifer	39
Table 6-9: Soluble Fluoride Concentrations – Deep Aquifer	40
Table 6-10: Mann-Kendall Soluble Fluoride Trends - Deep Aquifer	
Table 6-11: Free Cyanide Concentrations – Deep Aquifer	45
Table 6-12: Mann-Kendall Trend Analysis of Free Cyanide – Deep Aquifer	46
Table 7-1: Fluoride Concentrations in Wells Sampled by Hydro (mg/L)	47

APPENDICES

Appendix 1 Figures

Appendix 2 Attachments

Appendix 3 2013-2022 GME Historical Data

Appendix 4 Field Parameter Forms

Appendix 5 Laboratory Reports

Appendix 6 Calibration Certificates

Appendix 7 Historical Groundwater Contours

Appendix 8 Mann-Kendall Trend analysis

ABBREVIATIONS

Abbreviation	Description
AEC 1	Areas of Concern 1
AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
ANZG	Australian and New Zealand Guidelines (Water Quality)
CoC	Contaminant of Concern
Conc.	Concentration (in tables and graphs)
DQI	Data Quality Indicator
DQO	Data Quality Objective
CWS	Capped Waste Stockpile
EC	Electrical Conductivity
EPA	Environmental Protection Authority
GME	Groundwater Monitoring Event
Hydro	Hydro Aluminium Kurri Kurri Pty Ltd
ha	hectare
km	kilometre
L	litre
LOR	Limit of Reporting
m	metre
m bgs	Metres below ground surface
µg/L	micrograms per litre
mg/L	milligrams per litre
NATA	National Association of Testing Authorities
NSW	New South Wales
No.	Number of samples (in tables and graphs)
рН	Measure of acidity, hydrogen ion activity
Ramboll	Ramboll Australia Pty Ltd
RPD	Relative Percentage Difference
QA/QC	quality assurance/quality control

EXECUTIVE SUMMARY

Thirty-seven groundwater monitoring events have been completed between July 2013 and December 2022 to monitor a leachate impacted groundwater plume associated with the Capped Waste Stockpile (CWS) at the former Hydro Aluminium Kurri Kurri Smelter, located off Hart Road, Loxford, NSW. Monitoring of the groundwater down gradient of the CWS was initiated to assess the impacts to groundwater from leachate and to provide a temporal and spatial evaluation of the plume behaviour. Leachate from the CWS has high pH and elevated dissolved fluoride characteristics.

Each GME included the sampling and analysis of groundwater from a network of 24 shallow and deep wells located on five sections along the length of the leachate plume down-gradient of the CWS. In 2016, an additional two pairs of shallow and deep wells were added to the network. These wells are located adjacent to Swamp Creek, the nearest surface water receptor. Physico-chemical parameters were recorded, and groundwater samples analysed for soluble fluoride, total and free cyanide as well as total and dissolved aluminium.

Groundwater downgradient of the CWS is shallow and within a former sand filled river channel. Geological constraints limit the movement of groundwater and cause groundwater discharge to the surface following rainfall events. Groundwater wells target the upper phreatic surface, or shallow part of the aquifer, and a deeper part of the aquifer. The monitoring depth of the deeper well is variable and depending on geological stratum.

Evaluation of 2022 GME data has identified the following:

- The leachate plume in shallow groundwater is delineated to the north, with a decreasing trend in soluble fluoride concentrations in well N9 at the leading edge of the plume.
- An increasing trend in pH and soluble fluoride concentrations have been reported at well E4 on the eastern boundary of the leachate plume. Groundwater at this location is constrained from further eastern migration due to geological constraints (high plasticity clay with low permeability). In addition, soluble fluoride concentrations in leachate at this location on the eastern edge of the leachate plume are generally consistent with historical observations made in 2013.
- Consistent with previous monitoring, the leachate plume has impacted the deeper sand aquifer in a localised area close to the plume source, the CWS, as shown by elevated soluble fluoride concentrations and a high pH in well W2D. Fluoride concentrations at this well have been elevated over the monitoring period and while no increasing trend in fluoride concentration has been observed, there is an increasing trend in pH with the highest pH results identified in the three most recent monitoring events in June, September and December 2022.
- There may be some expansion of leachate impact in the deep aquifer to the east, from the source towards W1D, with an increasing trend identified for both pH and soluble fluoride concentrations for two consecutive years (2021 to 2022). pH values at W1D are approaching levels characteristic of leachate impact (pH >9). The increasing plume migration coincides with higher than average rainfall experienced in the area, which is the primary mechanism for movement of the plume from the CWS.
- Consistent with previous monitoring, the leachate plume is not reaching the nearest surface water receptor of Swamp Creek, as indicated by continued low pH and low soluble fluoride concentrations in sentinel wells.
- Leachate is currently only generated in limited quantities following heavy rainfall and removal of leachate from the northern interception trench is completed as required. The active leachate interception trench at the toe of the CWS has not been pumped since 2016 and it was replaced in late 2022 with two separate interception trenches. Water pumped from these interception trenches will be pumped to the TWTP for treatment prior to disposal through the water management system.

1. INTRODUCTION

Ramboll Australia Pty Ltd (Ramboll) was commissioned by Hydro Aluminium Kurri Kurri Pty Ltd (Hydro) to undertake quarterly Groundwater Monitoring Events (GMEs) on a portion of the Hydro Aluminium Kurri Kurri Smelter, located off Hart Road, Loxford, New South Wales (NSW), Australia.

The portion of the Smelter subject to the quarterly groundwater monitoring comprises the former smelter waste storage area known as the 'Capped Waste Stockpile' (CWS) and an associated area of leachate impacted groundwater (the leachate plume). The CWS and associated leachate impacted groundwater were identified as Area of Concern 1 (AEC 1) in the Phase 2 Environmental Site Assessment completed by Environ (now Ramboll) in 2012. The location of AEC 1 is shown in **Figure 1**, **Appendix 1**.

Results of previous GMEs completed between July 2013 and December 2021 have been reported in the following reports:

- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 12 Month Groundwater Monitoring Report', by Environ (now Ramboll), dated February 2015
- 'Hydro Aluminium Smelter, Capped Waste Stockpile, 2015 Annual Groundwater Monitoring Report' by Ramboll Environ (now Ramboll), dated April 2016
- 'Hydro Aluminium Smelter, Capped Waste Stockpile, 2016-2017 Annual Groundwater Monitoring Report', by Ramboll, dated February 2018
- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 2018 Annual Groundwater Monitoring Report', by Ramboll, dated February 2019
- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 2019 Annual Groundwater Monitoring Report', by Ramboll, dated February 2020
- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 2020 Annual Groundwater Monitoring Report', by Ramboll, dated February 2021

This report presents the results of four quarterly GMEs, completed in March, June, September, and December of 2022, as well as a trend analysis of the results from the 37 monitoring events completed between 2013 and 2022.

1.1 Objective and Scope of Work

The objective of each quarterly GME was to:

- Assess the current status of leachate impacts to groundwater occurring from the CWS
- Compare the current status of leachate impacts to historical data to assess changes in groundwater quality.

The objective of this 2022 Groundwater Monitoring Report is to:

- Tabulate results for depth to groundwater, physico-chemical parameters and analytical data collected in 2022
- Complete trend analysis of monitored parameters in key wells incorporating data collected since July 2013
- Complete trend analysis with rainfall data
- Contour contaminant concentrations in the shallow and deep aquifers
- Assess the impact of the leachate interception trench on groundwater quality
- Assess plume migration
- Provide conclusions and recommendations

The scope of work for each quarterly GME included:

- Gauging, purging and sampling of 28 groundwater monitoring wells on five sections through the plume, including two shallow wells and two deep wells located adjacent to Swamp Creek
- Measurement of groundwater physico-chemical properties during purging, including pH, temperature, electrical conductivity (EC), redox, turbidity and dissolved oxygen
- Laboratory analysis of groundwater samples for soluble fluoride, total and dissolved aluminium and total and free cyanide

1.2 Update on ECC and Remediation Project

The ECC and Remediation Project includes the construction of an on-site Engineered Containment Cell (ECC) for the long-term secure storage of smelter wastes and contaminated soil, which is to be relocated from the CWS and other Areas of Environmental Concern at the Smelter Site and associated Buffer Zone.

Remedial works commenced in 2015 and progressed through the demolition of the Smelter between 2017 and 2020. Contaminated soil that was remediated during this period has been stockpiled in interim stockpiles on the Smelter Site. The ECC was constructed between 2021 and 2022. Smelter wastes from the CWS and contaminated soil in interim stockpiles will be relocated to the ECC in 2023.

Topsoil and clay capping was removed from the CWS and stockpiled for re-use on the Smelter Site in August 2022.

Two new leachate interception trenches were installed along the toe of the CWS in late 2022 to capture leachate from the CWS and direct it through a Temporary Water Treatment Plant (TWTP) that was constructed adjacent to the CWS in mid-2022. The TWTP will treat leachate from the CWS, and leachate generated during periods of rainfall during waste placement at the ECC. The TWTP is anticipated to operate for a period of two years.

1.3 Limitations

Ramboll Australia Pty Ltd (Ramboll) prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated 4 December 2020 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous. Site conditions may change over time. This report is based on conditions encountered at the Site at the time of the report and Ramboll disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment.

Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this investigation. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

1.4 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without Ramboll's express written permission.

2. BACKGROUND

2.1 Site Background

The Hydro Aluminium Kurri Kurri Smelter is located approximately 30 kilometres (km) west of the city of Newcastle and 150 km north of Sydney, in NSW, Australia. The smelter includes a 60-hectare (ha) plant area and a 2,000-ha buffer zone.

The CWS is a repository of waste arising during the operations of the aluminium smelter and includes spent pot lining, anodes, scrubber bags, concrete, brick, bulky waste, fines and other smelter wastes. The CWS is located near the eastern boundary of the smelter footprint and adjacent to the surrounding Hydro owned buffer land.

The CWS was maintained as an uncapped bunded waste repository prior to being capped with clay under development consent in the mid-1990s. At this time, impacts to vegetation in the buffer zone downgradient of the CWS were observed. Leachate from the CWS, caused by rainwater and groundwater coming in to contact with the CWS contents, was also known to have impacted on groundwater and investigations commenced to explore the extent of groundwater impact. These investigations identified that leachate impacted groundwater likely originated from the northeast corner of the CWS and extended approximately 250 meters (m) northeast. The CWS and associated leachate impacted groundwater were identified as AEC 1 in the Phase 2 Environmental Site Assessment completed by Environ (now Ramboll) in 2012. The location of AEC 1 is shown in **Figure 1**, **Appendix 1**. Ramboll assessed AEC 1 as part of the following investigations:

- 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter', dated 1 November 2012
- 'Environmental Site Assessment, Capped Waste Stockpile, Kurri Kurri Aluminium Smelter', dated 13 December 2012
- 'Plume Delineation Report, Capped Waste Stockpile', dated 6 November 2013.

Following these investigations, a Groundwater Monitoring Programme was developed that included monitoring 24 wells on five cross sections along the length of the plume. A summary of the Plume Delineation Report was included in Section 2.2 of the 12 Month Groundwater Monitoring Report (ENVIRON June 2016) and further information regarding the development of the Program is presented in Section 2.4 of that report.

Interim mitigation measures were taken in 2013, 2016, 2017 and late 2022 to intercept the shallow movement and daylighting of leachate impacted groundwater. Measures involved the installation of passive or active shallow trenches, extending approximately 2 m below the ground surface perpendicular to the plume migration and providing pipe conveyance of the leachate impacted groundwater to the surface.

Planning approval has been received for the remediation of the CWS (State Significant Development SSD 6666). Remediation will involve the consolidation of all contaminated materials within one centralised engineered containment cell located approximately 1 km west of the current CWS site and within residual clay soils. The engineered containment cell was constructed in 2021 and 2022. It is anticipated that the relocation of wastes into the cell will occur in 2023, following which the cell will be capped. Remediation of the CWS will result in the removal of the source of leachate to the groundwater system. Remediation involves some removal of leachate impacted groundwater with the remaining groundwater remediation occurring through natural processes following subsequent rainfall.

2.2 Characterisation of the Leachate Plume

A conceptual site model was developed following Stage 1 and Stage 2 of the investigations and was included in 12 Month Groundwater Summary Report, 2014 (Environ 2015).

The Hydro aluminium smelter and surrounding land generally comprises flat, low lying swampy ground that is at an elevation of between 12 m Australian Height Datum (AHD) and 15 m AHD.

The CWS is located within the smelter portion of the site and is approximately 170 m in length by 130 m in width and is up to 11 m high and has until recently been capped with clay and topsoil. The eastern portion of the site within the buffer zone retains natural bushland vegetation with minor surface filling using refractory bricks along the buffer zone fence line. Two areas of vegetation impact, known as the northern and southern vegetation impact areas are located in the north-eastern portion of the site.

The CWS comprises stockpiled spent pot lining wastes and other wastes including cryolite, alumina, floor sweepings, shot blast dust, cement and pot lining mix. The waste is not leachate generating of itself (i.e., not putrescible) however, the uncapped storage of waste and subsequent infiltration of rainwater through the waste stockpile led to the generation of leachate over a period of approximately 25 years. Prior to capping, the leachate was collected behind bund walls surrounding the spent pot lining stockpile. During capping, leachate was suspected to have been entrapped within the fill in the north-eastern corner of the CWS.

The CWS was capped in 1995 to prevent further infiltration. The suspected burial of leachate during capping and the ongoing contact between waste material and shallow groundwater beneath the CWS is considered to result in the ongoing leachate generation.

Major contaminants in the leachate are sodium (4,800 mg/L to 15,300 mg/L), fluoride (1,100 mg/L to 3,420 mg/L), sulphate (4,000 mg/L to 6,740 mg/L) and cyanide (70 mg/L to 200 mg/L) based on data obtained from leachate ponded within the bunded area of the CWS prior to capping (Reference: Dames & Moore (1992) 'Environmental Impact Statement, Upgrades to Waste Storage Facilities at the Alcan Australia Limited Kurri Kurri Smelter'). Leachate impacted groundwater is observed to be brown in colour.

The leachate plume originates from beneath the eastern side of the CWS where seepage into shallow groundwater within a semi-continuous sand aquifer has occurred. The shallow sand aquifer has been delineated as an elongate and sinuous sand lens approximately 50 m wide and 250 m in length extending to the northeast of the CWS. The shallow sand aquifer is surrounded vertically and horizontally by a discontinuous clay aquitard that has been less impacted by leachate in close proximity to the plume and not been impacted by leachate at a distance from the plume. The configuration of the aquifer is a result of the nature of the deposition of sediments within a former estuary during periods of sea level rise and fall. A schematic cross section of the site is included as **Attachment 1**, **Appendix 2**.

The location of the plume within the semi-continuous shallow sand aquifer constrained by the surrounding discontinuous clay aquitard suggests that the movement of the leachate groundwater plume is limited by the geology. The complex interbedded Quaternary sediments comprise estuarine muds (high plasticity clay), fluvial channel sands (fine grained and coarse-grained sands), sandy levee deposits (clayey sand/sandy clay) and high energy flood deposits (coarse grained quartz sand).

Delineation investigations show that the groundwater plume remains confined within one main sand filled channel which directs flow to the northeast. This finding is consistent with observations of a heavily vegetated area evident in the 1961 historical aerial photograph (**Attachment 2**, **Appendix 2**). The heavy vegetation is a reflection of surface and subsurface drainage lines and likely represents the shallow groundwater table present in the sand filled channel. The 1961 aerial photograph depicts the vegetation extending further to the northeast and connecting with Swamp Creek. Given the correlation between the plume extent and the vegetation, it is reasonable to conclude that the groundwater flow path will continue along the vegetation alignment toward Swamp Creek and that, should the plume migration reach the surface water receptor, the discharge point will occur approximately 750 m to 1,000 m north-east of the plume, as shown in **Attachment 2**, **Appendix 2**. Fate and transport modelling to predict the migration of the plume along this channel has been undertaken, as summarised in **Section 2.5**.

The shallow nature of the semi-continuous sand aquifer results in the exfiltration of leachate impacted groundwater within topographically low areas of the site and following high rainfall events. The impacts of exfiltration are observed on the eastern edge of the plume where dieback of vegetation has occurred (southern and northern vegetation impact areas). Brown coloured seepage is observed and evaporation of exfiltrated groundwater has left a white salt crust on surface soils in this area. The high electrical conductivity of the exfiltrated groundwater (up to $15,000 \mu$ s/cm) exceeds the limit ($12,200 \mu$ s/cm) at which conditions are generally too saline for plant growth (ANZECC, 2000).

The semi-continuous shallow sand aquifer that is impacted with leachate is characterised by high pH (pH >9), electrical conductivity (>5,000 μ S/cm), fluoride (>200 mg/L) and total cyanide (>6 mg/L) concentrations and is brown in colour. Historical data from 1992 to 2014 indicates fluoride concentrations within the leachate plume decreased after the CWS was capped in 1995. Fluoride concentrations near the CWS, the source of the plume, peaked in 1997. Mid-way along the plume, fluoride concentrations peaked around 2000 and at the leading edge, fluoride concentrations peaked between 2004 and 2006, as shown in **Figure 2-1**.

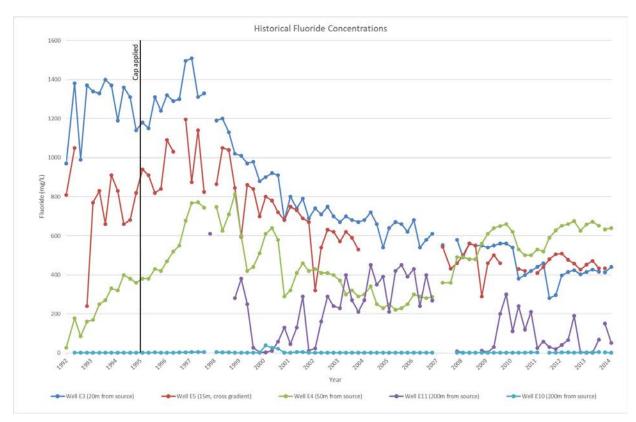


Figure 2-1: Historical Fluoride Concentrations Along the Plume 1992 - 2014

Ex-filtrated leachate impacted groundwater is observed to become overland flow discharging along a surface water flow path to a small dam. During periods of high rainfall, surface water within this dam is able to flow through a culvert structure to a larger dam which discharges to Swamp Creek. The overland flow path is shown in **Attachment 3**, **Appendix 2**.

Fluoride concentrations at the semi-permanent dam, located between the leachate impacted groundwater plume and Swamp Creek, typically vary between 15 mg/L and 25 mg/L. It is considered that the elevated fluoride concentrations in the semi-permanent dam are due to overland flow of exfiltrated groundwater from their source at the southern and northern vegetation impact areas. Sampling found the fluoride concentrations in Swamp Creek vary between 0.49 mg/L upstream of the smelter and 1.2 mg/L downstream. Adjacent to the semi-

permanent dam discharge to Swamp Creek, fluoride concentrations were 1.6 mg/L. The Stage 2 Aquatic Assessment - Ecological Risk Assessment completed by ENVIRON in June 2013 indicated there is no discernible impact to the aquatic ecology within the semi-permanent dam as a result of elevated concentrations of fluoride in surface water and sediment.

2.3 Aquifer Characterisation

A sand aquifer within the buffer zone of the Hydro Aluminium Smelter has been impacted by leachate from the CWS. An underlying deep aquifer has also been impacted in close proximity to the contamination source. The characteristics of this sand aquifer and the underlying deep aquifer are critical to the understanding of the site CSM. Aquifer characteristics have been identified as outlined in **Table 2-1**.

Characteristic	Comment				
Aquifer Type	Unconsolidated sediment (estuarine)				
Aquifer Depth	Shallow: Approximately 0.3 metres below ground surface (m bgs) to 2.5 m bgs				
Aquilei Deptii	Deep: Approximately 3.5 m bgs to 7 m bgs				
Confined/Unconfined	Shallow: Unconfined				
commed/oncommed	Deep: Confined by high plasticity clays in some areas				
Groundwater Flow Direction	Shallow: North to northeast				
Groundwater Flow Direction	Deep: Northeast				
Desharge Machanism	Shallow: Infiltration				
Recharge Mechanism	Deep: Infiltration				
Porosity	Shallow: Variable due to variable nature of the sediments. High porosity quartz gravels identified at northeast corner of the Capped Waste Stockpile. Mid to low porosity tightly packed sands identified along plume length.				
	Deep: Mid to low porosity poorly sorted, tightly packed fine-grained sand.				

Table 2-1: Aquifer Characteristics

The most important characteristic for the movement of leachate through the shallow aquifer is the nature of the materials, in particular the complex and variable nature of the unconsolidated sediments. The nature of the sediments impacts the soil permeability, with high porosity quartz gravels, mid to low porosity tightly packed sands and high plasticity clays with very low porosity, all identified within the unconsolidated estuarine sediments. The leachate from the CWS permeates through mid to high porosity sediments but is retarded by high plasticity clays. Where low porosity and low permeability conditions constrain sub-surface flow, groundwater may discharge at the ground surface coinciding with changes in topography.

2.4 Leachate Interception Trenches

The following leachate interception trenches were installed down gradient of the source of the leachate plume to capture leachate prior to daylighting to surface near the two vegetation impact areas:

- A passive interception trench was installed in early 2013 to the north of Section 2 to intercept leachate flowing into the southern vegetation impact area
- An active interception trench was installed at the toe of the CWS immediately upgradient of the wells on Section 1 in April 2014
- A second passive interception trench was installed north of Section 4 in October 2017 to capture leachate daylighting along the western edge of the northern vegetation impact area

The location of these interception trenches are shown in Attachment 4, Appendix 2. A conceptual cross section of the active interception trench on Section 1 is included in Attachment

5, Appendix 2.

These trenches were installed as an interim remedial measure to reduce daylighting and overland flow of leachate downgradient of the CWS. The active trench was in operation from May 2014 to March 2016 when the discharge rate dropped to 0 L/ minute. Operation of the active trench since March 2016 has not been required as leachate is no longer collecting in the trench. The passive trenches are occasionally pumped out following heavy rainfall. The trenches have been effective as an interim remedial measure, with water quality improvements and regeneration of vegetation observed in the two vegetation impact areas.

In late 2022, the active interception trench at the toe of the CWS was removed and two interception trenches were reinstated in this area. One horizontal trench extends approximately 40 m, with a slope to the south and a connection to a vertical pumping bore located near well W7S. A second pumping bore was installed adjacent to the deep well W2D, which is impacted with leachate. Both pumping bores will pump leachate to a holding tank, which will be pumped to the Leachate Dam prior to treatment through the Temporary Water Treatment Plant (TWTP) set up to treat leachate during the ECC and Remediation Project. The TWTP is likely to operate for a two year period from 2023 to 2025.

2.5 Fate and transport modelling

ENVIRON (February 2015) conducted a hydrogeological review and analytical groundwater contaminant transport modelling to assess the fate and transport of the leachate plume within the shallow aquifer. The assessment and modelling included a review of site investigation data and the construction of a conceptual hydrogeological model of AEC 1 and its surrounds.

A one-dimensional model (UK EA Remedial Targets Worksheet) was used to simulate the groundwater flow and contaminant transport conditions to predict contaminant (fluoride) concentrations from the source to the nearest down-gradient receptor (Swamp Creek).

The model was calibrated against observed fluoride concentrations from the existing groundwater monitoring well network to the east and north-east of the capped waste stockpile. The groundwater fluoride concentration at the receptor impact point was then evaluated under the simulated model and compared with the guideline criteria.

The following conclusions were drawn from the results of the modelling:

- Based on the existing hydrogeological conditions and the presence of an ongoing source from the CWS, the model estimated a fluoride concentration of 4.3 mg/L at the receptor distance (1,000 m), compared to the guideline criteria of 1.5 mg/L
- This value is considered a conservative estimate given the model assumes a continuous • source, however, historical, more recent and proposed works are considered to have mitigated the source contribution. Future remedial works are proposed to ultimately remove the source (spent Pot Liner, anodes, scrubber bags, concrete, brick, bulky waste, fines and other smelter wastes stockpiled within the CWS)
- The model demonstrates sensitivity to a number of input parameters including the soil partition coefficient, (Kd). Future studies may include site specific determination of the soil partition coefficient in order to improve model calibration.

2.6 **Conceptual Site Model**

A Conceptual Site Model (CSM) is a site-specific qualitative description of the source(s) of contamination, the pathway(s) by which a contaminant may migrate through environmental media and the populations (human and/or ecological) that may potentially be exposed. This relationship is commonly known as a Source-Pathway-Receptor (SPR) linkage. Where one or more elements of the SPR linkage are missing, the exposure pathway is considered to be incomplete, and no further assessment is required.

A CSM was developed for the CWS leachate plume based on details provided in the sections above. The CSM has been updated based on field observations and data to 2022.

2.6.1 Contaminant Sources

The contaminant sources at the CWS leachate plume is the aluminium smelter wastes disposed in the CWS, primarily spent pot lining and cryolite.

2.6.2 Contaminants of Concern

Contaminants of Concern associated with spent pot lining and cryolite include fluoride, cyanide, aluminium, sodium, sulphate and high pH.

2.6.3 Potential Human and Ecological Receptors

Identified potential receptors of contaminants of concern, should a complete exposure pathway be present, include:

- Maintenance personnel (brush cutting is completed in this area)
- Hydro employees who access the buffer zone
- Vegetation growing in the area of the leachate plume
- Transitory fauna that traverse through the area of the leachate plume
- The ecology of the semi-permanent dam located adjacent to Swamp Creek, the nearest down gradient receptor
- The ecology of Swamp Creek

Limited human receptors were identified as the site is located in a portion of the buffer zone that is fenced and not accessible to the general public or Hydro employees aside from those who work in the buffer zone.

2.6.4 Potential Transport Mechanisms

Identified potential transport mechanisms by which contaminants of concern may migrate from the source include:

- Migration through groundwater
- Daylighting of groundwater and overland surface water flow

Infiltration as a transport mechanism was stopped by the capping of the CWS with low permeability clay in the mid-1990s.

2.6.5 Exposure Pathways

For a receptor to be exposed to a chemical contaminant derived from a site, there must be an exposure pathway linking the source of contamination and the exposed receptor. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed receptor and generally includes the following elements (US EPA 1989):

- A source and mechanism of chemical release
- A retention or transport medium (or media where chemicals are transferred between media)
- A point of potential human contact with the contaminated media
- An exposure route (e.g., ingestion, inhalation) at the point of exposure

An evaluation of exposure pathways at the site is outlined in **Table 2-2**.

Table 2-2: Source-Pathway-Receptor Linkages

	Source-Pathway-Receptor Link? (Yes/No/Potential (P), Not Rele				elevant (NR))		
	Maintenance Personnel	Hydro Employees	Vegetation	Transitory fauna	Ecology of dam down gradient	Ecology of Swamp Creek	Justification
Soil							
Dermal contact with impacted soil	No	No	NR	No	NR	NR	The contents of the CWS and underlying 0.5 m of soil are impacted by elevated concentrations of fluoride, asbestos, PAHs and
Incidental ingestion of impacted soil	No	No	NR	No	NR	NR	petroleum hydrocarbons (Ramboll 2016). Natural soils more than 0.5 m below the waste
Outdoor dust inhalation	No	No	NR	No	NR	NR	are not impacted. The contamination is no longer accessible following capping of the CSW with low plasticity clay in the mid-1990s.
Surface Water							
Dermal contact with impacted surface water	No	No	NR	No	No	No	Groundwater within the leachate plume can daylight and flow across overland flow paths, providing a pathway between contaminated
Incidental ingestion of impacted surface water	No	No	NR	No	No	No	groundwater and human and ecological receptors. Following the installation of the interception trenches, the daylighting of
Uptake of impacted surface water	NR	NR	No	NR	NR	NR	groundwater has reduced in frequency and impacted surface water has been observed on few occasions during heavy rainfall since 2014.
Groundwater							
Dermal contact with impacted groundwater	No	No	No	No	No	No	Groundwater within the leachate plume is not accessible aside from uptake of impacted water by vegetation, as evidenced by the two
Incidental Ingestion of impacted groundwater	No	No	No	No	No	No	vegetation impact areas in the down gradient portion of the plume. High plasticity clays located east of the leachate plume prevent
Uptake of impacted groundwater	NR	NR	Yes	NR	NR	NR	groundwater migration east towards Swamp Creek.

3. SAMPLING AND ANALYSIS QUALITY PLAN

3.1 Objective

The objective of each quarterly GME is to collect water quality data from the groundwater monitoring network to inform the behaviour of the leachate plume over time and provide data for annual reporting.

The groundwater monitoring network comprises groundwater wells located on five sections along the length of the leachate plume, as follows:

- Section 1: Wells E5, E5D, W7S, W7M, PUMP, W2S, W2D
- Section 2: Wells E5, E5D, E4, W1S, W1D
- Section 3: Wells A7, W3S, W3D⁺, W3SA², W4S, W4D³
- Section 4: Wells E11, W5S, W5D, N2
- Section 5: Wells G2, N8, N9, W6S, W6D

Two pairs of shallow and deep wells adjacent to Swamp Creek (F5/G5 and F6/G6) were added to the groundwater monitoring network in 2016. These are sentinel wells that are unimpacted by leachate. The presence of leachate in these wells would indicate potential impact to Swamp Creek, the nearest surface water receptor. The groundwater monitoring network is shown in **Figure 2**, **Appendix 1**.

3.2 Scope of Works

The scope of works included the following:

- The collection of groundwater samples and measurement of water levels and physicochemical parameters (including pH, temperature, EC, redox, turbidity and dissolved oxygen) from 28 groundwater wells in the groundwater monitoring network
- Laboratory analysis of groundwater samples for soluble fluoride, total and dissolved aluminium, and total and free cyanide. Dissolved aluminium was included as part of laboratory analysis from June 2018.

3.3 Fieldwork Methodology

The fieldwork methodology for the collection of groundwater samples is outlined in Table 3-1.

Activity	Details
Well Gauging	Monitoring wells were gauged using a water interface probe.
Well Purging	Monitoring wells were purged prior to sampling by pumping water from the wells until the physico-chemical parameters stabilised.
Decontamination	The majority of the sampling equipment used during low flow sampling was dedicated and disposable, such as the dedicated and disposable sampling tube.
	Non-disposable sampling equipment, including the interface probe, water quality meter and flexible pump tubing was decontaminated by washing in a Decon [®] 90 solution and rinsing with potable water between sampling locations.
Sample Collection and Storage	Groundwater samples were collected into laboratory-supplied bottles with the appropriate preservative for the analysis undertaken. The bottles were stored in an ice-filled cooler in the field and in transit to the laboratory.
Chain of Custody	Groundwater samples were dispatched to the laboratory under chain of custody conditions.

 Table 3-1: Field Methodology for Quarterly Groundwater Monitoring

¹ This well has not been sampled since December 2020 due to an obstruction in the well casing. The well is suspected to be damaged and has not been replaced.

² This well was damaged in the April 2015 storm. As this well was dry for the majority of the 2013 and 2014 sampling events, it has not been replaced.

³ This well was damaged in the April 2015 storm. It was able to be sampled until October 2016 but is now damaged beyond repair and has not been replaced.

3.4 Groundwater Well Maintenance

During December 2022, a well cap was added to W5D as the well was exposed without a monument.

3.5 Data Quality Objectives

Data quality objectives (DQOs) are outlined in Table 3-2.

DQO	Outcome
State the Purpose	To collect on-going monitoring data from a network of wells to understand the temporal and spatial behaviour of the aquifer in the area of leachate impacted groundwater.
Identify the Decision	 Is the data collected from the monitoring well network of sufficient quality to meet the project objectives? Is the data collected from the monitoring well network of sufficient quality to be comparable between events?
Identify Inputs to the Decision	 Record physico-chemical parameters and collect samples from the groundwater monitoring well network (see Figure 2, Appendix 1) over four quarterly GMEs. Complete analysis of collected groundwater samples for soluble fluoride, total and free cyanide, total and dissolved aluminium; and Analyse the data and compare with historical results.
Define the Study Boundaries	AEC 1 identified in Figure 1 , Appendix 1 plus the surface water receptors identified down gradient of AEC 1, including a semi-permanent dam and Swamp Creek. The investigation relates to groundwater.
Develop a Decision	The statistical parameters of interest are the concentrations of fluoride, cyanide, aluminium, pH and EC identified historically and in the current investigations. The Assessment Criteria outlined in Section 5 and the historical groundwater concentrations where available for the monitoring wells. The Decision Rules for groundwater are:
Rule	 Groundwater concentrations were assessed against the acceptance criteria outlined in Section 5 in combination with a comparison against background criteria where applicable. An evaluation of significance was also undertaken; and Recommendations were made for further evaluation for concentrations above criteria or background concentrations.
Specify Limits on Decision Errors	As this investigation involves a series of GMEs to monitor the state of a groundwater leachate plume, decision errors relate to the comparability of data between monitoring events. During the 2022 GMEs, 28 wells will be sampled unless found to be dry. This number takes into consideration three damaged wells (W3SA, W4D and W3D). Standard operating procedures, including consistent use of low flow techniques, should be implemented to ensure comparability of data between events. The same primary and secondary laboratories should be used for analysis and laboratory QA/QC should be assessed to ensure comparability between events.
Optimise the Design for Obtaining Data	Low flow sampling techniques will be used to collect groundwater samples to optimise the quality of the samples. Field samples for each round will be collected using the same sampling procedures to ensure comparability between GMEs.

3.6 Data Quality Indicators

Project data quality indicators (DQI) have been established to set acceptance limits on field and laboratory data collected as part of the quarterly groundwater monitoring program. The data quality indicators are outlined in **Table 3-3**.

Table 3-3: Data Quality Indicators

DQI	Field	Laboratory
Completeness – a measure of the amount of useable data from a data collection activity	All critical locations sampled. All samples collected, aside from dry wells. Experienced sampler. Documentation correct.	All critical samples analysed. All analysis completed according to standard operating procedures. Appropriate methods Appropriate Practical Quantitation Limits (PQLs).
Comparability – the confidence that data may be considered to be equivalent for each sampling and analytical event	Experienced sampler. Climatic conditions appropriate for the type of analyte. Climatic conditions noted during sampling. Same types of samples collected using same sampling methods.	Same analytical methods used. Same sample PQLs. Same NATA accredited laboratories used. Same units.
Representativeness – the confidence that data are representative of each medium present on site.	Appropriate media sampled. Groundwater sampled following stabilisation of physico-chemical parameters	All samples analysed according to standard operating procedures.
Precision – a quantitative measure of the variability of the data.	Collection of intra-laboratory duplicates at a rate of 1 in 10 primary samples. Collection of inter-laboratory duplicate samples at a rate of 1 in 20 primary samples.	Analysis of field duplicate samples, relative percent difference (RPDs) to be less than 30%. Laboratory duplicates analysed, RPDs to be less than 30%.
Accuracy – a quantitative measure of the closeness of the reported data to the "true" value.	Sampling methodologies appropriate and complied with. Collection of rinsate samples from non-disposable sampling equipment.	 Analysis of: Rinsate blanks Method blanks Matrix spikes Surrogate spikes Laboratory control samples Reagent blanks. Results for blank samples to be non-detect. Results for spike samples to be between 70% and 130%.

4. QUALITY ASSURANCE / QUALITY CONTROL

Four quarterly GMEs were completed in March 2022, June 2022, September 2022, and December 2022. A quality assurance/quality control assessment is provided in **Table 4-1** and **Table 4-2**.

Table 4-1: QA/QC Sampling and Analysis Methodology Assessment

Sampling Methodology	Ramboll Assessment
Sampling Pattern and Locations	Prior to the commencement of the GMEs, the leachate plume originating from the CWS was delineated through staged fieldwork and reporting in ENVIRON (2013, revised 2016) 'Plume Delineation Report, Capped Waste Stockpile'. From the delineation work, 19 new groundwater wells were installed along the length of the plume to assist with groundwater monitoring. The five sections are approximately 60 m apart and extend from the toe of the CWS to the leading edge of the leachate plume. Groundwater wells target both the shallow and deep aquifer. Groundwater wells located on five sections were selected for the 2022 GMEs. Each section provides a cross section at different lengths along the known location of the leachate plume. One of the wells, W3SA, was destroyed in the April 2015 storm and has not been replaced. Another well, W4D, was also damaged in this storm but was able to be sampled until the October 2016 GME. This well can no longer be sampled and has not been replaced. A third well, W3D, has been unable to be sampled since December 2020 due to an obstruction within the well casing and is suspected to be damaged. This well has also not been replaced. In 2016, an additional two shallow and deep pairs of wells (F5/G5 and G6/F6) were added to the monitoring network. These wells are sentinel wells located adjacent to Swamp Creek, the nearest surface water receptor.
Sampling Density	Twenty-eight groundwater wells were selected for sampling for the 2022 quarterly GMEs on five sections along the length of the leachate plume and adjacent to the nearest surface water receptor. As the leachate plume is approximately 300 m in length, there is one section per 60 m. One primary groundwater sample was collected from each well (unless dry or damaged).
Sample Depths	Both shallow groundwater (the leachate plume) and the deep aquifer were sampled as part of the 2022 quarterly GMEs.
Sample Collection Method	For the 2022 quarterly GMEs, groundwater samples were collected using low flow methods (peristaltic pump and dedicated LDPE tubing). Groundwater samples were collected directly into laboratory-supplied bottles with field filtration for dissolved aluminium (0.45 μ m). Disposable gloves were worn during sample collection.
Decontamination Procedures	Dedicated disposable tubing was used to collect the groundwater samples. A short piece of silicone tubing was retained in the peristaltic pump and used for all wells. This tubing along with all non-disposable sampling equipment (i.e., interface probe, water quality meter) was decontaminated between sampling locations by washing with a solution of Decon [®] 90 and potable water.
Sample Handling and Containers	Samples were placed into laboratory supplied sampling containers, dosed with the correct preservative (where relevant), and immediately placed into a cooler chilled with ice and/or ice bricks while in the field and during transportation to the laboratory.
Detailed Description of Field Screening Protocols	A water quality meter was used to collect field data, including temperature, pH, electrical conductivity, reduction/oxidation potential, turbidity, dissolved oxygen, and total dissolved solids (TDS). These parameters were recorded during purging until they stabilised.

	Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of
chain of custody	Chain of Custody	custody forms were signed by the laboratory on receipt of the samples.

Table 4-2: QA/Q Assessment

Data Quality Indicator	Ramboll Comments
	In general, intra-laboratory duplicate samples were analysed at a rate of approximately 10% and inter-laboratory duplicate samples were analysed at a rate of approximately 5% during the 2022 GMEs. At least one rinsate sample was collected per GME.
	A summary of the field quality control samples collected during the 2022 GMEs is outlined below:
Field Quality Control Samples	 March 2022: two intra-laboratory duplicates (D01_20220317, D02_20220318), one inter-laboratory duplicate (T01_20220317) and one rinsate (R01_20220318) June 2022: two intra-laboratory duplicates (D01_20220615, D02_20220616), one inter-laboratory duplicate (T01_20220615) and one rinsate (R01_20220616) September 2022: two intra-laboratory duplicates (D01_20220920, D01_20220921), two inter-laboratory duplicates (T01_20220920, T01_20220921) and one rinsate (R01_20220921) December 2022: two intra-laboratory duplicates (D01_20221220, D02_20221221), one
	inter-laboratory duplicate (T01_20221220) and one rinsate (R01_20221221).
Field Quality Control Results	 Intra-laboratory and inter-laboratory duplicate results for each GME are presented in Table M, Appendix 3. Relative percentage differences (RPDs) were calculated for intra-laboratory and inter-laboratory duplicate pairs of samples. RPDs for most analytes were below the criterion (30%) except for: March 2022: inter-laboratory duplicate pair G2/T01_20220317 RPD for total aluminium 57% June 2022: inter-laboratory duplicate pair PUMP/T01_20220615 RPD for dissolved aluminium 31% December 2022: inter-laboratory duplicate pair W2D/T01_20221220 RPD for total and dissolved aluminium, 118% and 86% respectively, and free cyanide 197% There is no criterion for total aluminium. Therefore, these higher RPDs for this analyte are not considered to affect the outcomes of this report. The RPD exceedance reported for dissolved aluminium in inter-laboratory duplicate pair PUMP/T01_20220615 RPD was marginally above the acceptance criteria and unlikely to affect the outcomes of this report. W2D is highly contaminated and the RPD exceedances for free cyanide and dissolved aluminium may be the result of the heterogenous nature of leachate at this location. Rinsate sample results were all reported at less than the limit of reporting (<lor) 2022="" for="" four="" gmes.<="" li="" the=""> </lor)>
Equipment Calibration	The water quality meter was calibrated prior to use. Standard practice is to rely on pre-calibration for short sampling periods. Calibration certificates are included in Appendix 6 .
NATA registered laboratory and NATA endorsed methods	Envirolab was the primary analytical laboratory and ALS was used as the secondary laboratory. The laboratory certificates are NATA stamped.
Analytical methods	Summary analytical methods were included in the laboratory test certificates.
Holding times	Review of laboratory certificates indicated one holding times breach. Inter-laboratory duplicate sample T01_20221220 (collected as part of the December 2022 GME) did not reach the secondary laboratory within the appropriate holding time for total and free cyanide.
Limits of Reporting	LORs for all groundwater analytes were below the assessment criteria.
Laboratory quality control samples	Quality control frequencies were not within specification for total and dissolved metals at the secondary laboratory (ALS).
	During June 2022, a matrix spike recovery for total cyanide could not be determined, as the background level was greater than/equal to 4-times the spike level
Laboratory quality control results	The results for laboratory duplicates, laboratory control samples, and surrogates were acceptable, noting that reporting of percentage recovery was not possible in some samples over the four quarters due to high concentrations of elements in the samples however, an acceptable recovery was obtained for the Laboratory Control Sample (LCS).

Ramboll makes the following conclusions regarding the DQIs:

- Completeness: The data for the 2022 GMEs is complete as the selected 28 groundwater wells were located and dipped for depth to groundwater during each GME and groundwater samples were collected from wells containing sufficient water to sample.
- Comparability: The groundwater data collected during the four 2022 GMEs is comparable to previous results as the sampling protocols, analysis methods, quality control methods and monitoring well locations are generally consistent between sampling events and with prior events. The four 2022 GMEs were completed by a single sampler, Jake Bourke, a Ramboll environmental scientist.
- Representativeness: The selection of shallow and deep wells on sections along the length of the leachate plume is considered to provide data that is representative of the leachate plume in shallow groundwater and representative of the underlying deep aquifer. Groundwater was sampled following purging to ensure groundwater samples are representative of the aquifer sampled.
- Precision: In the field, Ramboll achieved precision by using standard operating procedures for the collection of groundwater samples and by collecting duplicate and triplicate samples for analysis. Relative Percent Difference (RPD) results for duplicate samples were generally acceptable. Laboratory quality control results indicate precision was achieved at the primary and secondary laboratories.
- Accuracy: In the field, Ramboll achieved accuracy by using Ramboll's standard operating procedures for the collection of groundwater samples. Laboratory quality control results indicate accuracy was achieved at the primary and secondary laboratories.

In general, the DQIs outlined above have been met and Ramboll considers that the data is of suitable quality to meet the project objectives.

5. ASSESSMENT CRITERIA

5.1 Groundwater Assessment Criteria

The assessment criteria adopted for the assessment of groundwater contamination were sourced from the following references:

- NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination
- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality
- ANZG (2018) Guidelines for Fresh and Marine Water Quality
- NHMRC (2008) Guidelines for Managing Risks in Recreational Water
- ENVIRON (March 2013) Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter

5.2 Potential Beneficial Uses

NSW DEC (2007) indicates that for assessing groundwater quality, it is first necessary to assess the beneficial uses of groundwater and surface water down gradient of the site.

The closest surface water receptor to the site is a dam and then Swamp Creek located approximately 1.5 km to the north-east of the site within an area of the buffer zone used for farming. This drainage area discharges into Wentworth Swamp, which in turn discharges to the Hunter River approximately 15 km north-east of the site near Maitland.

Surface water acidity/alkalinity within the Swamp Creek is described as generally neutral with pH ranging between 7.0 and 7.8 and conductivity is generally fresh, ranging from 626 μ S/cm to 1,520 μ S/cm. This surface water body is considered to be a freshwater receptor.

Groundwater is expected to follow a subsurface drainage line through a sand filled channel and flow north east towards Swamp Creek. Water level gauging completed during previous investigations confirmed the groundwater flow direction to the north east.

According to the Office of Industry and Investment, NSW, there are 17 licensed groundwater abstractions (bores) located within the site, which are known to be associated with monitoring of groundwater impact. There are no other licensed groundwater bores within 2 km of the site.

Potential beneficial uses of groundwater down gradient of the site include:

- Discharge into Swamp Creek, which supports aquatic ecosystems, is used for recreational fishing and flows into Wentworth Swamp, which potentially flows into the Hunter River
- Extraction of water from Swamp Creek may also be used for stock watering and/or irrigation.

Drinking water has not been included as a potential beneficial use of water from Swamp Creek for the following reasons:

- Drinking water supply to the local communities is reticulated and originates from Chichester Dam on the Chichester River
- The Kurri Wastewater Treatment Works is located up gradient of the site. The works has a licensed discharge point into Swamp Creek.

5.3 Appropriate Criteria for Groundwater

Based on the review of potential beneficial uses of groundwater and surface water within the closest receptor, the criteria for protection of aquatic ecosystems, irrigation, stock watering and recreational use will be used.

The investigation levels presented in ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality are considered applicable for the protection of aquatic ecosystems of receiving waters. ANZG (2018) advocates a site-specific approach to developing guideline trigger values based on such factors as local biological affects data and the current levels of disturbance of the ecosystem. The guidelines present 'low risk trigger values' which are defined as concentrations of key performance parameters below which there is a low risk of adverse biological effects. If these trigger values are exceeded, then further action is required which may include further site-specific investigations to assess potential contamination or management and remedial actions.

Low risk trigger values are presented in ANZG (2018) for the protection of 80-99% of species in fresh and marine waters, with trigger values depending on the health of the receiving waters.

Groundwater results will be compared against trigger values for the protection of 95% of freshwater species. A 95% protection of freshwater species was selected due to the indication from the Hunter Catchment Management Trust that declining stream water quality and a reduction in diversity of native plants and animals has occurred in the last ten years.

A guideline for fluoride that is protective of the environment has not been developed in Australia.

A summary of the assessment criteria for groundwater is presented in Table 5-1.

Contaminant	95% Protection for Aquatic Ecosystems	Irrigation	Stock Watering	Recreational
Aluminium (mg/L)	0.055	5	5	0.2 ^d
Fluoride (mg/L)	uoride (mg/L) No guideline		2	1.5 ^e
Free Cyanide (mg/L)	ree Cyanide (mg/L) 0.007		No guideline	0.8
pH (pH Units)	pH (pH Units) 6.5 - 8ª		No guideline	6.5 - 8.5 ^d
Electrical Conductivity (µS/cm)	No quideline		No guideline	No guideline

Table 5-1: Groundwater Assessment Criteria

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000).

^b Values for tolerant crops from Table 4.2.4 in ANZECC (2000).

^c Value from Table 4.2.4 in ANZECC (2000) for where electrical conductivity is 'generally too saline' for plant growth.

^d Aesthetic only, insufficient data to set a guideline value based on health considerations.

^e Value from Ramboll (2023) Tier 1 Screening Human Health Guideline Values, Fluoride and Aluminium

6. RESULTS AND TREND ANALYSIS

A summary of groundwater elevation, pH and laboratory results for the past 37 GMEs, including the four quarterly GMEs from 2022 are included in **Appendix 3**. Groundwater field parameter forms are included in **Appendix 4**, laboratory reports are included in **Appendix 5** and calibration certificates for the groundwater quality meter and interface probe are included in **Appendix 6**.

The identified contaminants of concern associated with the leachate are fluoride, cyanide and aluminium. Fluoride has been selected as the primary contaminant of concern as a result of its persistence observed in groundwater and its concentration range in comparison with the adopted guideline criteria. Aluminium was not selected due to its ubiquity in the environment generally.

The following parameters have been assessed in the following sections:

- Section 6.1: Shallow Aquifer
 - o Section 6.1.1: Groundwater Elevation and Flow Direction
 - o Section 6.1.2: Groundwater pH
 - Section 6.1.3: Soluble Fluoride
 - Section 6.1.4: Free Cyanide
- Section 6.2: Deep Aquifer
 - o Section 6.2.1: Groundwater Elevation and Flow Direction
 - o Section 6.2.2: Groundwater pH
 - Section 6.2.3: Soluble Fluoride
 - Section 6.2.4: Free Cyanide

6.1 Shallow Aquifer

6.1.1 Groundwater Elevation and Flow Direction

Figure 6-1 shows groundwater elevation within the shallow aquifer across the 37 GMEs completed between July 2013 and December 2022. Monthly rainfall is presented for the same period.

Historical groundwater elevation within the shallow aquifer generally shows an increase in response to heavy rainfall and a downward trend in groundwater elevation during extended periods of low rainfall.

Overall, groundwater elevation in the shallow aquifer shows minimal change between the start of monitoring in July 2013 and the most recent GME in December 2022. Decreasing groundwater elevations are consistent with a period of drought from 2017 to 2019, with groundwater elevations recovering following increased rainfall during 2020 and 2022.

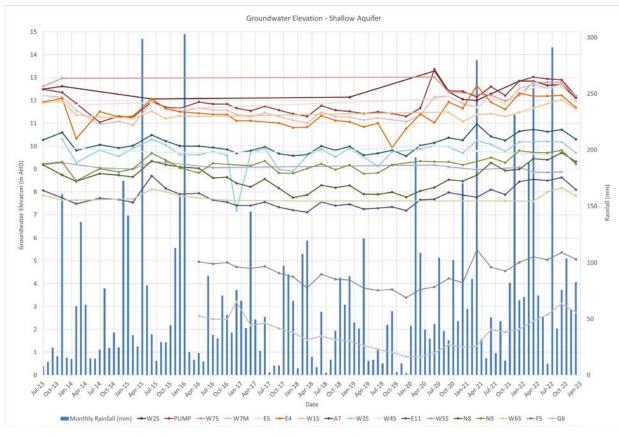


Figure 6-1: Groundwater Elevation – Shallow Aquifer, 2013 to 2022

Interpreted groundwater flow directions within the shallow aquifer for the four GMEs completed during 2022 is presented in **Figure 6-2**.

Between March 2022 and December 2022, groundwater flow within the shallow aquifer was generally to the north and northeast with a centralised low area at E11. These observations are largely consistent with historical observations. Historical elevations and flow directions are attached in **Appendix 7**.

Figure 6-2: Interpolated Groundwater Elevation and Flow Direction – Shallow Aquifer 2022

6.1.2 Groundwater pH

Table 6-1 summarises field pH values reported within the shallow aquifer during 2022. Completeresults are included in **Appendix 3**.

		No. of Samples			No. Results Exceeding Criteria		
Contaminant of Concern (CoC)	Date		Minimum Value (pH Units)	Maximum Value (pH Units)	95% Protection (<6.5 - >8 pH units)	Recreational (<6.5 - >8.5 pH units)	
	March 2022	14	4.37	9.82	6	4	
	June 2022	14	4.29	10.39	8	8	
Field pH	September 2022	15	5.07	10.45	9	7	
	December 2022	13	4.10	10.81	7	6	

Table 6-1: Field pH Values - Shallow Aquifer

A pH greater than 8 exceeds the ANZECC (2000) 95% protection for aquatic species criteria and a pH greater than 8.5 exceed the recreational criteria. Wells with a pH greater than 9, which is characteristic of leachate impacted groundwater, include the following:

- Section 1: E5, W7M, PUMP
- Section 2: E4
- Section 3: A7
- Section 4: None
- Section 5: None

Shallow wells along the length of the leachate plume reported pH values ranging between 6.51 and 10.81 during 2022. The pH in shallow sentinel wells F5 and G6 near Swamp Creek were less than 5.45, which may be indicative of the natural pH of groundwater in this part of the Buffer Zone. Although this pH is below the range for ANZECC (2000) 95% protection criteria, it is not considered to require further analysis as it is not indicative of leachate impact.

The lateral extent of high pH impacted groundwater in the shallow aquifer throughout 2022 is presented in **Figure 6-3**.

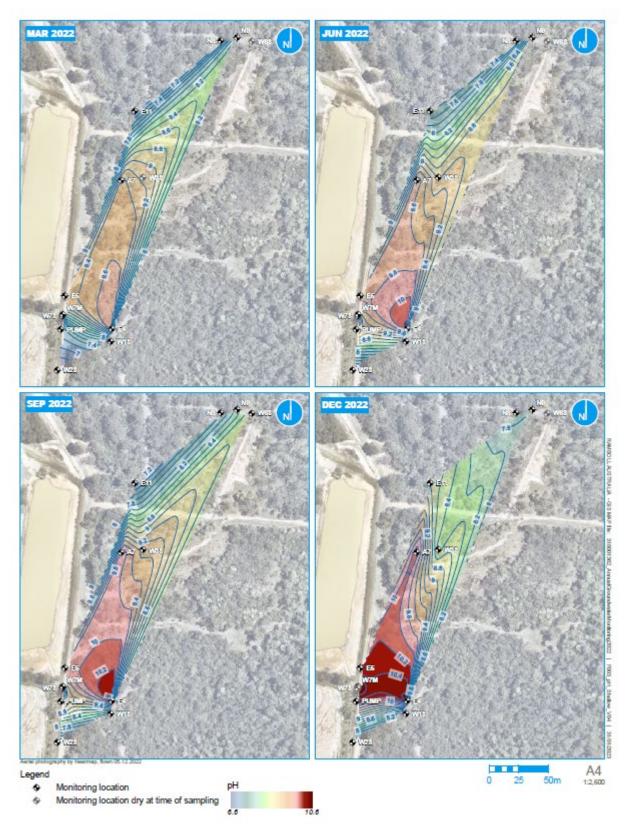
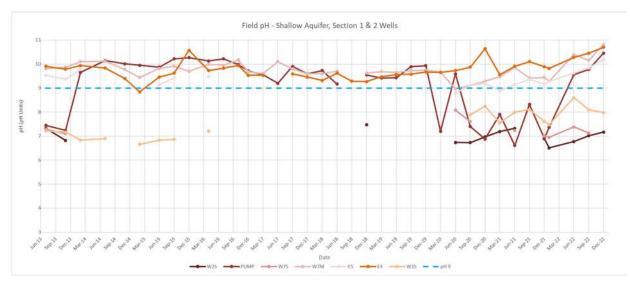



Figure 6-3: Interpolated Field pH – Shallow Aquifer 2022

6.1.2.1 Time Series Trends

Comparison of pH values for the 37 GMEs completed between July 2013 and December 2022 are shown in **Figure 6-4** to **Figure 6-6**. The blue dotted line shows pH 9, pH above this is characteristic of leachate impact. The time series trends show the following:

• The consistent presence of groundwater with elevated pH at shallow wells E4, E5, W7M, PUMP and A7 along the length of the plume

• Low pH of groundwater in sentinel wells F5 and G6.

Figure 6-4: Field pH Values – Shallow Aquifer, Section 1 & 2 Wells

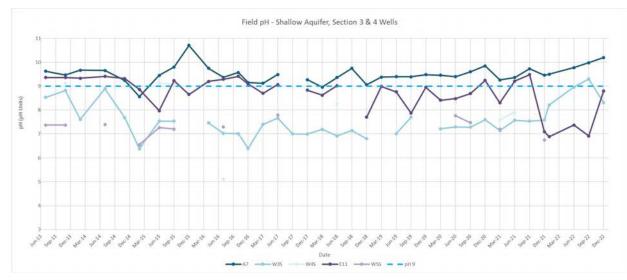


Figure 6-5: Field pH Values – Shallow Aquifer, Section 3 & 4 Wells

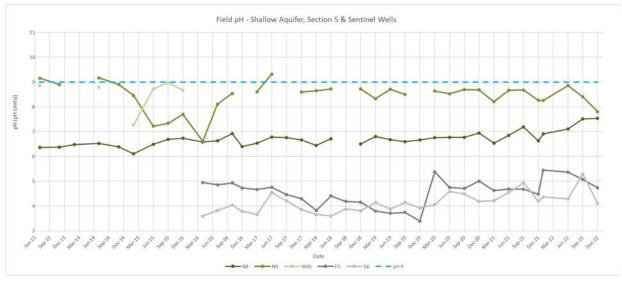


Figure 6-6: Field pH Values – Shallow Aquifer, Section 5 & Sentinel Wells

6.1.2.2 Mann-Kendall Trend Analysis

Mann-Kendall trend analysis was used to statistically assess each of the shallow monitoring locations to identify trends in pH. Trend analysis was carried out using the GSI Environmental Mann-Kendall Toolkit (GSI 2012). The outputs from the Mann-Kendall Toolkit are provided in **Appendix 8**. Data from July 2013 to December 2022 (37 GMEs) were included for the purpose of Mann-Kendall trend analysis of pH, a summary is provided in **Table 6-2**.

Mann-Kendall trend analysis of pH within the shallow aquifer between 2013 and 2022 indicates an increasing trend at eight of the fifteen locations. Of these eight locations, two locations (E4 and A7) have visual characteristics of leachate impact (i.e., yellow/ brown colouration) and a pH exceeding the assessment criteria. Other locations with visual characteristics of leachate impact (i.e., yellow/ brown colouration) and a pH exceeding the assessment criteria have a 'decreasing' trend (PUMP), 'probably decreasing' trend (W7M) and 'stable' trend (E11).

Increasing trends in pH along the length of the leachate plume occur at locations with no evidence of leachate impact (W2S, W7S, N8 and G6), aside from G9 which has a pH exceeding the assessment criteria but no visual characteristics of leachate impact.

Well	Previous Trend 2013 to 2021			Leachate Impacted ²
Section 1				
PUMP	Decreasing	Decreasing	Yes	Yes
W2S	Stable	Increasing	No	No
W7M	Decreasing	Prob. Decreasing	Yes	Yes
W7S	Stable	Increasing	No	No
E5	Prob. Decreasing	Prob. Increasing	Yes	Yes
Section 2				
E4	No Trend	Increasing	Yes	Yes

Table 6-2: Mann-Kendall pH Trends - Shallow Aquifer

Well	Previous Trend 2013 to 2021	Current Trend 2013 to 2022	pH >Assessment Criteria ¹	Leachate Impacted ²		
W1S	Increasing	Increasing	Yes	No		
Section 3						
W3S	Stable	No Trend	Yes ³	No		
W4S	Decreasing	-	-	No		
A7	Stable	Increasing	Yes	Yes		
Section 4						
E11	Decreasing	Stable	Yes	Yes		
W5S	Stable	-	-	No		
Section 5						
N8	Increasing	Increasing	No	No		
N9	Stable	Increasing	Yes	No		
W6S	-	No Trend	Yes	No		
Sentinel						
F5	Stable	No Trend	No	No		
G6	Increasing	Increasing	No	No		

- Indicates no 2022 data available

¹Field pH exceeded the assessment criteria for 95% Protection for Aquatic Ecosystems or Recreational criteria during any GME completed in 2022

²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour ³pH exceeded assessment criteria during September 2022 only

6.1.3 Soluble Fluoride

Table 6-3 summarises the laboratory results for soluble fluoride within the shallow aquifer during2022. Complete results are included in **Appendix 3**.

Table 6-3: Soluble Fluoride Concentrations - Shallow Aquifer

	Date No. of Samples		Minimum Conc. (mg/L)	Maximum Conc. (mg/L)	No. Results Exceeding Criteria		
CoC		No. of Samples			Irrigation (>1 mg/L)	Stock Watering (>2 mg/L)	Rec. (>15 mg/L)
	March 2022	14	0.20	710	11	11	9
Soluble	June 2022	14	0.20	820	11	11	9
Fluoride	September 2022	15	0.20	660	12	12	9
	December 2022	14	0.20	850	10	10	8

During the four GMEs completed in 2022, soluble fluoride concentrations in shallow groundwater exceeded the site assessment criteria for Irrigation, Stock Watering or Recreational use at up to 12 wells as follows:

- Section 1: Pump, W2S, W7M, W7S, E5
- Section 2: E4, W1S
- Section 3: W3S, A7

- Section 4: E11
- Section 5: N9, W6S

Section 3 well W4S and Section 4 well W5S, exceeded the site assessment criteria during 2021, but were dry during 2022 and could not be sampled.

With the exception of Section 5 well N8, all Section 1, Section 2, Section 3, and Section 4 shallow wells exceeded one or more site assessment criteria for soluble fluoride during 2022, with concentrations generally decreasing to the northeast away from the CWS. The highest concentrations were generally reported at Section 2 well E4 located hydraulically downgradient of Section 1. The sentinel wells F5 and G6, located adjacent to the nearest surface water receptor (Swamp Creek), have consistently reported fluoride concentrations below 1 mg/L, indicating no impact from the leachate plume. The lateral extent of soluble fluoride in the shallow aquifer throughout 2022 is presented in **Figure 6-7**.

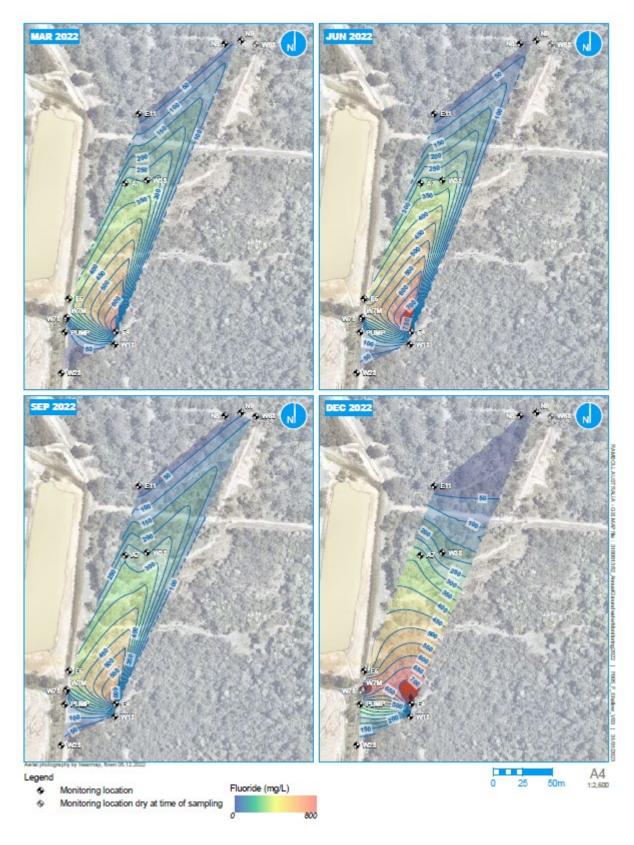


Figure 6-7: Interpolated Soluble Fluoride - Shallow Aquifer 2022

6.1.3.1 Time Series Trends

Comparison of soluble fluoride concentrations for the 37 GMEs completed between July 2013 and December 2022 are shown in **Figure 6-8** to **Figure 6-10**. Assessment criteria has not been plotted on the graphs due to the elevated groundwater concentrations. The time series trends show the following:

- Fluctuating soluble fluoride concentrations in wells on Section 1 and Section 2, closest to the source of the leachate
- Increasing soluble fluoride concentrations at E4 since September 2017
- Consistently elevated soluble fluoride concentrations indicating leachate impact at Section 3 and Section 4 wells
- Overall decreasing soluble fluoride concentrations at well N9 on Section 5, the leading edge of the plume
- Suble Fluoride Shallow Aquifer, Section 1.8.2 Wells
- Consistently low soluble fluoride concentrations at the sentinel wells F5 and G6.

Figure 6-8: Soluble Fluoride Concentrations – Shallow Aquifer, Section 1 & 2 Wells

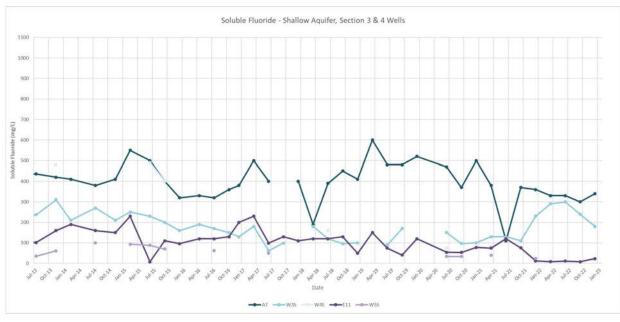


Figure 6-9: Soluble Fluoride Concentrations – Shallow Aquifer, Section 3 & 4 Wells

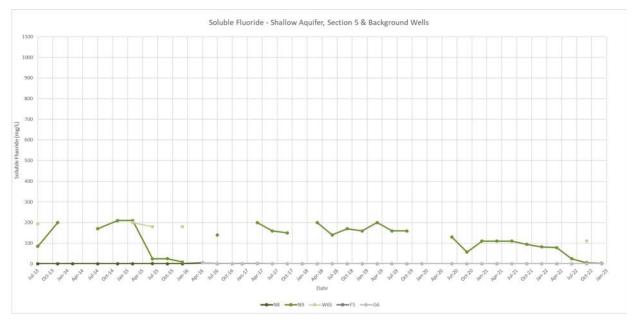


Figure 6-10: Soluble Fluoride Concentrations – Shallow Aquifer, Section 5 & Sentinel Wells

6.1.3.2 Mann-Kendall Trend Analysis

Data from July 2013 to December 2022 (37 sampling events) were included for the purpose of Mann-Kendall trend analysis of soluble fluoride, a summary is provided in **Table 6-4**.

Mann-Kendall trend analysis of soluble fluoride within the shallow aquifer indicates an increasing trend at three wells, E4 (located on Section 2), N8 (located on Section 4) and G6 (sentinel). Further review of soluble fluoride concentrations at E4 indicate the increase to be minor, from 699 mg/L in July 2013 to 780 mg/L in December 2022. Soluble fluoride concentrations at N8 and G6 are within natural fluctuations and pH is not characteristic of leachate impacted groundwater at these locations.

Mann-Kendall trend analysis of soluble fluoride at N9, the well at the leading edge of the plume, shows a decreasing trend indicating the plume is not expanding to the north.

Well	Previous Trend 2013 to 2021	Current Trend 2013 to 2022	Soluble Fluoride >Assessment Criteria ¹	Leachate Impacted ²
Section 1				
PUMP	Decreasing	Decreasing	Yes	Yes
W2S	Stable	Stable	Yes	No
W7M	Decreasing	Decreasing	Yes	Yes
W7S	Stable	Stable	Yes	No
E5	Decreasing	Stable	Yes	Yes
Section 2				
E4	Increasing	Increasing	Yes	Yes
W1S	Decreasing	Decreasing	Yes	No
Section 3				
W3S	Decreasing	Decreasing	Yes	No
W4S	Decreasing	-	-	No
A7	Stable	Decreasing	Yes	Yes
Section 4				
E11	Decreasing	Decreasing	Yes	Yes
W5S	Stable	-	-	No
Section 4				
N8	Increasing	Increasing	No	No
N9	Decreasing	Decreasing	Yes	No
W6S	Stable	Prob. Decreasing	Yes	No
Sentinel				
F5	Prob. Increasing	Prob. Increasing	No	No
G6 - Indicates no 2022 data a	No Trend	Increasing	No	No

Table 6-4: Mann-Kendall Trend Analysis of Soluble Fluoride – Shallow Aquifer

- Indicates no 2022 data available

¹Soluble fluoride exceeded the assessment criteria of either Irrigation, Stock Watering or Recreational during any GME completed in 2022

²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

6.1.4 Free Cyanide

Both total and free cyanide were included for analysis in the 2022 GMEs. Free cyanide was introduced for analysis in 2015, as there are no Australian guidelines for total cyanide.

Laboratory results for free cyanide in shallow groundwater reported during 2022 are summarised in **Table 6-5**.

		No. of	Minimum	Maximum	No. Results Exceeding Criteria		
CoC	Date	Samples	Conc. (mg/L)	Conc. (mg/L)	95% Protection (>0.007 mg/L)	Recreational (>0.8 mg/L)	
	March 2022	14	<0.004	140	2	0	
Free	June 2022	14	<0.004	0.029	4	0	
Cyanide	September 2022	15	< 0.004	0.2	4	0	
	December 2022	13	<0.004	0.006	0	0	

Table 6-5: Free Cyanide Concentrations - Shallow Aquifer

Free cyanide concentrations exceeded the ANZECC (2000) 95% protection for aquatic ecosystems criterion in the following wells:

- Section 1: PUMP, E5, W7M
- Section 2: E4
- Section 3: W3S, A7

Remaining locations generally reported free cyanide concentrations below the laboratory limit of reporting.

6.1.4.1 Time Series Trends

Comparison of free cyanide concentrations for the 32 GMEs completed between February 2015 and December 2022 are shown in **Figure 6-11** to **Figure 6-13**. Assessment criteria for 95% species protection (0.007 mg/L) has not been plotted on the graphs due to the historical elevated groundwater concentrations. Overall, concentrations of free cyanide in groundwater have decreased between 2015 and 2022 with no detections above the human health recreational guideline value of 0.8 mg/L since June 2015.

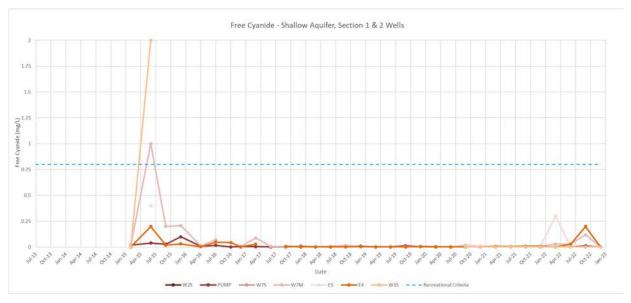


Figure 6-11: Free Cyanide Concentrations – Shallow Aquifer, Section 1 & 2 Wells

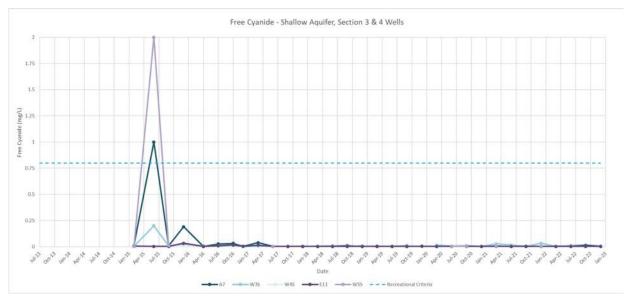


Figure 6-12: Free Cyanide Concentrations – Shallow Aquifer, Section 3 & 4 Shallow Wells

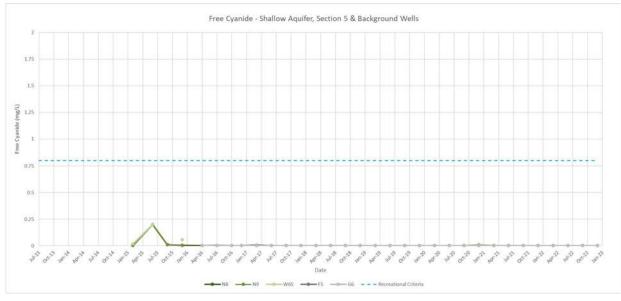


Figure 6-13: Free Cyanide Concentrations - Shallow Aquifer, Section 5 & Sentinel Shallow Wells

6.1.4.2 Mann-Kendall Trend Analysis

Data from February 2015 to December 2022 (32 sampling events) were included for the purpose of Mann-Kendall trend analysis of free cyanide in the shallow aquifer, a summary is provided in **Table 6-6**.

Mann-Kendall trend analysis of free cyanide in shallow groundwater indicates no increasing trends.

Well	Previous Trend 2015 to 2021	Current Trend 2015 to 2022	Free Cyanide >Assessment Criteria ¹	Leachate Impacted ²
Section 1				
PUMP	Decreasing	Decreasing	Yes	Yes
W2S	Stable	Stable	No	No
W7M	Prob. Decreasing	No Trend	Yes	Yes
W7S	Stable	Stable	No	No
E5	No Trend	No Trend	Yes	Yes
Section 2				
E4	No Trend	No Trend	Yes	Yes
W1S	No Trend	No Trend	No	No
Section 3				
W3S	No Trend	No Trend	Yes	No
W4S	No Trend	-	-	No
A7	Decreasing	No Trend	Yes	Yes
Section 4				
E11	Decreasing	Decreasing	No	Yes
W5S	No Trend	-	-	No
Section 5				
N8	Stable	Stable	No	No
N9	No Trend	Stable	No	No
W6S	I.D	No Trend	No	No
Sentinel				
F5	Stable	Stable	No	No
G6	Stable	Stable	No	No

Table 6-6: Mann-Kendall Trend Analysis of Free Cyanide Trends - Shallow Aquifer

I.D Insufficient data to perform trend analysis

¹ Free cyanide exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2022

² Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

6.2 Deep Aquifer

6.2.1 Groundwater Elevation and Flow Direction

Figure 6-14 shows groundwater elevation within the deep aquifer across the 37 GMEs completed between July 2013 and December 2022. Monthly rainfall is presented for the same period.

Groundwater levels within the deep aquifer decreased over the period of low rainfall between 2017 and 2019 and have since increased in response to increased rainfall in 2020, 2021 and 2022, with groundwater levels in the deep aquifer now similar to those observed during the first monitoring event in July 2013. The most notable groundwater recovery is at W1D.

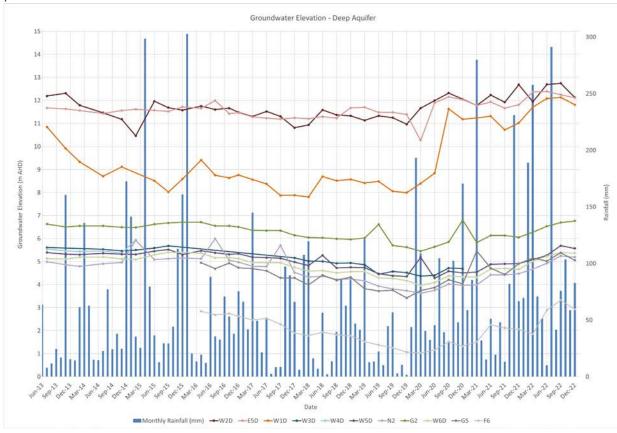


Figure 6-14: Groundwater Elevation – Deep Aquifer, 2013 to 2022

Interpreted groundwater flow directions within the deep aquifer for the four GMEs completed during 2022 is presented in **Figure 6-15**. Historical elevations and flow directions are attached in **Appendix 7**.

Groundwater flow direction in the deep aquifer is to the northeast. The deep aquifer shows little variation in flow direction between June 2013 and December 2022. There is a consistent gradient from approximately 11 m AHD near E5D to approximately 5 m AHD near W5D, then the gradient shallows through the northern vegetation impact area.

Figure 6-15: Interpolated Groundwater Elevation and Flow Direction – Deep Aquifer 2022

6.2.2 Groundwater pH

 Table 6-7 summarises field pH values reported within the deep aquifer during 2022. Complete results are included in Appendix 3.

				No. Results Exceeding Criteria		
CoC	Date	No. of Samples	Minimum Value (pH Units)	Maximum Value (pH Units)	95% Protection (<6.5 - >8 pH units)	Recreational (<6.5 - >8.5 pH units)
	March 2022	9	5.35	10.17	1	1
	June 2022	9	5.92	10.65	2	2
Field pH	September 2022	9	5.9	10.79	2	2
	December 2022	9	6.03	10.99	3	2

Table 6-7: Field pH Values – Deep Aquifer

The deep aquifer has generally not been impacted by leachate with pH levels largely below pH 8, except for W1D and W2D located on Section 1. The pH at W2D has consistently been greater than 9 indicating leachate impacted groundwater at this well. The pH at W1D has gradually increased since 2019 and has reported variable pH values above and below the assessment criteria for 95% species protection since December 2020. During June, September, and December 2022 the groundwater pH at W1D consistently exceeded the assessment criteria for 95% species protection and recreational use.

The natural pH conditions in the deep aquifer are slightly acidic to neutral, with pH conditions generally within or below the trigger values for lowland rivers of 6.5 to 8 (ANZECC 2000).

The lateral extent of high pH impacted groundwater in the deep aquifer throughout 2022 is presented in **Figure 6-16**.

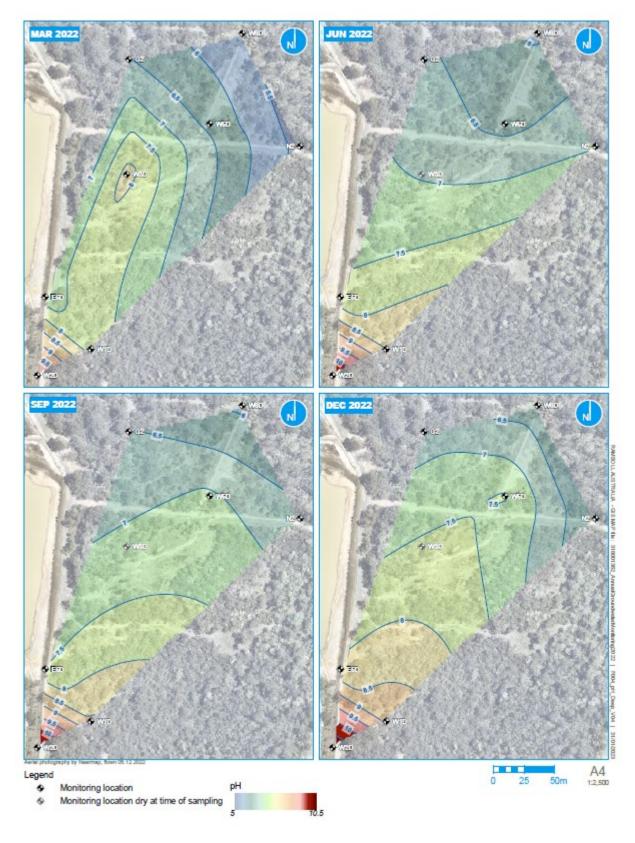


Figure 6-16: Interpolated Field pH – Deep Aquifer 2022

6.2.2.1 Time Series Trends

Comparison of pH values reported within the deep aquifer for the 37 GMEs completed between July 2013 and December 2022 are shown in **Figure 6-17** to **Figure 6-19**. The blue dotted line shows pH 9 which is indicative of leachate impact.

The time series trends show the following:

- Consistently elevated pH above 9 at well W2D on Section 1
- Increasing pH at W1D
- pH consistently below 8 in down gradient and sentinel wells.

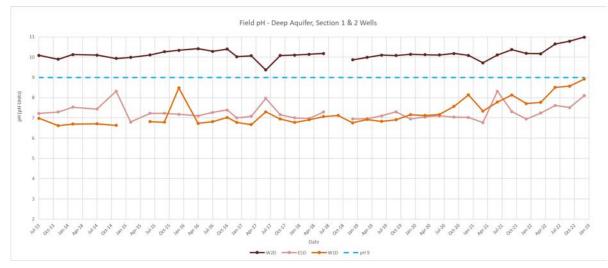


Figure 6-17: Field pH Values – Deep Aquifer, Section 1 & 2 Wells

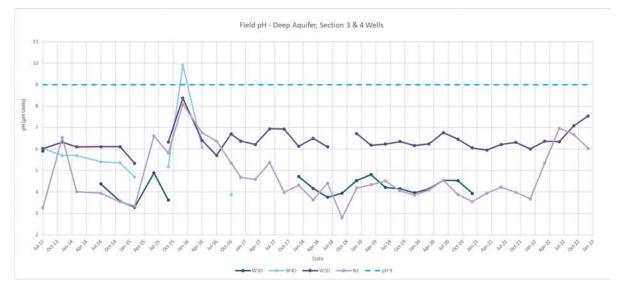


Figure 6-18: Field pH Values – Deep Aquifer, Section 3 & 4 Wells



Figure 6-19: Field pH Values, Section 5 & Sentinel Deep Wells (pH Units)

6.2.2.2 Mann-Kendall Trend Analysis

Data from July 2013 to December 2022 (37 sampling events) were included for the purpose of Mann-Kendall trend analysis of pH, a summary is provided in **Table 6-8**.

Mann-Kendall trend analysis of pH within the deep aquifer indicates increasing trends at W2D (located on Section 1), W1D (located on Section 2), G2 (located on Section 5) and F6 (sentinel well).

During 2022, increasing pH trends coincided with pH values in excess of the assessment criteria at two locations only, W2D and W1D. Further review of W1D indicates an increase from pH 6.98 in July 2013 to pH 8.92 in December 2022. pH values at W1D are approaching levels characteristic of leachate impact (pH >9) and the groundwater has been described as yellow/brown. The increasing pH trend at W1D may be indicative of the leachate plume expanding to the east of well W2D, the most leachate-impacted well. pH values at W2D have consistently been elevated since the first GME was completed in July 2013 however, the time series graph (refer to **Figure 6-17**) indicates a rapid increase over the three most recent GMEs (June 2022 to December 2022).

Well	Previous Trend 2013 to 2021	Current Trend 2013 to 2022	pH >Assessment Criteria ¹	Leachate Impacted ²
Section 1				
W2D	No Trend	Increasing	Yes	Yes
E5D	Decreasing	Stable	Yes	No
Section 2				
W1D	Increasing	Increasing	Yes	No
Section 3				
₩3Ð	Damaged	Damaged	Damaged	Damaged
₩4Ð	Destroyed	Destroyed	Destroyed	Destroyed
Section 4				
W5D	No Trend	Prob. Increasing	No	No
N2	Decreasing	Stable	No	No

Table 6-8: Mann-Kendall pH Trends - Deep Aquifer

Well	Previous Trend 2013 to 2021	Current Trend 2013 to 2022	pH >Assessment Criteria ¹	Leachate Impacted ²
Section 5				
G2	Increasing	Increasing	No	No
W6D	Prob. Decreasing	Stable	No	No
Sentinel				
G5	Decreasing	Decreasing	No	No
F6	No Trend	Increasing	No	No

¹ pH exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2022

 2Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

6.2.3 Soluble Fluoride

Laboratory results for soluble fluoride in the deep aquifer reported during 2022 are summarised in **Table 6-9**.

Table 6-9: Soluble Fluoride Concentrations – Deep Aquifer

					No. Results Exceeding Criteria			
CoC Date	Date	No. of Samples	Minimum Conc. (mg/L)	Maximum Conc. (mg/L)	Irrigation (>1 mg/L)	Stock Watering (>2 mg/L)	Rec. (>15 mg/L)	
	March 2022	9	0.1	970	3	3	1	
Soluble	June 2022	9	<0.1	1100	4	4	1	
Fluoride	September 2022	9	<0.1	840	4	4	1	
	December 2022	9	<0.1	1100	4	4	1	

During the four GMEs completed in 2022, soluble fluoride concentrations in deep groundwater exceeded the site assessment criteria for Irrigation, Stock Watering or Recreational use at up to 4 wells as follows:

- Section 1: W2D and E5D
- Section 2: W1D
- Section 4: N2

The highest soluble fluoride concentrations were consistently reported at Section 1 deep well W2D. W2D is located directly adjacent to the CWS and reports the highest soluble fluoride concentrations of all the wells.

The lateral extent of soluble fluoride in the deep aquifer throughout 2022 is presented in **Figure 6-20**.

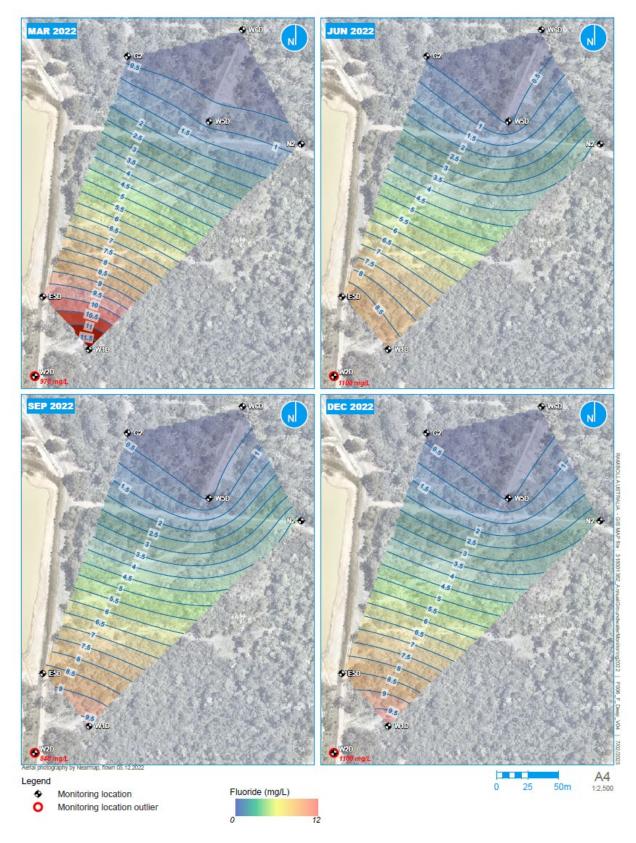


Figure 6-20: Interpolated Soluble Fluoride - Deep Aquifer 2022

6.2.3.1 Time Series Trends

Comparison of soluble fluoride concentrations within the deep aquifer for the 37 GMEs completed between July 2013 and December 2022 are shown in **Figure 6-21** to **Figure 6-24** with concentrations for W2D only, shown in **Figure 6-21**.

The time series trends show the following:

- Consistently elevated soluble fluoride concentrations at well W2D on Section 1
- Some initial fluctuations in concentrations on Section 1 to Section 5 followed by consistently lower soluble fluoride concentrations from 2017 to 2021, aside from an increase at W1D from 2020 to 2022
- Soluble Fluoride Section 1 & 2 Deep Wells a 1300 2.00 2° 4 20 20 20 20 20 20 40 20 40 20 20 20 20 20
- Consistently low soluble fluoride concentrations in the sentinel wells.

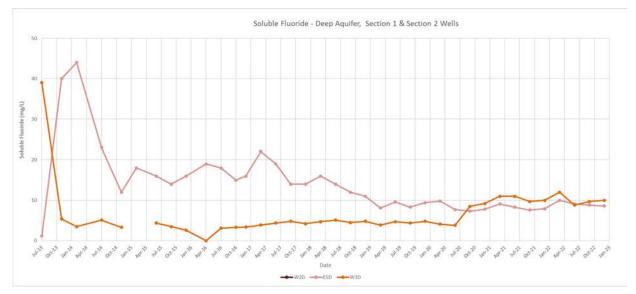


Figure 6-22: Soluble Fluoride Concentrations – Deep Aquifer, Section 1 & 2 Wells

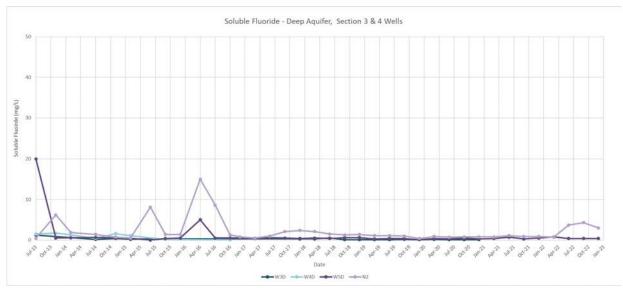


Figure 6-23: Soluble Fluoride Concentrations – Deep Aquifer, Section 3 & 4 Wells

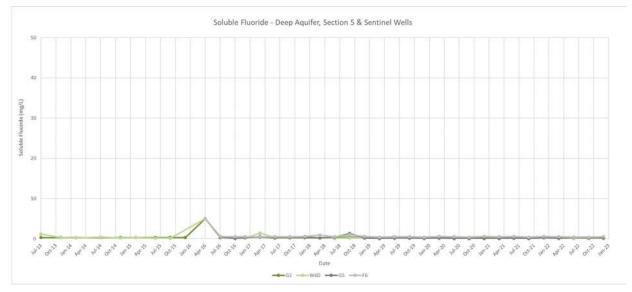


Figure 6-24: Soluble Fluoride Concentrations – Deep Aquifer, Section 5 & Sentinel Wells

6.2.3.2 Mann-Kendall Trend Analysis

Data from July 2013 to December 2022 (37 sampling events) were included for the purpose of Mann-Kendall trend analysis of soluble fluoride, a summary is provided in **Table 6-10**. Mann-Kendall trend analysis of soluble fluoride indicates an increasing trend in well W1D (located on Section 2) and G2 (located on Section 5). Further review indicates that for the period of September 2020 to December 2022, fluoride concentrations at W1D have been the highest reported for this well since November 2013. The pH values at W1D are approaching levels characteristic of leachate impact (pH >9) and the groundwater has been described as yellow/brown indicating the plume may be expanding to the east of highly impacted well W2D.

Well	Previous Trend 2013 to 2021	Current Trend 2013 to 2022	Soluble Fluoride >Assessment Criteria ¹	Leachate Impacted ²
Section 1				
W2D	Stable	Prob. Decreasing	Yes	Yes
E5D	Decreasing	Decreasing	Yes	No
Section 2				
W1D	Increasing	Increasing	Yes	No
Section 3				
W3D	Damaged	Damaged	Damaged	Damaged
₩4Ð	Destroyed	Destroyed	Destroyed	Destroyed
Section 4				
W5D	Decreasing	Decreasing	No	No
N2	Decreasing	No Trend	Yes	No
Section 5				
G2	Prob. Increasing	Increasing	No	No
W6D	Decreasing	Decreasing	No	No
Sentinel				
G5	Decreasing	Decreasing	No	No
F6	No Trend	Decreasing	No	No

Table 6-10: Mann-Kendall Soluble Fluoride Trends - Deep Aquifer

¹Soluble Fluoride exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2022

²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

6.2.4 Free Cyanide

Laboratory results for free cyanide in deep groundwater reported during 2022 are summarised in **Table 6-11**. Free cyanide concentrations exceeded the site ecological assessment criteria for 95% protection for aquatic ecosystems at W2D during March 2022, June 2022 and September 2022. All other wells targeting the deep aquifer reported free cyanide concentrations below the laboratory limit of reporting.

			Minimum	Maximum	No. Results Exceeding Criteria		
CoC	Date	No. of Samples	Conc. (mg/L)	Conc. (mg/L)	95% Protection (>0.007 mg/L)	Recreational (>0.8 mg/L)	
	March 2022	9	<0.004	0.066	1	0	
Free	June 2022	9	<0.004	0.055	1	0	
Cvanide	September 2022	9	<0.004	0.22	1	0	
	December 2022	9	<0.004	0.004	0	0	

Table 6-11: Free Cyanide Concentrations – Deep Aquifer

6.2.4.1 Time Series Trends

Comparison of free cyanide concentrations at W2D for 32 GMEs completed between February 2015 and December 2022 are shown in **Figure 6-25**. Only concentrations at W2D have been graphed because all other concentrations have historically fallen below the laboratory limit of reporting. Free cyanide concentrations at W2D increased from 0.009 mg/L in December 2021 to 0.022 mg/L in September 2022 then subsequently decreased to 0.004 mg/L in December 2022.

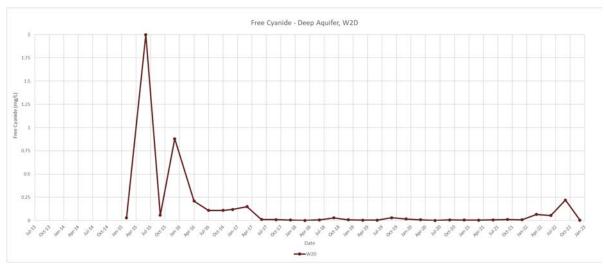


Figure 6-25: Free Cyanide Concentration – Deep Aquifer, W2D

6.2.4.2 Mann-Kendall Trend Analysis

Data from February 2015 to December 2022 (32 sampling events) were included for the purpose of Mann-Kendall trend analysis of free cyanide, a summary is provided in **Table 6-12**.

Mann-Kendall trend analysis of free cyanide in the deep aquifer shows a 'stable' trend at all wells aside from the leachate impacted well W2D, which shows a 'decreasing' trend.

Table 6-12: Mann-Kendall Trend Analysis of Free Cyanide – Deep Aquifer

Well	Previous Trend 2013 to 2021	Current Trend 2013 to 2022	Free Cyanide >Assessment Criteria ¹	Leachate Impacted ²
Section 1				
W2D	Decreasing	Decreasing	Yes	Yes
E5D	Stable	Stable	No	No
Section 2				
W1D	Stable	Stable	No	No
Section 3				
W3D	Damaged	Damaged	Damaged	Damaged
₩4Ð	Destroyed	Destroyed	Destroyed	Destroyed
Section 4				
W5D	Stable	Stable	No	No
N2	Stable	Stable	No	No
Section 5				
G2	Stable	Stable	No	No
W6D	Stable	Stable	No	No
Sentinel				
G5	Stable	Stable	No	No
F6	Stable	Stable	No	No

¹Free cyanide exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2022 2 Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

7. HYDRO DATA

Hydro historically collected groundwater samples for analysis from the monitoring well network in between Ramboll quarterly GMEs. Hydro ceased sampling in June 2022, instead relying on samples collected by Ramboll. Thirty-four (34) sampling events were completed by Hydro between May 2014 and June 2022. Hydro personnel gauged depth to water and collected groundwater samples for pH, conductivity and fluoride. Fluoride concentrations reported for wells sampled by Hydro are included in **Table 7-1** with a graphic representation provided in **Figure 7-1**. The results from the Hydro sampling are similar to the results of the quarterly GMEs completed by Ramboll.

Date	W1S	W1D	W2D	W7S	E5D	W3S	W4S	W5S	W6S	W6D
May 2014	70	8.9	840	39	39	410	610	180	-	-
June 2014	75	5.7	660	-	36	310	400	87	-	1.1
September 2014	79	3	1,200	-	15	270	460	110	-	0.7
December 2014	58	2	1,200	-	10	230	-	89	-	0.7
March 2014	-	2	1,200	-	10	230	-	-	-	<0.5
June 2014	-	3.4	1,300	-	14	240	500	95	150	0.7
September 2015	-	2	1,300	-	7	220	-	77	-	<0.5
December 2015	-	<5	1,100	-	9	180	-	8.3	-	<0.5
March 2016	-	8.3	1,200	-	14	230	-	-	-	0.9
June 2016	-	3.7	1,600	-	<0.5	160	-	-	-	<0.5
September 2016	-	4.1	1,100	-	12	130	-	-	-	<0.5
December 2016	-	7.5	1,400	-	15	-	-	-	-	<0.5
March 2017	-	5.3	1,200	-	14	220	-	-	-	<0.5
June 2017	-	4.5	1,300	-	18	140	-	-	-	<0.5
September 2017	-	4.2	1,200	-	20	90	-	-	-	<0.5
December 2017	-	6.7	1,600	-	200	1,100	-	-	-	1.7
March 2018	-	15.0	1,700	-	25	1,700	-	-	-	-
June 2018	-	6.4	2,200	-	30	120	-	-	-	-
September 2018	-	4.5	860	-	12	96	-	-	-	-
December 2018	-	4.3	1,100	-	10	87	-	-	-	-
March 2019	-	5.5	1,100	-	20	-	-	-	-	-
June 2019	-	5.2	1,500	-	10	120	-	-	-	-
September 2019	-	7.7	1,200	-	12	140	-	-	-	-
December 2019	-	4.8	1,200	-	7.3	-	-	-	-	-
March 2020	-	5.6	1,100	-	8.4	180	-	-	-	-
June 2020	-	6.8	650	-	8.0	130	-	-	-	-
September 2020	-	12	910	-	17	33	-	-	-	-
December 2020	-	9.6	770	-	11	<0.5	-	-	-	-
March 2021	-	11	780	-	15	28	-	-	-	-
June 2021	-	11	1100	-	11	270	-	-	-	-
September 2021	-	13	1100	-	15	150	-	-	-	-
December 2021	-	46	270*	-	8.5	220	-	-	-	-
March 2022	19	20	360	22	15	260	-	-	-	-
June 2022	9.8	10	67	7.7	13	17	-	-	-	-

Table 7-1: Fluoride (Concentrations in	Wells Sampled	by Hydro	(mg/L)
-----------------------	-------------------	---------------	----------	--------

- Not sampled, i.e., dry

* Anomalous data, not included in graph

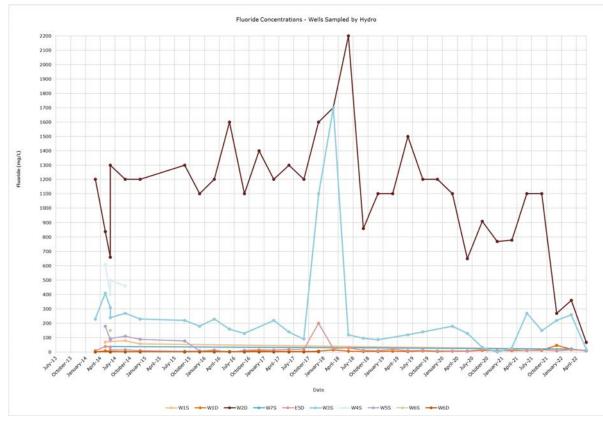


Figure 7-1: Fluoride Concentrations in Wells Sampled by Hydro

8. CONCLUSIONS AND RECOMMENDATIONS

Thirty-seven GMEs have been completed within a leachate impacted groundwater plume associated with the CWS (AEC 1) at the former Hydro Aluminium Kurri Kurri Smelter. The four most recent events were completed in March, June, September, and December 2022.

Each GME included the sampling and analysis of groundwater from a network of 24 shallow and deep wells located on five sections along the length of the leachate plume down-gradient of the CWS. An additional pair of two shallow and deep wells were added to the network in 2016. These wells are located adjacent to Swamp Creek, the nearest surface water receptor. Physico-chemical parameters were recorded, and groundwater samples were collected and analysed for soluble fluoride, total and free cyanide as well as total and dissolved aluminium.

Evaluation of 2022 GME data has identified the following:

- The leachate plume in shallow groundwater is delineated to the north, with a decreasing trend in soluble fluoride concentrations in well N9 at the leading edge of the plume.
- An increasing trend in pH and soluble fluoride concentrations have been reported at well E4 on the eastern boundary of the leachate plume. Groundwater at this location is constrained from further eastern migration due to geological constraints (high plasticity clay with low permeability). In addition, soluble fluoride concentrations in leachate at this location on the eastern edge of the leachate plume are generally consistent with historical observations made in 2013.
- Consistent with previous monitoring, the leachate plume has impacted the deeper sand aquifer in a localised area close to the plume source, the CWS, as shown by elevated soluble fluoride concentrations and a high pH in well W2D. Fluoride concentrations at this well have been elevated over the monitoring period and while no increasing trend in fluoride concentration has been observed, there is an increasing trend in pH with the highest pH results identified in the three most recent monitoring events in June, September and December 2022.
- There may be some expansion of leachate impact in the deep aquifer to the east, from the source towards W1D, with an increasing trend identified for both pH and soluble fluoride concentrations for two consecutive years (2021 to 2022). pH values at W1D are approaching levels characteristic of leachate impact (pH >9). The increasing plume migration coincides with higher than average rainfall experienced in the area, which is the primary mechanism for movement of the plume from the CWS.
- Consistent with previous monitoring, the leachate plume is not reaching the nearest surface water receptor of Swamp Creek, as indicated by continued low pH and low soluble fluoride concentrations in sentinel wells.
- Leachate is currently only generated in limited quantities following heavy rainfall and removal of leachate from the northern interception trench is completed as required. The active leachate interception trench at the toe of the CWS has not been pumped since 2016 and it was replaced in late 2022 with two separate interception trenches. Water pumped from these interception trenches will be pumped to the TWTP for treatment prior to disposal through the water management system.

9. **REFERENCES**

ANZG (2018) Guidelines for Fresh and Marine Water Quality

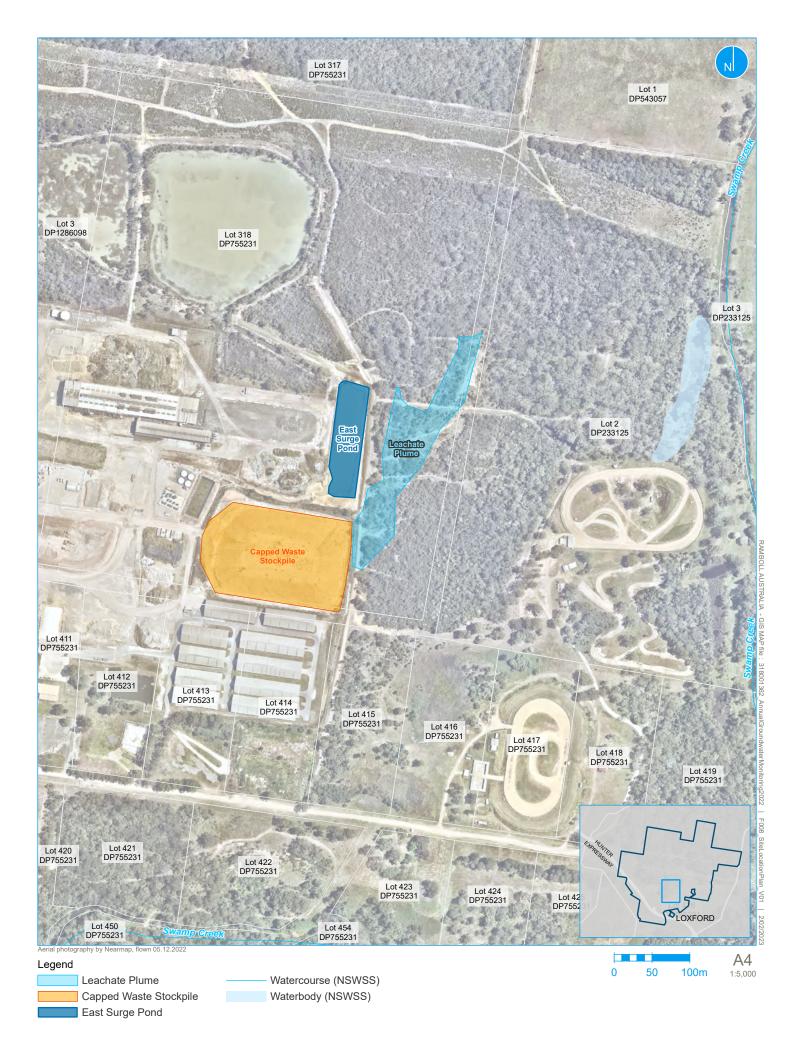
ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

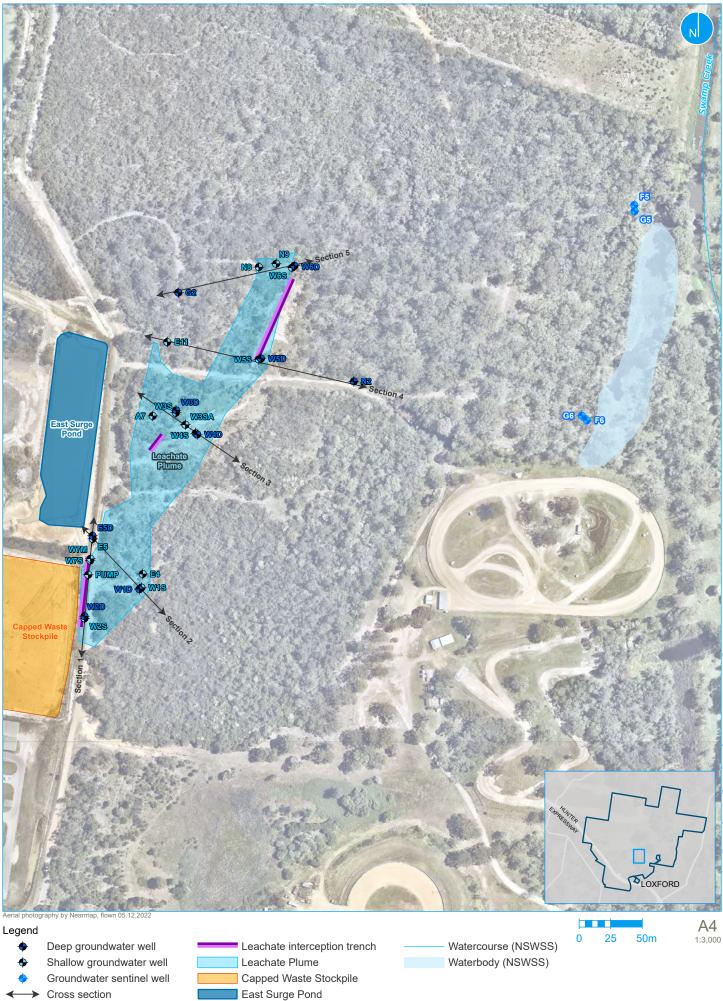
ENVIRON (March 2013) Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter

ENVIRON (February 2015) Groundwater Fate and Transport Modelling, Leachate Plume – Capped Waste Stockpile, Hydro Aluminium Smelter Kurri Kurri, NSW

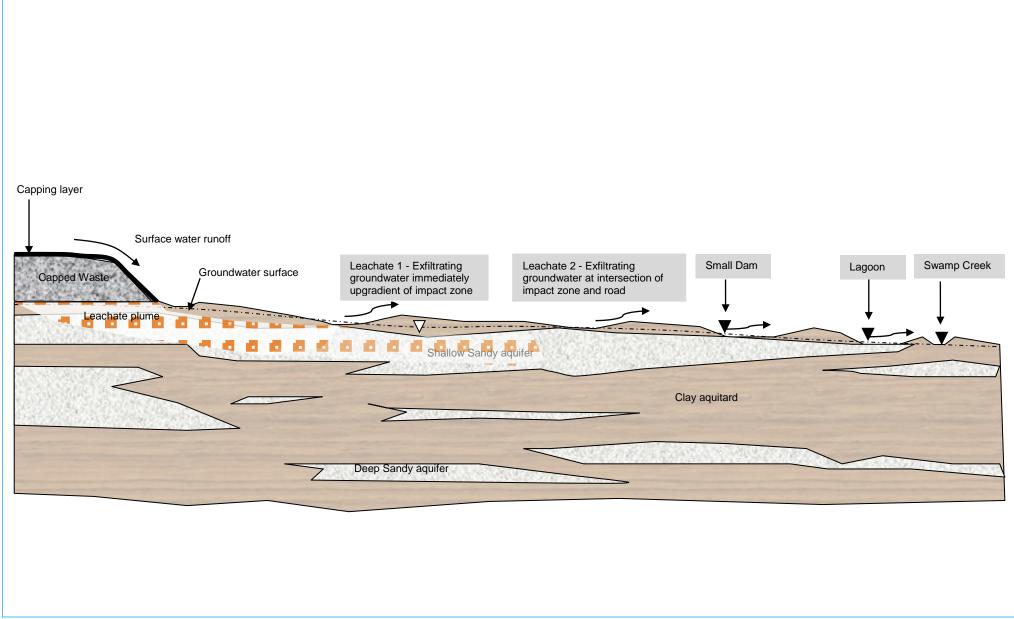
ENVIRON (June 2016) Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 12 Month Groundwater Monitoring Report

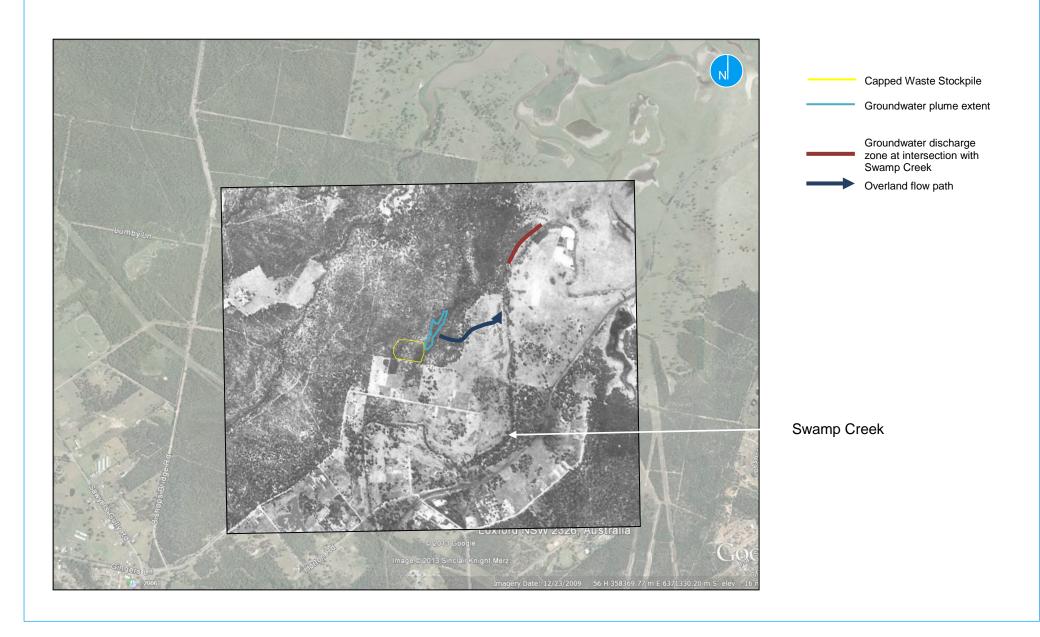
ENVIRON (September 2016) Plume Delineation Report, Capped Waste Stockpile

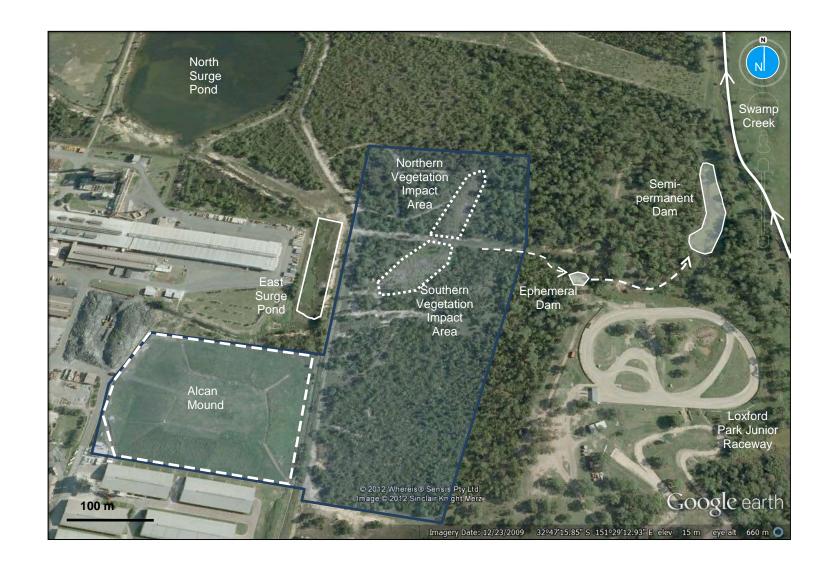

GSI (2012) Groundwater Services Inc., GSI Mann-Kendall Toolkit for Constituent Trend Analysis, Version 1.0, November 2012


NHMRC (2008) Guidelines for Managing Risks in Recreational Water

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination


Ramboll (April 2016) Hydro Aluminium Smelter, Capped Waste Stockpile, 2015 Annual Groundwater Monitoring Report


APPENDIX 1 FIGURES



APPENDIX 2 ATTACHMENTS

Topographic Contours mAHD (based on 1m Lidar)

APPENDIX 3 2013-2022 GME HISTORICAL DATA

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W2S																
95%				Project Name:	Quarterly Groundwater Monitoring																
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 1																
				Aquifer:	Shallow																
				SWL (m AHD):	12.489	12.619	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				Sample Description:	Light brown	Clear	Dry	Dry	Dry	Dry	Turbid, brown, purged dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.33	6.82	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>115</u>	<u>58</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	<u>91.5</u>	<u>33</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (dissolved)	0.000	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater													
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab													
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	W2S	W2S	W2S	W2S													
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring													
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri													
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1													
				Aquifer:	Shallow	Shallow	Shallow	Shallow													
				SWL (m AHD):	-			12.139						13.289	12.379	12.049	11.999	12.289	-	12.849	12.8390
				Sample Description:	Dry	Dry	Dry	Clear, no odour	Dry	Dry	Dry	Dry	Dry	Clear, turbid	Turbid, pale yellow, no odour	Turbid, light brown, no odour	Turbid, light brown, no odour	Slightly turbid, pale yellow/grey, no odour	Insufficient water to sample	Turbid, pale yellow brown, no odour	Very pale brown, slight sulphidic odour. Very turbid

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	7.47	-	-	-	-	-	6.74	6.73	6.97	7.19	7.32	-		6.51
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	<u>92</u>	-	-	-	-	-	<u>20</u>	<u>20</u>	<u>66</u>	<u>72</u>	<u>57</u>	-	<u>24</u>	<u>37</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	0.01	-	-	-	-	-	< 0.004	< 0.004	0.008	<0.004	0.005	-	<0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	3.9	-	-	-	-	-	0.17	0.48	1.8	1.5	0.44	-	0.061	0.27
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	-	-	-	<u>37</u>	-	-	-	-	-	<u>18</u>	<u>19</u>	<u>31</u>	<u>43</u>	6.9	-	<u>9.6</u>	<u>17</u>
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	-	-	-	<u>11</u>	-	-	-	-	-	<u>9.6</u>	7.2	5.2	5.20	4.50	-	4.20	12

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	14/April/2017
				Sample ID:	W2S	W2S	W2S	E5													
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	12.6590	12.6990	12.1090	12.214	12.054	11.804	-	-	-	11.904	11.614	-	11.724	-	-	-	-
				Sample Description:	Turbid, pale yellow grey, no odour	Clear, colourless, no odour	Very turbid, pale brown, no odour	Brown	Brown	Brown	Dry	Dry	Dry	Brown	Brown	Dry	Brown	Dry	Dry	Dry	Dry

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.77	7.02	7.17	<u>9.54</u>	<u>9.37</u>	<u>9.78</u>	-	-	-	<u>9.14</u>	<u>9.42</u>	-	<u>9.48</u>	-	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>25</u>	<u>29</u>	<u>53</u>	<u>495</u>	<u>410</u>	<u>450</u>	-	-	-	<u>410</u>	<u>350</u>	-	<u>330</u>	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	<u><0.8</u>	-	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	0.14	0.23	1.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	<u>28</u>	<u>7.6</u>	<u>63</u>	0.33	0.52	2.5	-	-	-	3	-	-	-	-	-	-	-
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	24	7	1.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater														
				Laboratory:	Envirolab	Envirolab	Envirolab														
				Sample date:	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21
				Sample ID:	E5	E5	E5														
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring														
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri														
Ecosystems				Section:	Section 1	Section 1	Section 1														
				Aquifer:	Shallow	Shallow	Shallow														
				SWL (m AHD):	-	-	-	-	-	-	-	-	-	-	-	-	12.054	12.184	11.914	11.714	12.134
				Sample Description:	Dry	Slightly red/brown	Clear, yellow/brown, no odour	Clear to slightly turbid, brown, no odour	Slightly turbid, pale brown, no odour	Clear, dark brown, no odour											

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	8.79	<u>9.11</u>	<u>9.2</u>	8.89	<u>9.15</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	-	-	-	-	-	<u>220</u>	<u>250</u>	<u>300</u>	<u>300</u>	<u>310</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	0.007	0.011	0.01	<0.004	0.011
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	62	57	79	54	50
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	0.9	1	3.6	9	0.49
Aluminium (dissolved)	0.033	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	0.08	0.07	0.12	0.13	0.08

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16
				Sample ID:	E5	E5	E5	E5	E5	E5	PUMP										
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	11.864	12.304	12.5640	12.5340	12.5640	12.0240	12.487	12.352	11.862	11.042	11.312	11.262	11.952	11.702	11.652	11.932	11.842
				Sample Description:	Clear, yellow brown, no odour	Clear, dark brown, no odour	Dark brown, no odour	Clear, dark yellow brown, no odour	Clear, dark yellow brown, no odour	Clear, dark yellow brown, sulphidic odour	Light brown	Light brown, cloudy	Brown, murky, light brown	Brown, no odour	Brown, turbid, some odour	Light brown, no odour	Light brown	Very turbid, brown	-	Brown, turbid	Very turbid, brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>9.36</u>	<u>9.16</u>	<u>9.27</u>	<u>9.63</u>	<u>9.84</u>	<u>10.19</u>	7.45	7.24	<u>9.65</u>	<u>10.14</u>	<u>10.01</u>	<u>9.95</u>	<u>9.87</u>	<u>10.22</u>	<u>10.27</u>	<u>10.13</u>	<u>10.22</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>230</u>	<u>320</u>	<u>360</u>	<u>410</u>	<u>360</u>	<u>420</u>	<u>79</u>	<u>51</u>	<u>280</u>	<u>550</u>	<u>930</u>	<u>740</u>	<u>200</u>	<u>680</u>	<u>360</u>	<u>570</u>	<u>280</u>
Free Cyanide	0.007			0.8	mg/L	0.004	0.011	0.013	0.3	< 0.004	< 0.004	0.006	-	-	-	-	-	0.021	< 0.08	0.029	0.1	0.01	0.018
Total Cyanide					mg/L	0.004	18	19	56	68	82	86	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	0.75	1.6	0.31	0.52	0.15	0.3	<u>58.1</u>	<u>60</u>	<u>17</u>	-	<u>310</u>	<u>370</u>	<u>120</u>	<u>610</u>	<u>97</u>	<u>280</u>	<u>93</u>
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	0.10	0.09	0.09	0.09	0.09	0.08	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater								
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab								
				Sample date:	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20
				Sample ID:	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP								
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring								
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri								
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1								
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow								
				SWL (m AHD):	11.842	11.662	11.542	11.742	11.572	11.412	11.302	11.772	11.572	11.522	11.422	11.502	11.432	11.302	11.662	13.362	12.422
				Sample Description:	-	Milky	Brown	Brown	Milky brown	Brown	Turbid, brown	Light brown, no odour	Light brown/grey, hydrogen sulfide odour	Clear to slightly brown, no odour	Slightly brown, slight sulphidic odour	Slightly turbid, clear, no odour	Brown/grey, sulphidic odour	Turbid, slightly brown	Yellow/brown, turbid	Clear, no odour	Turbid, yellow, no odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>9.98</u>	<u>9.72</u>	<u>9.56</u>	<u>9.2</u>	<u>9.9</u>	<u>9.6</u>	<u>9.73</u>	<u>9.17</u>	<u>13.68</u>	9.55	<u>9.42</u>	<u>9.43</u>	<u>9.89</u>	<u>9.93</u>	7.2	9.59	7.4
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>85</u>	<u>88</u>	<u>210</u>	<u>60</u>	<u>180</u>	<u>160</u>	<u>220</u>	<u>62</u>		<u>250</u>	<u>370</u>	<u>140</u>	<u>400</u>	<u>530</u>	<u>30</u>	<u>17</u>	<u>21</u>
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	0.006	0.006	< 0.004	< 0.005	0.009	< 0.004	< 0.004	0.01	0.009	< 0.004	<0.004	0.014	0.007	<0.004	<0.004	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	20	4.1	44	14	21	9.8	35	57	0.31	0.009	0.077
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	<u>90</u>	<u>120</u>	<u>740</u>	<u>39</u>	<u>160</u>	<u>45</u>	<u>82</u>	<u>46</u>	<u>23</u>	5.4	<u>9.3</u>	<u>38</u>	<u>93</u>	<u>77</u>	<u>49</u>	3.2	6.1
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	0.09	0.46	1.9	1.3	4.3	0.86	2.9	<u>17</u>	0.44	0.76
																							(

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15
				Sample ID:	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	W7S							
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	12.402	12.152	12.602	12.212	12.852	13.0220	12.9420	12.9020	12.1920	12.614	12.969	-	-	-	-	-	-
				Sample Description:	Slightly turbid, light brown, no odour	Turbid, pale black/grey/br own, strong odour	Slightly turbid, some flocculants, pale grey, no odour	Slightly turbid, pale grey, no odour	Clear, colourless, no odour	Brown, no odour	Clear to slightly turbid, pale yellow, no odour	Slightly turbid, pale yellow brown, no odour	Turbid, yellow brown, sulphidic odour	Cloudy/turbid	Light brown, cloudy sediment	Dry	Dry	Dry	Dry	Dry	Dry

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.88	7.9	6.61	8.32	6.91	7.37	9.56	9.78	10.45	7.29	7.1	-	-	-	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>22</u>	<u>24</u>	<u>17</u>	<u>26</u>	<u>17</u>	<u>19</u>	<u>130</u>	<u>150</u>	<u>360</u>	<u>34</u>	<u>31</u>	-	-	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.012	< 0.004	-	-	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	0.23	0.23	0.056	0.068	0.012	0.035	4.8	8.4	27	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	<u>12</u>	<u>23</u>	<u>12</u>	<u>18</u>	4.1	9	2.8	11	8.5	<u>415</u>	<u>42</u>	-	<u>210</u>	-	-	-	-
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	1.9	<u>15.00</u>	6.40	<u>11.00</u>	2.10	2.3	0.6	2.2	0.95	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19
				Sample ID:	W7S																
95%				Project Name:	Quarterly Groundwater Monitoring																
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 1																
				Aquifer:	Shallow																
				SWL (m AHD):	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				Sample Description:	Dry	Purge dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry						

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (dissolved)	0.000	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																							1

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14
				Sample ID:	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7M	W7M	W7M	W7M	W7M
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri					
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1					
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	-	13.019	12.369	-	-	12.229	11.979	12.219	12.7990	12.7890	12.7890	-	12.218	12.138	11.568	10.958	11.088
				Sample Description:	Dry	Clear, no odour	Turbid, yellow/brown, no odour	Dry	Dry	Very turbid, pale brown, no odour	Dry	Very turbid, pale brown, no odour	Pale brown, no odour	Turbid, pale yellow grey, no odour	Turbid, pale yellow brown, no odour	Insufficiemt water to sample	Light brown	Brown	Brown, dark, sulphur smell	Brown, no odour	Brown, turbid, some odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	8.08	7.61	-	-	7.24	-	7.01	6.95	7.38	7.13	-	<u>9.81</u>	<u>9.87</u>	<u>10.1</u>	<u>10.12</u>	<u>9.78</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	<u>17</u>	<u>22</u>	-	-	24	-	<u>33</u>	<u>27</u>	<u>16</u>	<u>18</u>	-	<u>878</u>	<u>650</u>	<u>730</u>	-	<u>910</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	<0.004	< 0.004	-	-	< 0.004	-	< 0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	
Total Cyanide					mg/L	0.004	-	0.08	1.1	-	-	1.2	-	1	0.51	0.21	0.2	-	-	-	-	-	
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	-	5.9	<u>65</u>	-	-	<u>410</u>	-	<u>86</u>	<u>32</u>	<u>7.5</u>	<u>3.6</u>	-	<u>11.4</u>	2.3	<u>45</u>		<u>21</u>
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	-	2.1	0.55	-	-	<u>20</u>	-	<u>9.1</u>	<u>23</u>	<u>2.9</u>	<u>1.9</u>	-	-	-	-	-	_
																							,

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19
				Sample ID:	W7M																
95%				Project Name:	Quarterly Groundwater Monitoring																
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 1																
				Aquifer:	Shallow																
				SWL (m AHD):	10.918	11.938	11.608	11.518	11.668	11.578	11.568	11.388	11.278	11.458	11.298	11.128	11.018	11.478	11.298	11.268	11.138
				Sample Description:	Brown/copper , strong odour	Brown	Brown	-	Brown	-	Brown	-	Brown	Brown	Brown	Tea brown	Tea brown	Turbid, light brown, no odour	Turbid, brown, no odour	Slightly brown, slight odour	Slightly brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>9.44</u>	<u>9.82</u>	<u>9.91</u>	<u>9.7</u>	<u>9.99</u>	<u>9.95</u>	<u>10.17</u>	<u>9.68</u>	<u>9.61</u>	<u>10.1</u>	<u>9.8</u>	<u>9.6</u>	<u>9.61</u>	<u>9.7</u>	<u>13.24</u>	<u>9.63</u>	<u>9.68</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>840</u>	<u>810</u>	<u>670</u>	<u>540</u>	<u>640</u>	<u>870</u>	<u>1100</u>	<u>1000</u>	<u>220</u>	<u>750</u>	<u>760</u>	<u>780</u>	<u>770</u>	<u>810</u>	<u>860</u>	<u>820</u>	<u>990</u>
Free Cyanide	0.007			0.8	mg/L	0.004	0.02	<u><2</u>	<u><0.4</u>	<u>0.21</u>	0.013	0.072	-	0.007	0.09	0.007	0.005	0.006	<0.004	0.008	0.017	0.007	0.006
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	140	190	160	130	150
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	0.99	<u>32</u>	8.7	7.8	4.4	0.08	6.2	<u>11</u>	3.4	1.3	1.2	3.6	<u>10</u>	0.76	6.6	0.31	7.5
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	0.16	0.14	0.22	0.28

Blank Cell indicates no criterion available

• Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
				Sample ID:	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	11.228	11.158	11.068	11.348	12.148	12.188	11.858	11.698	12.128	11.848	12.518	12.728	12.538	12.708	11.968
				Sample Description:	Brown, no odour	Brown/red, slightly sulphidic odour	Slightly brown	Slightly red/brown, no odour	Clear, no odour	Clear to slightly turbid, brown, no odour	Slightly turbid, brown, no odour	Slightly turbid, dark brown, strong odour	Slightly turbid, dark brown, no odour	Clear, dark yellow, no odour	Slightly turbid, pale yellow brown, no odour	Dark yellow brown, no odour	Clear, dark brown, no odour	Turbid, pale yellow brown, no odour	Turbid, dark yellow brown, no odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>9.65</u>	<u>9.73</u>	<u>9.75</u>	<u>9.67</u>	<u>8.97</u>	<u>9.1</u>	9.28	<u>9.47</u>	<u>9.86</u>	<u>9.42</u>	9.44	<u>9.29</u>	<u>10.39</u>	<u>10.16</u>	<u>10.81</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>750</u>	<u>800</u>	<u>830</u>	<u>810</u>	<u>440</u>	<u>290</u>	<u>580</u>	<u>630</u>	<u>490</u>	<u>350</u>	<u>360</u>	<u>400</u>	<u>710</u>	<u>480</u>	<u>850</u>
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	0.006	0.009	0.006	< 0.004	0.019	0.009	0.005	0.006	0.013	0.008	0.03	0.029	0.12	< 0.004
Total Cyanide					mg/L	0.004	130	160	160	130	34	28	30	75	48	25	16	29	99	110	170
Aluminium (total)	0.055	Б	ц	0.2	mg/L	0.01	1.5	2	<u>10</u>	0.74	2.8	<u>11</u>	<u>11</u>	2.1	8.1	2.3	6.8	4.2	3.6	2.4	3.4
Aluminium (dissolved)	0.035	,	5	0.2	mg/L	0.01	0.30	0.30	0.27	0.39	0.83	2.60	0.76	0.35	0.51	0.36	0.37	0.75	0.37	0.3	0.25

Blank Cell indicates no criterion available

• Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
0704				Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring														
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	11.887	11.977	11.367	11.277	-	11.217	11.527	11.207	11.317	11.297	-	-	-	-	-	-	-
				Sample Description:	Brown	Brown	Brown, cloudy, sulphur odour	Dark brown	Dry	Brown, no odour	Dark brown, turbid	Brown		Brown	Dry						

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.22	7.17	6.84	6.9	-	6.66	6.83	6.86	-	7.21	-	-	-	-	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>53</u>	<u>69</u>	<u>42</u>	-	-	<u>66</u>	<u>120</u>	<u>38</u>	-	<u>39</u>	-	-	-	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	0.004	<u><4</u>	-	-	-	-	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	5	0.2	mg/L	0.01	<u>121</u>	<u>130</u>	<u>27</u>	-	-	<u>120</u>	<u>1200</u>	-	-	<u>15</u>	-	-	-	-	-	-	-
Aluminium (dissolved)	0.055	J	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	W1S																
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 2																
				Aquifer:	Shallow																
				SWL (m AHD):	-	-	-	-	-	-	-	-	-	10.857	11.487	11.077	11.377	11.417	11.297	11.477	11.657
				Sample Description:	Dry	Turbid, yellow, no odour	Red/brown, sulphidic odour	Turbid, yellow brown, no odour	Turbid, dark yellow, no odour	Turbid, yellow brown, no odour	Turbid, yellow brown, no odour	Dark yellow brown, no odour									

Analyte grouping/Analyte

Units LOR

																							,
		l .	1			1 1		1		1		1	1	I.		1							
pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	-	-	-	-	-	-	-	7.89	8.24	7.55	7.99	8.11	7.61	7.48
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	-	-	-	<u>17</u>	<u>17</u>	<u>17</u>	14	14	<u>13</u>	<u>13</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	-	-	-	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	0.71	0.7	0.44	0.45	0.18	0.35	0.72
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	3.2	7	7.6	<u>56</u>	4.7	2.1	1.1
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	0.3	0.14	0.12	0.22	0.11	0.07	0.18

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17
				Sample ID:	W1S	W1S	W1S	E4													
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	11.867	12.027	11.627	11.93	12.09	10.33	11.51	11.28	11.31	12.07	11.65	11.5	11.44	11.39	11.38	11.11	11.11
				Sample Description:	Clear, dark yellow, no odour	Slightly turbid, dark yellow, no odour	Slightly turbid, yellow, slight sulphidic odour	Brown	Brown, sulphur smell	Brown	Dark brown, no odour	Strong sulphur odour, dark brown	Brown/orange , no odour	Brown	Dark brown, turbid		Brown	Brown	Turbid, brown	Tea colour	Tea brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	8.6	8.1	7.98	<u>9.91</u>	<u>9.79</u>	<u>9.94</u>	<u>9.84</u>	<u>9.4</u>	8.84	<u>9.46</u>	<u>9.62</u>	<u>10.57</u>	<u>9.73</u>	<u>9.83</u>	<u>9.94</u>	<u>9.53</u>	<u>9.53</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>9.8</u>	<u>10</u>	12	<u>699</u>	<u>650</u>	<u>650</u>	<u>590</u>	<u>380</u>	<u>340</u>	<u>260</u>	<u>280</u>	<u>300</u>	<u>330</u>	<u>570</u>	<u>550</u>	<u>450</u>	<u>670</u>
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	< 0.004	<0.4	< 0.04	0.032	0.004	0.049	0.045	<0.004	0.029
Total Cyanide					mg/L	0.004	1.4	1	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	1.5	2.3	0.28	0.379	0.89	0.4	3.2	<u>35</u>	<u>46</u>	<u>49</u>	<u>53</u>	<u>18</u>	<u>14</u>	<u>9.9</u>	2.6	<u>36</u>	<u>12</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	< 0.01	0.11	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21
				Sample ID:	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2				
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	-	11.01	10.81	10.83	11.33	11.12	11.06	10.84	11	9.94	10.77	11.4	11.03	11.93	11.65	12.64	11.92
				Sample Description:	Dry	Milky brown	Dark brown	Brown	Brown/orange , strong hydrogen sulfide odour	Turbid, slightly brown/yellow	Slightly brown, no odour	Slightly brown, slight sulphidic odour	Slightly yellow, sulphidic odour	Brown, sulphidic odour	Clear to slightly grey	Yellow/brown	Red/brown, no odour	Clear to slightly turbid, orange/brown , slight unknown	Brown/red, easy to filter	Clear, brown, slight odour	Turbid, brown, no odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8°			6.5-8.5	pH units	-	-	9.59	9.46	<u>9.32</u>	<u>9.62</u>	<u>9.29</u>	<u>9.27</u>	<u>9.47</u>	<u>9.56</u>	<u>9.58</u>	<u>9.67</u>	<u>9.65</u>	<u>9.73</u>	<u>9.87</u>	10.64	<u>9.56</u>	<u>9.91</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	<u>380</u>	<u>380</u>	<u>410</u>	<u>350</u>	<u>380</u>	<u>410</u>	<u>530</u>	<u>490</u>	<u>530</u>	<u>590</u>	<u>560</u>	<u>690</u>	<u>560</u>	<u>680</u>	<u>610</u>	<u>760</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	0.008	<0.004	< 0.004	< 0.004	<0.004	0.006	< 0.004	< 0.004	< 0.004	0.006	0.004	<0.004	<0.004	< 0.004	0.008	0.006
Total Cyanide					mg/L	0.004	-	-	-	61	69	41	48	57	74	130	130	110	160	190	1.8	89	120
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	-	<u>32</u>	<u>37</u>	<u>37</u>	<u>13</u>	22	1.7	5.2	1.3	0.98	1.8	<u>14</u>	0.5	0.55	0.44	0.65	<u>9.4</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	1	0.42	0.8	1.1	0.25	0.83	0.45	0.79	0.36	0.46	0.28	0.38	0.45

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
				Sample ID:	E4	E4	E4	E4	E4	E4
0704				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	11.61	12.31	12.19	12.19	12.22	11.69
				Sample Description:	Very turbid, dark brown, no odour	Slightly turbid, yellow brown, sulphidic odour	Dark yellow brown, sulphidic odour	Clear to slightly turbid, yellow brown, no odour	Clear, dark brown, slight sulphidic odour	Clear, dark yellow brown, slight sulphidic odour

Analyte grouping/Analyte

LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>10.1</u>	<u>9.89</u>	<u>9.82</u>	<u>10.28</u>	<u>10.45</u>	<u>10.7</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>570</u>	<u>680</u>	<u>710</u>	<u>820</u>	<u>660</u>	<u>780</u>
Free Cyanide	0.007			0.8	mg/L	0.004	0.008	0.008	< 0.004	0.029	0.2	0.004
Total Cyanide					mg/L	0.004	47	81	140	180	220	210
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	<u>70</u>	0.49	0.41	0.82	0.38	<u>0.39</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.53	0.29	0.36	0.42	0.35	0.38

Units

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	10.279	10.599	9.809	10.059	9.919	10.019	10.489	10.219	10.009	9.999	9.939	9.859	9.699	9.799	9.969	9.669	9.579
				Sample Description:	Brown	Brown	Brown	Brown, strong organic material odour	Brown/orange , slightly turbid, slight odour	Dark orange/brown , no odour	Brown	Brown	-	Brown	Brown	Turbid, brown	Brown	Tea brown	Tea brown	Tea brown, foul smell	Tea brown, smelly

Analyte grouping/Analyte

LOR Units

			-																				
pH (field)	6.5-8°			6.5-8.5	pH units	-	<u>9.63</u>	<u>9.47</u>	<u>9.67</u>	<u>9.66</u>	9.24	8.56	<u>9.45</u>	<u>9.8</u>	<u>10.71</u>	<u>9.75</u>	<u>9.37</u>	<u>9.57</u>	<u>9.15</u>	<u>9.12</u>	9.49	2.65	<u>9.27</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>436</u>	<u>420</u>	<u>410</u>	<u>380</u>	<u>410</u>	<u>550</u>	<u>500</u>	<u>400</u>	<u>320</u>	<u>330</u>	<u>320</u>	<u>360</u>	<u>380</u>	<u>500</u>	<u>400</u>	<u>390</u>	<u>400</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	<u>11</u>	<u><2</u>	< 0.020	<u>0.19</u>	< 0.004	0.026	0.032	<0.004	0.039	<0.004	<0.005	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.208	4.7	0.7	0.26	0.71	1.7	2.7	0.61	0.72	14	2.9	2.1	3	<u>25</u>	3.7	5.9	4.1
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	9.629	9.999	9.819	9.989	9.609	9.689	9.819	9.569	10.029	10.149	10.369	10.259	10.969	10.419	10.249	10.649	10.7290
				Sample Description:	Tea brown	Dark brown/orange , very strong hydrogen sulfide odour	prown/vellow.	Brown, sulphidic odour	Slightly brown, sulphidic odour	Slightly brown, sulphidic odour	Brown sulphidic odour	Slightly red/brown, sulphidic odour	Slightly red/brown, sulphidic odour	Slightly brown, sulphidic odour	Clear, brow, strong 'rotten eggs' odour		Clear, brown, strong odour	Clear to slightly turbid, dark yellow/brown, slight odour	Slightly turbid, dark brown, strong odour	Clear to slightly turbid, dark brown, sulphidic odour	Dark yellow brown, strong sulphidic odour

Analyte grouping/Analyte

LOR

Units

pH (field)	6.5-8ª	I		6.5-8.5	pH units	-	8.96	9.36	9.75	9.06	9.38	9.4	9.39	9.48	9.46	9.4	9.6	9.85	9.26	9.36	<u>9.73</u>	9.46	9.5
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>190</u>	<u>390</u>	<u>450</u>	<u>410</u>	<u>600</u>	<u>480</u>	<u>480</u>	<u>520</u>	<u>410</u>	<u>470</u>	<u>370</u>	<u>500</u>	<u>380</u>	<u>110</u>	<u>370</u>	<u>360</u>	<u>330</u>
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	0.007	0.009	<0.004	<0.004	< 0.004	< 0.004	0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.005	< 0.004	0.005	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	15	87	80	54	100	82	88	90	64	86	81	1.8	43	9.2	20	18	45
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	8.9	<u>24</u>	4.4	1	0.44	0.5	0.4	0.33	0.46	0.37	0.4	0.87	0.31	0.16	1	0.28	0.2
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	0.37	0.2	0.25	0.19	0.16	0.21	0.28	0.25	0.21	0.22	0.23	0.21	0.11	0.23	0.15	0.16

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17
				Sample ID:	A7	A7	A7	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring			Quarterly Groundwater Monitoring										
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	10.6290	10.7190	10.2990	-	10.312	9.282	9.832	9.552	9.902	10.292	10.052	9.632	9.622	9.762	9.602	7.182	9.702
				Sample Description:	Clear, yellow brown, no odour	Clear, dark yellow brown, strong sulphidic odour	Clear, dark yellow brown. No odour	Light brown	Brown	Light brown	Clear to brown, no odour	Brown/orange , no odour	Brown/orange , no odour	Brown	Light brown, slightly turbid	_	Brown	Turbid, brown	Turbid, brown	Brown	-

Analyte grouping/Analyte

LOR Units

										-		-			-		-			-			
pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>9.78</u>	<u>9.98</u>	<u>10.2</u>	8.53	8.82	7.61	8.89	7.68	6.38	7.53	7.53		7.46	7.02	7.01	6.4	7.4
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>330</u>	<u>300</u>	<u>340</u>	<u>237</u>	<u>310</u>	<u>210</u>	<u>270</u>	<u>210</u>	<u>250</u>	<u>230</u>	<u>200</u>	<u>160</u>	<u>190</u>	<u>170</u>	<u>150</u>	<u>110</u>	<u>180</u>
Free Cyanide	0.007			0.8	mg/L	0.004	0.009	0.014	0.005	-	-	-	-	-	< 0.004	<u><0.4</u>	< 0.02	0.023	0.007	0.005	0.014	< 0.004	0.007
Total Cyanide					mg/L	0.004	41	60	55	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.23	0.22	0.15	<u>11.7</u>	2.6	7.1	<u>9.2</u>	5.3	<u>34</u>	4.4	24	<u>92</u>	<u>15</u>	6.9	21	<u>90</u>	<u>48</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.18	0.17	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater								
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab								
				Sample date:	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21
				Sample ID:	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S								
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring								
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri								
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3								
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow								
				SWL (m AHD):	9.902	8.982	8.912	9.582	9.872	9.522	9.902	-	9.122	9.752	-	9.872	10.022	9.952	9.702	10.242	10.082
				Sample Description:	Tea brown	Brown	Purge dry	Milky brown	Turbid, brown	Turbid, brown, no odour	Slightly brown, no odour	Turbid, pale brown, silty	Clear to yellow, slightly turbid, cloudy	Slightly brown	Insufficient water for sampling	Slightly brown/red	Clear, slightly red/brown	Clear to slightly turbid, brown, no odour	Red/brown, no odour	Turbid, yellow/brown, no odour	Clear to slightly turbid, yellow brown, no odour

Analyte grouping/Analyte

LOR Units

pH (field)	6.5-8°	1	1	6.5-8.5	pH units	-	7.66	7	6.99	7.19	6.91	7.14	6.8	-	7.01	7.7	-	7.21	7.29	7.28	7.59	7.14	7.57
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>62</u>	<u>99</u>	-	<u>180</u>	<u>120</u>	<u>96</u>	<u>100</u>	-	<u>90</u>	<u>170</u>	-	<u>150</u>	<u>150</u>	<u>97</u>	<u>100</u>	<u>130</u>	<u>130</u>
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.005	-	<0.004	0.007	0.004	0.008	-	< 0.004	0.013	-	0.016	0.005	0.011	<0.004	0.028	0.016
Total Cyanide					mg/L	0.004	-	-	-	20	24	14	15	-	15	20	-	26	18	9.3	14	13	17
Aluminium (total)	0.055	-	-		mg/L	0.01	<u>15</u>	<u>110</u>	-	<u>80</u>	<u>16</u>	<u>23</u>	21	-	<u>33</u>	3.8	-	<u>26</u>	3.1	8.2	<u>29</u>	8.7	4
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	1.3	1.1	3.2	-	3.3	0.79	-	4.1	1.2	4.4	3.5	2.5	0.58

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16
				Sample ID:	W3S	W3S	W3S	W3S	W3S	W3S	W4S										
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring											
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	9.772	10.182	10.1320	10.2020	10.1820	9.71200	-	9.934	-	-	-	-	9.739	9.729	-	-	9.719
				Sample Description:	Slightly turbid, dark yellow brown, slight odour	Clear, dark yellow brown, no odour	Pale brown, no odour	Turbid, yellow brown, no odour	Clear, yellow, no odour	Clear, dark yellow, no odour	Dry	Brown	Dry	Dry	Dry	Dry	Brown	Dark brown	Dry	Dry	Slightly turbid, brown

Analyte grouping/Analyte

LOR Units

	-																						
pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.53	7.58	8.21	8.96	9.3	8.3	-	<u>9.13</u>	-	-	-	-	<u>9.13</u>	<u>9.07</u>	-	-	5.11
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>110</u>	<u>230</u>	<u>290</u>	<u>300</u>	<u>240</u>	<u>180</u>	-	<u>480</u>	-	-	-	-	<u>490</u>	<u>400</u>	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	0.033	< 0.004	0.009	< 0.004	0.006	-	-	-	-	-	-	<u><4</u>	<u><40</u>	-	-	-
Total Cyanide					mg/L	0.004	12	14	26	27	25	28	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	3.1	0.73	4.7	3.3	2.1	3.7	-	3.6	-	-	-	-	2.3	<u>13</u>	-	-	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.62	0.3	0.31	0.26	0.26	0.37	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20
				Sample ID:	W4S																
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 3																
				Aquifer:	Shallow																
				SWL (m AHD):	-	-	-	-	-	-	-	9.759	-	-	-	-	-	-	9.599	10.029	
				Sample Description:	Dry	Dark brown, orange odour	Dry	Slightly red/brown	Purge dry												

Analyte grouping/Analyte

LOR Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	-	-	-	-	8.26	-	-	-	-	-	-	-	8.32	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	<u>160</u>	-	-	-	-	-	-	-	<u>76</u>	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	< 0.004	-	-	-	-	-	-	-	< 0.004	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	12	-	-	-	-	-	-	-	2.1	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	-	-	-	-	-	-	-	<u>Z1</u>	-	-	-	-	-	-	-	<u>19</u>	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	0.38	-	-	-	-	-	-	-	5.4	· ·

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
				Sample ID:	W4S	W4S	W4S	W4S	W4S	W4S	W4S	W4S	W4S
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	10.629	9.789	9.739	-	-	-	-	-	-
				Sample Description:	Dry, mud at base of well	Very turbid, brown, organic odour	Very turbid, grey/black/br own, organic odour	Insufficient water to sample					

Analyte grouping/Analyte

LOR Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	7.58	7.91	-	-	-	-	-	-
Soluble Fluoride		1	2	15.	mg/L	0.1	-	<u>81</u>	<u>120</u>	-	-	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	<0.004	<0.004	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	-	2.2	1.7	-	-	-	-	-	-
Aluminium (total)	0.055	6	F	0.2	mg/L	0.01	-	<u>63</u>	<u>170</u>	-	-	-	-	-	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	<u>24</u>	2.3	-	-	-	-	-	-

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	8.06	7.735	7.48	7.72	7.67	7.54	8.7	8.15	7.9	7.94	7.64	7.55	7.41	7.4	7.56	7.33	7.2
				Sample Description:	Clear/light brown	Cloudy, brown	Light brown	Brown, slightly turbid, sulphidic odour		Brown/orange , slight sulphidic odour	Brown	-	-	Clear to light brown, turbid	Turbid, brown	Turbid, brown	Grey	Brown	Brown	Milky	Brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>9.36</u>	<u>9.36</u>	<u>9.33</u>	<u>9.41</u>	<u>9.32</u>	8.86	7.97	<u>9.23</u>	8.65	<u>9.2</u>	<u>9.29</u>	<u>9.41</u>	<u>9.1</u>	8.7	<u>9.07</u>	3.51	8.83
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>102</u>	<u>160</u>	<u>190</u>	<u>160</u>	<u>150</u>	<u>230</u>	<u>7.4</u>	<u>110</u>	<u>96</u>	<u>120</u>	<u>120</u>	<u>130</u>	<u>200</u>	<u>230</u>	<u>99</u>	<u>130</u>	<u>110</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	0.005	< 0.004	< 0.004	0.033	< 0.004	0.009	0.016	0.004	0.015	<0.004	<0.005	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	5	0.2	mg/L	0.01	<u>23</u>	<u>23</u>	4	7.8	3.6	5	2.5	<u>11</u>	2.7	7.6	<u>23</u>	<u>22</u>	<u>15</u>	<u>89</u>	5.6	<u>120</u>	<u>49</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11
05%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	7.11	7.56	7.4	7.46	7.25	7.29	7.34	7.18	7.65	7.68	7.97	7.86	7.76	8.1	7.88	8.45	8.55000
				Sample Description:	Yellow	Light brown, hydrogen sulfide odour	Slightly brown	Clear, no odour	-	Clear, sulphidic odour	Clear, slightly turbid	Clear, sulphidic odour	-	Clear, slight sulphidic odour	Clear, yellow/brown, no odour	Clear to slightly turbid, light brown, no odour	Low turbid, pale yellow, strong odour	Very turbid	Turbid, pale yellow brown, slight odour	Turbid, pale brown, no odour	Pale yellow brown, no odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	8.62	<u>9.02</u>	<u>10.45</u>	7.7	8.99	8.76	7.87	8.95	8.41	8.48	8.69	<u>9.24</u>	8.3	<u>9.21</u>	<u>9.48</u>	7.09	6.88
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>120</u>	<u>120</u>	<u>130</u>	<u>49</u>	<u>150</u>	<u>74</u>	<u>41</u>	<u>120</u>	<u>41</u>	<u>54</u>	<u>53</u>	<u>78</u>	74	120	76	12	8.3
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	<0.004	< 0.004	< 0.004	0.004	<0.004	< 0.004	0.004	< 0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004
Total Cyanide					mg/L	0.004	7.4	10	8	0.65	18	3.8	0.3	20	0.79	1.9	3.5	5.1	1.9	3.1	1.4	0.17	0.2
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	4.4	4.9	<u>9.3</u>	6.4	<u>11</u>	1.8	3.9	1.5	3.3	2.4	2.6	5.3	1.1	<u>50</u>	5	4.8	3.3
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	0.03	0.02	0.1	0.06	0.04	0.03	0.03	0.07	0.06	0.12	0.08	0.05	0.23	0.09	2	2.1

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17
				Sample ID:	E11	E11	E11	W5S													
0504				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	8.49000	8.63000	8.10000	9.188	9.273	-	9.053	-	8.993	9.323	9.293	-	-	9.063	-	-	-
				Sample Description:	Turbid, pale yellow grey, no odour	Clear to slightly turbid, colourless to pale brown, sulphidic	Turbid, brown yellow, slight sulphidic odour	Light brown	Light brown, cloudy	Dry	Brown, turbid, no odour	Dry	Brown/orange , no odour	Brown	Brown	Dry	Dry	-	Dry	Dry	Dry

Analyte grouping/Analyte

Units LOR

			-	1	<u></u>	1	1	1	1	1	1	I	1	1	1	1	1	1	1		1	T	
pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.37	6.91	8.8	7.37	7.37	-	7.39	-	6.55	7.26	7.2	-	-	7.29	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	11	7.9	23	<u>35</u>	<u>61</u>	-	<u>100</u>	-	<u>93</u>	<u>88</u>	<u>70</u>	-	-	<u>62</u>	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	< 0.004	<u><4</u>	< 0.02	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	0.93	0.21	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.3	mg/L	0.01	1.8	1.8	1.1	<u>13</u>	<u>13</u>	-	<u>15</u>	-	<u>22</u>	7	<u>31</u>	-	-	<u>10</u>	-	-	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.59	1	0.47	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater													
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab													
				Sample date:	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21
				Sample ID:	W5S	W5S	W5S	W5S													
0704				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring													
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri													
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4													
				Aquifer:	Shallow	Shallow	Shallow	Shallow													
				SWL (m AHD):	-	-	-	-	-	-	-	-	-	-	-	8.843	9.173	9.093	-	8.973	-
				Sample Description:	Brown	Dry	Clear, yellow, no odour	Slightly turbid, yellow/orange / brown, no odour	Dry	Very turbid, brown, no odour	Dry										

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.79	-	-	-	-	-	-	-	-	-	-	-	7.76	7.47	-	7.2	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>50</u>	-	-	-	-	-	-	-	-	-	-	-	<u>34</u>	<u>34</u>	-	39	-
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	-	-	-	-	-	-	-	-	-	-	-	<0.004	<0.004	-	<0.004	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	2.6	2.2	-	2.5	-
Aluminium (total)	0.055	F	-	0.2	mg/L	0.01	6.2	-	-	-	-	-	-	-	-	-	-	-	11	23	-	<u>42</u>	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	6.6	2.6	-	5	-

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001362 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2022 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 2/02/2023

Table iv: Results Shallow Aquifer, Section 4

				Sample Type:	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab
				Sample date:	Sep-21	Dec-21
				Sample ID:	W5S	W5S
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4
				Aquifer:	Shallow	Shallow
				SWL (m AHD):	-	9.073
				Sample Description:	Dry	Very turbid, grey brown, no odour

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	6.74
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	24
Free Cyanide	0.007			0.8	mg/L	0.004	-	<0.004
Total Cyanide					mg/L	0.004	-	0.34
Aluminium (total)	0.055	F	5	0.2	mg/L	0.01	-	<u>32</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	<u>14</u>

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	N8																
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 5																
				Aquifer:	Shallow																
				SWL (m AHD):	9.18	8.74	8.46	8.8	8.73	8.65	9.35	9.19	9.09	9.03	8.61	8.64	8.38	8.22	8.56	8.16	7.75
				Sample Description:	Yellow	Clear, slightly cloudy	Light brown, sulphur odour	Clear/dark yellow, no odour	Dark grey, turbid, no odour	Orange/yello w, no odour	Brown	Slightly turbid, light brown	-	Brown, turbid	-	Turbid, brown	-	Light brown	Brown	Faint yellow	Faint brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.36	6.38	6.48	6.53	6.39	6.11	6.49	6.69	6.74	6.59	6.63	6.92	6.4	6.54	6.78	6.76	6.67
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.27	0.17	0.26	0.27	0.29	0.35	0.9	0.3	0.4	<u><10</u>	0.4	0.6	0.4	1	0.4	0.4	0.4
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	< 0.004	<u><0.4</u>	<0.02	0.005	<0.004	0.004	<0.004	< 0.004	0.006	<0.004	<0.005	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	F	0.2	mg/L	0.01	0.102	<u>12</u>	0.11	0.3	<u>91</u>	1.8	<u>29</u>	5.3	3.4	<u>34</u>	0.47	1.6	1	<u>34</u>	3.9	<u>25</u>	4
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

 $\ensuremath{^{\circ}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	7.87	8.29	8.18	8.28	7.9	7.89	7.99	7.77	8.04	8.19	8.53	8.47	8.73	9.27	8.93	8.99	9.45000
				Sample Description:	Brown	Light brown, some odour	Brown/yellow	Slightly brown, very slight sulphidic odour	Slightly brown/yellow, no odour	Clear to yellow	Turbid, brown/yellow, no odour	Slightly yellow, sulphidic odour	Clear, bright yellow, sulphidic odour	Slightly yellow/red, no odour	Turbid, yellow, no odour	Slightly turbid, brown, slight odour	Turbid, yellow/orange /brown, slight odour	Slightly turbid, yellow/brown, no odour	Turbid, yellow/orange brown, slight odour	Turbid, pale yellow brown, no odour	Yellow brown, sulphidic odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.45	6.71	<u>10.53</u>	6.51	6.81	6.68	6.6	6.67	6.76	6.77	6.77	6.95	6.54	6.85	7.19	6.63	6.91
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.5	0.5	0.5
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	0.54	0.67	0.56	0.6	0.61	0.55	0.47	0.63	0.35	0.49	0.66	0.44	0.1	0.2	0.1	0.041	0.38
Aluminium (total)	0.055	F	5	0.2	mg/L	0.01	5.1	4.3	0.22	0.35	0.9	0.76	1.1	1.7	0.3	0.63	4.5	1	0.7	5.1	6.5	0.2	0.61
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	0.02	0.03	0.06	0.04	0.06	0.06	0.06	0.07	0.05	0.06	0.05	0.06	0.05	0.04	0.04	0.07

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17
				Sample ID:	N8	N8	N8	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	9.40000	9.71000	9.32000	9.222	9.312	8.482	9.012	8.872	9.002	9.692	9.382	9.052	8.832	9.252	-	-	9.142
				Sample Description:	Slightly turbid, yellow, no odour	Turbid, dark yellow, no odour	Dark yellow	Light brown	Cloudy brown	Dry	Dark yellow, slightly turbid, no odour	Dark grey, becoming yellow, turbid, no odour	Brown/orange , sulphidic odour	Turbid, grey	Clear, strong sulphidic odour	-	Brown	Slightly brown	Brown	Dry	Brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.11	7.52	7.54	<u>9.16</u>	8.9	-	<u>9.17</u>	8.91	8.46	7.22	7.34	7.7	6.61	8.11	8.54	-	8.61
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.5	0.6	0.6	<u>85</u>	<u>200</u>	-	<u>170</u>	<u>210</u>	210	<u>24</u>	<u>25</u>	2	-	<u>140</u>	-	-	<u>200</u>
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	< 0.004	<0.4	< 0.02	< 0.004	-	< 0.004	-	-	< 0.004
Total Cyanide					mg/L	0.004	0.62	0.52	0.61	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.29	0.39	0.34	<u>14.7</u>	<u>62</u>	-	<u>9</u>	<u>130</u>	8	<u>14</u>	<u>22</u>	0.89	-	5.5	-	-	1
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.05	0.03	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21
				Sample ID:	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri					
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5					
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	9.352	8.822	8.812	9.022	9.222	8.972	9.172	8.792	8.832	9.182	-	9.342	9.322	9.312	9.182	9.332	9.502
				Sample Description:	Light brown, smelly	-	Tea brown	Tea brown	Light brown, some odour	Brown, sediment, strong hydrogen sulfide odour	Clear, slightly brown, sulphidic odour	Light brown, sediments, strong sulphidic odour	Clear, sediments	Clear to slightly brown, sulphidic odour	Insufficient water for sampling	Clear, sulphidic odour	Clear, sulphidic odour	Clear to slightly turbid, yellow, sulphidic odour	Turbid, light brown, slight odour	Low turbid, pale brown/yellow, strong odour	Turbid, pale yellow, strong odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>9.32</u>	-	8.6	8.65	8.72	<u>12.9</u>	8.72	8.33	8.71	8.5	-	8.64	8.53	8.7	8.69	8.21	8.67
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>160</u>	<u>150</u>		<u>200</u>	<u>140</u>	<u>170</u>	<u>160</u>	200	<u>160</u>	<u>160</u>	-	<u>140</u>	<u>130</u>	<u>57</u>	<u>110</u>	<u>110</u>	<u>110</u>
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.005	<0.004	< 0.004	0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	-	<0.004	<0.004	< 0.004	0.008	<0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	15	6.7	7.2	7.4	6.6	9.2	8	-	5.4	3.7	2.9	5.3	2.3	1.1
Aluminium (total)	0.055	6	E	0.2	mg/L	0.01	1.6	-	-	0.54	<u>17</u>	0.95	0.28	1.5	2	0.64	-	4.9	1.6	1.3	1.6	0.52	<u>15</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	0.1	0.1	0.08	0.27	0.46	0.08	-	1.1	0.7	0.6	0.28	0.06	0.84
																							,

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16
				Sample ID:	N9	N9	N9	N9	N9	N9	W6S	W6S	W6S	W6S	W6S	W6S	W6S	W6S	W6S	W6S	W6S
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	9.282	9.802	9.72200	9.71200	9.82200	9.21200	7.85	7.65	7.64	-	-	7.69	8.12	8.01	7.82	-	-
				Sample Description:	Turbid, pale yellow brown, no odour	Turbid, pale yellow brown, no odour	Pale yellow brown, sulphidic odour	Turbid, pale yellow grey, no odour	Turbid, pale yellow brown, no odour	Turbid, pale grey, no odour	Light brown	Dry	Dry	Brown/yellow, turbid	Dry	Orange, no odour	Light brown, turbid	Light brown, slightly turbid	-	Dry	Dry

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	8.68	8.27	8.26	8.86	8.41	7.81	8.87	-	-	8.79	-	7.27	8.72	8.98	8.67	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>95</u>	<u>82</u>	<u>79</u>	<u>25</u>	5.2	<u>2.9</u>	<u>195</u>	-	-	-	-	200	<u>180</u>	-	<u>180</u>	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	0.019	<0.4	-	0.058	-	-
Total Cyanide					mg/L	0.004	0.83	0.18	0.65	0.17	0.061	0.076	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	E	6	0.2	mg/L	0.01	3.7	0.71	1.6	22	9.7	2	<u>60.1</u>	-	-	-	-	3.5	7.7	-	<u>22</u>	-	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.6	0.06	0.17	7.6	3.9	1.1	-	-	-	-	-	-	-	-		-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20
				Sample ID:	W6S																
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 5																
				Aquifer:	Shallow																
				SWL (m AHD):	7.63	-	-	-	-	-	-	7.59	7.6	-	-	-	-	-	7.59	-	-
				Sample Description:	Dry																

Analyte grouping/Analyte

Units LOR

					-											-						•	
pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater							
				Laboratory:	Envirolab	Envirolab							
				Sample date:	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
				Sample ID:	W6S	W6S							
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring							
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri							
Ecosystems				Section:	Section 5	Section 5							
				Aquifer:	Shallow	Shallow							
				SWL (m AHD):	Dry	-	-	7.6	-	-	-	8.18000	-
				Sample Description:	Dry	Turbid, pale yellow brown, no odour	Dry						

Analyte grouping/Analyte

Units LOR

			_												
pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	-	-	-	-	8.56	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	110	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	< 0.004	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	1.8	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	4.1	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	0.28	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater											
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab											
				Sample date:	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20
				Sample ID:	F5	F5	F5	F5	F5	F5	F5											
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring											
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri											
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background											
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow											
				SWL (m AHD):	4.95	4.86	4.93	4.73	4.67	4.76	4.46	4.3	3.82	4.41	4.19	4.16	3.8	3.71	3.75	3.39	3.75	3.85
				Sample Description:	Clear to light brown	Clear	Clear	Colourless	Colourless with particles	Faint yellow	Colourless	Colourless with particles	Colourless with particles	Clear, hydrogen sulfide odour	Clear	Clear, very slight sulphidic odour	Clear, no odour	Clear, slight sulphidic odour	Clear, no odour	Clear, sulphidic odour	Clear, organic odour	Clear, slight sulphidic odour

Analyte grouping/Analyte

LOR

Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.38	5.58	5.25	4.46	4.11	5.08	4.21	4.57	4.3	4.46	4.35	5.02	4.96	4.71	4.6	4.54	5.38	4.75
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u><10</u>	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	<0.1	<0.4	<0.4
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	<0.004	0.013	< 0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	<0.004	<0.004
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	2.2	2.1	0.89	2.3	2.3	4.6	2.9	3.2	3	2.2	2.1	2	1.4	1.7	2.3	1.9	1.7	2.5
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	1.5	1.9	1.7	1.1	0.92	1.5	1.2	1.3	2.3

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in $\operatorname{\boldsymbol{bold}}$ font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	F5	F5	F5	F5	F5	F5	F5	F5	F5	F5	G6							
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	4.23	4.04	5.48	4.72	4.55	4.93	5.18000	5.04000	5.36000	5.07000	2.59	2.45	2.45	3.21	2.17	2.28	2.04	1.86
				Sample Description:	Clear, no odour	Clear, sulphidic odour	Clear to slightly turbid, colourless/gre v. slight	Clear, colourless, slight sulphidic odour, slight	Clear with some flocculants, colourless, strong odour	Clear, colourless, black flocculants, sulphidic	Colourless, sulphidic odour	Clear, colourless, sulphidic odour	Clear and colourless with brown floccules, strong	Clear, colourless with grey floccules, no odour	-	Clear	Clear	Colourless with particles	Colourless with particles	Colourless	Colourless with particles	Colourless with particles

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	4.71	5.01	4.63	4.69	4.68	4.48	5.45	5.37	5.07	4.74	3.6	3.82	4.04	3.79	3.66	4.55	4.21	3.86
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.1	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	<u><10</u>	<0.1	0.2	<0.1	<0.1	0.4	0.4	0.5
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	3.2	2.2	2.6	2.7	2.7	2.4	1.3	3.1	2.8	2.5	<u>28</u>	0.78	0.13	<u>29</u>	<u>25</u>	<u>23</u>	<u>21</u>	<u>27</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	2.7	1.9	2.2	2	2.2	2	0.25	2.3	1.9	2.1	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater						
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab						
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22
				Sample ID:	G6	G6	G6	G6	G6	G6	G6	G6	G6	G6	G6	G6						
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring						
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri						
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background						
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow						
				SWL (m AHD):	1.55	1.7	1.55	1.49	1.29	1.13	0.99	0.81	0.8	0.96	1.33	1.23	1.28	1.99	1.88	2.01	2.37	2.65
				Sample Description:	Colourless with particles	Clear, no odour	Clear, no odour	Clear, no odour	Clear, slight sulphidic odour	Clear, sulphidic odour	Slightly brown, strong sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour, slightly turbid	Clear, no odour	Clear, sulphidic odour	Slightly turbid, black/grey, strong odour	Clear, colourless, strong sulphidic odour, slight	Clear with flocculants, colourless, slight odour	Clear, colourless, strong sulphidic odour	Colourless, strong sulphidic odour	Clear, colourless, strong sulphidic odour

Analyte grouping/Analyte	
--------------------------	--

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	3.66	3.6	3.88	3.81	4.14	3.88	4.14	3.93	4.06	4.59	4.49	4.19	4.22	4.55	4.94	4.2	4.37	4.29
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.4	0.4	0.4	0.7	0.6	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.4	0.6	0.4	0.6	0.4	0.5
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	<0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004
Aluminium (total)	0.055	-	-	0.0	mg/L	0.01	<u>27</u>	<u>25</u>	<u>23</u>	<u>25</u>	<u>16</u>	<u>17</u>	<u>9.8</u>	9	6.9	7.3	<u>9.3</u>	6.9	8	3.5	6.6	7.4	10	8.7
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	<u>26</u>	<u>22</u>	<u>23</u>	<u>16</u>	<u>18</u>	<u>9.5</u>	8.9	6.7	5.8	8.5	6.9	8	2.8	5.9	5.6	10	8.2

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001362 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2022 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 2/02/2023

Table vi: Results Shallow Aquifer, Background

				Sampl	е Туре:		Groundwater	Groundwater
				Labora	atory:	Π	Envirolab	Envirolab
				Sampl	e date:	Π	Sep-22	Dec-22
				Sampl	e ID:	Π	G6	G6
				Projec	t Name:		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:			Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Sectio	n:	Π	Background	Background
				Aquife	er:	П	Shallow	Shallow
				SWL (m AHD):	Π	3.12	2.74
				Sampl	e Description:		Clear and colourless with light grey floccules,	Colourless with grey flocucules

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	5.3	4.1
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.6	0.7
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	< 0.004	< 0.004
Aluminium (total)	0.055	F	5	0.2	mg/L	0.01	12	17
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	11	16

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value $% \left({{{\rm{CON}}}} \right) = {{\rm{CON}}} \left({{{\rm{CON}}$

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18
				Sample ID:	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	12.193	12.313	11.793	11.463	11.183	10.463	11.963	11.683	11.573	11.753	11.603	11.663	11.483	11.303	11.523	11.303	10.813	10.933
				Sample Description:	Brown	Brown	Brown	Dark brown, slight sulphidic odour	Brown, turbid, strong odour	Copper/brown , strong sulphidic odour	Brown	Brown	-	Brown	Brown	Brown	Brown	Dark brown	Dark brown	Tea brown	Tea brown	Reddish/tea brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>10.09</u>	<u>9.9</u>	<u>10.13</u>	<u>10.1</u>	9.94	<u>9.99</u>	<u>10.11</u>	10.27	10.34	<u>10.42</u>	<u>10.29</u>	<u>10.4</u>	<u>10.02</u>	<u>10.07</u>	<u>9.37</u>	<u>10.08</u>	<u>10.1</u>	<u>10.14</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>682</u>	<u>790</u>	<u>880</u>	<u>930</u>	<u>1080</u>	<u>1279</u>	<u>1300</u>	<u>1300</u>	<u>1300</u>	<u>1300</u>	<u>1400</u>	<u>1500</u>	<u>1400</u>	<u>1700</u>	<u>1300</u>	<u>1300</u>	<u>1200</u>	<u>1200</u>
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	0.03	<4	<u>0.058</u>	<u>0.88</u>	<u>0.21</u>	<u>0.11</u>	<u>0.11</u>	<u>0.12</u>	<u>0.15</u>	0.012	0.01	0.006	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	300
Aluminium (total)	0.055	5	F	0.2	mg/L	0.01	2.86	0.6	0.67	1.4	44	0.03	0.19	0.03	3.5	0.06	0.09	0.92	<u>31</u>	1	0.08	1.6	0.28	1.1
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

			n Stock Watering		Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
	95% Protection of Aquatic Ecosystems	Irrigation			Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22
					Sample ID:	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D
					Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
					Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
					Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1				
					Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
					SWL (m AHD):	11.583	11.373	11.333	11.133	11.333	11.253	10.963	11.663	8.842	12.323	12.053	11.783	12.233	11.923	12.683	11.9430	12.6930	12.7430
					Sample Description:	Dark brown, odour	Dark brown	Brown, slight 'burnt' odour	Dark brown	Brown, very slight sulphidic odour	Brown/red, no odour	Slightly brown/red	Red/brown, sulphidic odour	Red/brown, sulphidic odour	Turbid, orange/brown , no odour		Slightly turbid, brown, strong odour	Clear to slightly turbid, dark chocolate brown, no	Clear to slightly turbid, dark brown, no odour	Clear, dark brown, sulphidic odour	Dark brown, slight sulphidic odour	Clear, dark brown, no odour	Clear, dark brown, no odour

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>10.18</u>	<u>13.74</u>	<u>9.87</u>	<u>9.99</u>	<u>10.1</u>	<u>10.08</u>	<u>10.14</u>	<u>10.12</u>	<u>10.11</u>	<u>10.18</u>	10.09	<u>9.72</u>	<u>10.11</u>	<u>10.37</u>	<u>10.19</u>	<u>10.17</u>	<u>10.65</u>	<u>10.79</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>1200</u>	<u>1200</u>	<u>1200</u>	<u>1500</u>	<u>1200</u>	<u>1300</u>	<u>1400</u>	<u>1300</u>	<u>1100</u>	<u>800</u>	<u>1000</u>	<u>1000</u>	<u>860</u>	<u>880</u>	<u>1000</u>	<u>970</u>	<u>1100</u>	<u>840</u>
Free Cyanide	0.007			0.8	mg/L	0.004	0.007	0.029	0.009	0.004	0.004	0.03	0.018	0.009	< 0.004	0.008	0.006	0.005	0.008	0.011	0.009	0.066	0.055	0.22
Total Cyanide					mg/L	0.004	330	280	330	300	230	240	270	250	210	190	1.8	120	100	46	82	220	180	210
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	0.71	0.39	1	0.61	0.72	0.83	1.2	0.97	0.76	0.76	0.71	1.6	2	1.6	0.68	0.87	0.45	1.1
Aluminium (dissolved)	0.055				mg/L	0.01	0.77	0.52	0.69	0.51	0.7	0.73	0.7	0.76	0.78	0.69	0.58	0.73	0.6	0.6	0.56	0.73	0.73	0.6

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W2D	E5D																
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	12.1330	11.672	11.632	11.562	11.432	11.562	11.612	11.572	11.522	11.722	11.652	11.992	11.422	11.462	11.282	11.232	11.192	11.242
				Sample Description:	Clear, dark brown, sulphidic odour	Cloudy, brown	-	Light brown/clear	Brown, no odour	Yellow/orange , no odour	Light brown/copper , no odour	-	Brown	-	Brown	Brown	Brown	Milky	Brown	Light brown	Milky brown	Light tea brown

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	<u>10.99</u>	7.22	7.29	7.53	7.44	8.32	6.8	7.23	7.23	7.18	7.1	7.27	7.39	7	7.08	7.97	7.16	7
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>1100</u>	1.21	<u>40</u>	<u>44</u>	<u>23</u>	<u>12</u>	<u>18</u>	<u>16</u>	14	<u>16</u>	<u>19</u>	<u>18</u>	<u>15</u>	<u>16</u>	22	<u>19</u>	14	14
Free Cyanide	0.007			0.8	mg/L	0.004	0.004	-	-	-	-	-	<0.004	< 0.4	< 0.02	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	230	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>)</u>
Aluminium (total)	0.055	F	6	0.2	mg/L	0.01	0.45	1.697	1.5	<u>110</u>	2.2	3.3	3.4	2.1	2.1	4.3	3.6	2.7	1.9	4.2	<u>64</u>	2.8	5	2.2
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-]

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22
				Sample ID:	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D
0704				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	
95% Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1				
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	11.202	11.292	11.232	11.672	11.702	11.482	11.482	11.392	10.262	11.892	12.152	12.032	11.782	11.932	11.662	11.812	12.3620	12.3920
				Sample Description:	Light yellow	Light brown, some odour	Brown	Slightly brown, no odour	Clear to slightly yellow, no odour	Slightly brown, no odour	Clear to slightly brown, no odour	Clear, no odour	Bright yellow, sulphidic odour	Clear, no odour	Clear to slightly turbid, yelow, no odour	Slightly turbid, light brown, no odour	Medium turbid, yellow brown, strong odour	Clear, yellow, no odour	Clear to slightly turbid, dark yellow, slight odour	Clear, pale brown, sulphidic odour	Dark yellow brown, slight hydrocarbon odour	Clear to slightly turbid, yellow, no odour

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.97	7.29	12.79	6.95	6.96	7.1	7.3	6.95	7.05	7.1	7.04	7.02	6.77	8.32	7.31	6.95	7.24	7.62
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>16</u>	14	12	11	8.1	<u>9.6</u>	8.3	9.4	9.8	7.7	7.3	7.8	9.1	8.3	7.6	7.9	10	9.1
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	0.6	1.6	1.2	0.81	1.1	0.92	0.68	1.1	2.3	0.84	0.7	0.63	0.38	0.61	0.17	0.27	0.70	1.2
Aluminium (total)	0.055	E	F	0.2	mg/L	0.01	3.4	4.1	2.2	0.72	1.3	1.2	1.2	2.5	1.2	1.3	1.6	1.3	1.6	0.33	0.42	0.27	0.27	0.84
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	<0.01	0.01	0.03	<0.01	0.01	<0.01	<0.01	0.01	<0.01	0.02	0.01	0.03	0.01	0.02	0.02	0.02	< 0.01

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vii: Results Deep Aquifer, Section 1

				Sample Type:	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab
				Sample date:	Sep-22	Dec-22
				Sample ID:	E5D	E5D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1
				Aquifer:	Deep	Deep
				SWL (m AHD):	12.2520	12.1120
				Sample Description:	Slightly turbid, pale yellow brown, no odour	Slightly turbid, dark yellow, sulphidic odour

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.51	8.1
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>8.8</u>	<u>8.6</u>
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	0.87	0.94
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	1.3	1.2
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.02	< 0.01

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring													
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	10.852	9.912	9.332	8.702	9.112	-	8.512	8.022	8.582	9.412	8.752	8.632	8.762	8.562	8.372	7.872	7.882
				Sample Description:	Brown	-	Light brown	Light brown, turbid	-	Dry	Light brown, turbid	Light brown, slightly turbid	-	Brown	Brown	Turbid, brown	Light brown	Tea brown	Tea brown	Tea brown	Tea brown

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.98	6.62	6.7	6.71	6.63	-	6.82	6.79	8.48	6.73	6.82	7.02	6.78	6.67	7.3	6.95	6.78
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>39</u>	<u>5.4</u>	<u>3.5</u>	<u>5.1</u>	<u>3.3</u>	-	<u>4.4</u>	<u>3.5</u>	2.6	<u><10</u>	<u>3.1</u>	3.3	3.4	3.9	4.4	4.8	4.2
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	<0.2	< 0.02	-	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.005	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	<u>21.2</u>	0.9	2.4	2.4	0.26	0.26	4	0.95	0.4	1.5	0.66	0.87	18	89	120	4.1	1.4
Aluminium (dissolved)		5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	7.802	8.692	8.512	8.572	8.412	8.482	8.052	7.992	8.392	8.842	11.632	11.182	11.242	11.312	10.722	11.022	11.7120
				Sample Description:	Brown	Yellow, hydrogen sulfide odour	Slight brown/yellow	Clear, slightly brown, slight sulphidic odour	Clear to slightly brown, slight sulphidic odour	Clear, slighly cloudy, sulphidic odour	Slightly brown/yellow, sulphidic odour	Slightly yellow, no odour	Bright yellow	Clear to slightly yellow	Clear, dark yellow no odour	Yellow, no odour	Clear, dark yellow, no odour	Clear, yellow/brown, no odour	Clear, dark yellow, no odour	Clear brown, no odour	Dark yellow brown, sulphidic odour

	Units	LOR
Analyte grouping/Analyte	Onits	LOK

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.91	7.07	7.12	6.76	6.92	6.83	6.91	7.16	7.12	7.17	7.57	8.14	7.34	7.78	8.13	7.71	7.77
Soluble Fluoride		1	2	1.5	mg/L	0.1	4.7	5.1	4.5	4.8	3.9	4.7	4.4	4.8	4.1	3.8	8.5	9.2	<u>11</u>	<u>11</u>	<u>9.7</u>	<u>10</u>	<u>12</u>
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004
Total Cyanide					mg/L	0.004	0.34	0.69	0.59	0.67	0.64	0.47	0.046	0.67	0.25	0.5	1	1.1	0.6	0.19	0.23	0.1	0.81
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	0.46	0.88	0.38	0.43	0.48	0.69	0.71	0.23	0.98	2.1	1.2	0.53	0.4	0.29	0.32	0.8	1
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	-	0.14	0.14	0.25	0.15	0.21	0.19	0.1	0.15	0.22	0.13	0.09	0.14	0.05	0.05	0.08	0.24

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				!	Sample Type:	Groundwater	Groundwater	Groundwater
				Π	Laboratory:	Envirolab	Envirolab	Envirolab
				T۱	Sample date:	Jun-22	Sep-22	Dec-22
					Sample ID:	W1D	W1D	W1D
				ŀ	Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
Protec	5% ction of uatic	Stock Watering	Recreational		Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosy	ystems			T١	Section:	Section 2	Section 2	Section 2
				Π	Aquifer:	Deep	Deep	Deep
				T١	SWL (m AHD):	12.0820	12.1320	11.8120
					Sample Description:	Slightly turbid, brown yellow, slight sulphidic odour	Clear, dark yellow, no odour	Turbid, pale yellow brown, slight sulphidic odour

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8ª			6.5-8.5	pH units	-	8.51	8.57	8.92
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>8.8</u>	<u>9.7</u>	<u>10</u>
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	1.4	1	1.2
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	0.3	0.38	0.72
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.05	0.05	0.09

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W3D																
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 3																
				Aquifer:	Deep																
				SWL (m AHD):	5.61	-	-	5.53	5.46	5.5	5.59	5.68	-	-	-	-	-	-	-	-	5.16
				Sample Description:	Clear	Dry	Dry	Clear, no odour	Grey, slightly turbid, no odour	Clear, no odour	Clear	Sclear, sulphidic odour	Dry	Turbid, suspended particles							

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª		I	6.5-8.5	pH units	-	5.91	-	-	4.38	3.56	3.29	4.89	3.62	-	-	-	-	-	-	-	-	4.72
Soluble Fluoride		1	2	1.5	mg/L	0.1	1.23	-	-	0.19	0.41	0.22	0.3	0.3	-	-	-	-	-	-	-	-	0.3
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	<0.004	< 0.004	< 0.004	-	-	-	-	-	-	-	-	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.7	-	-	0.58	0.72	0.76	0.81	0.04	-	-	-	-	-	-	-	-	1.4
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater															
				Laboratory:	Envirolab	Envirolab															
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	W3D	W3D															
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring															
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri															
Ecosystems				Section:	Section 3	Section 3															
				Aquifer:	Deep	Deep															
				SWL (m AHD):	5.02	5.01	4.92	4.94	4.86	4.45	4.57	4.52	4.37	4.4	4.72	4.69	-	-	-	-	-
				Sample Description:	Slightly turbid, odourless	Clear, some odour	Light brown, some odour	Clear, no odour	Clear, no odour	Clear, slight sulphidic odour	-	Clear, no odour	Clear	Clear	Clear, no odour	Clear, no odour			and unable to	Well damaged and unable to be sampled	and unable to

LOR

Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	4.16	3.75	3.94	4.53	4.81	4.21	4.15	3.96	4.14	4.54	4.53	3.93	-	-	-	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.3	0.5	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.1	-	-	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	-	-	-	-	-
Total Cyanide					mg/L	0.004	< 0.004	0.036	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	1.2	1.5	0.9	1	0.81	1	1	1.1	0.99	2.3	0.97	1.2	-	-	-	-	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	1.3	0.91	1	0.74	0.87	0.94	0.94	0.89	0.69	0.72	1.1	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	[
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Γ
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Г
				Sample ID:	W3D	W3D	W3D	W4D									
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	,
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Γ
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Γ
				SWL (m AHD):	-	-	-	5.539	5.459	5.439	5.459	5.369	5.939	-	-	-	
				Sample Description:	Ŭ Ŭ	Well damaged and unable to be sampled	, v	Clear	Clear	Clear	Clear to pale yellow, no odour	Clear, no odour	Clear, no odour	Clear	Clear	-	

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	-	-	-	6.02	5.7	5.7	5.4	5.36	4.69	-	5.18	<u>9.9</u>	6.08	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	1.48	<u>1.7</u>	1.3	0.41	<u>1.6</u>	1.1	-	0.2	-	-	-
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	-	-	-	< 0.004	-	-	-	-	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	5	0.2	mg/L	0.01	-	-	-	0.794	0.48	0.19	0.27	0.5	0.35	-	-	-	-	-
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

er	Groundwater	Groundwater
	Envirolab	Envirolab
	Apr-16	Jul-16
	W4D	W4D
∋r I	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
i	Hydro Kurri Kurri	Hydro Kurri Kurri
	Section 3	Section 3
	Deep	Deep
	-	-
	Clear	Destroyed

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4				
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	5.396	5.321	5.301	5.361	5.321	5.311	5.451	5.521	5.301	5.471	5.381	5.311	5.341	5.191	5.171	5.141	4.981
				Sample Description:	Clear	Clear	Clear	Clear, no odour	Light brown, slightly turbid, no odour	Clear, no odour	Dry	Clear	-	Clear	Clear	Slightly turbid	Colourless	Colourless	Clear, colourless	Colourless	Faint yellow with particles

Analyte grouping/Analyte

LOR

Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.02	6.32	6.1	6.11	6.11	5.34	-	6.32	8.37	6.4	5.7	6.7	6.37	6.21	6.94	6.93	6.13
Soluble Fluoride		1	2	1.5	mg/L	0.1	20	0.51	0.59	0.65	0.53	0.44	-	0.4	0.5	<u><10</u>	0.5	0.5	0.5	0.4	0.6	0.5	0.4
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	<0.004	-	< 0.004	<0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	<0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	5	ц	0.2	mg/L	0.01	0.323	0.04	0.02	0.02	0.05	0.16	-	0.99	0.54	0.39	0.23	0.14	0.05	0.01	0.05	0.02	0.2
Aluminium (dissolved)	0.035	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater													
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab													
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	W5D	W5D	W5D	W5D													
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring													
Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri													
Leosystems				Section:	Section 4	Section 4	Section 4	Section 4													
				Aquifer:	Deep	Deep	Deep	Deep													
				SWL (m AHD):	4.831	5.271	4.721	4.751	4.741	4.471	4.381	4.351	5.181	4.281	4.581	4.511	4.541	4.881	4.901	4.911	5.08100
				Sample Description:	Clear with few particles	Clear some particles, no odour	Clear, slightly brown	Clear, no odour	-	Clear, no odour	Clear, no odour	Clear, no odour	Clear, no odour	Clear, sulphidic odour	Clear, no odour	Clear, no odour	Clear, colourless, slight odour	Slightly turbid, grey/brown, no odour	Clear to slightly turbid, colourless, no odour	Turbid, grey/brown, no odour	Colourless to very pale yellow brown, no odour

Analyte grouping/Analyte

Units LOR

						<u> </u>																	
pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.5	6.1	<u>10.2</u>	6.72	6.18	6.23	6.35	6.16	6.24	6.76	6.46	6.05	5.95	6.21	6.31	6	6.36
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.5	0.4	0.6	0.6	0.3	0.4	0.4	0.1	0.4	0.3	0.5	0.3	0.4	0.7	0.3	0.5	0.8
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004
Total Cyanide					mg/L	0.004	< 0.004	0.004	0.01	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004
Aluminium (total)	0.055	5	6	0.2	mg/L	0.01	0.03	0.16	0.09	0.04	0.44	0.04	0.24	0.28	0.04	0.52	0.24	0.09	0.33	0.33	0.27	0.38	0.28
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	0.04	< 0.01	< 0.01	<0.01	0.01	<0.01	0.02	0.04

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17
				Sample ID:	W5D	W5D	W5D	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	5.27100	5.69100	5.57100	4.993	4.863	4.793	4.903	4.963	5.923	5.083	5.123	5.153	5.123	5.993	5.053	4.973	4.793
				Sample Description:	Clear to slightly turbid, colourless, no odour	Clear to slightly turbid, colourless, no odour	Clear, colourless, no odour	Clear	Clear	Clear	Pale yellow/brown, slightly turbid, no odour	Light grey, slightly turbid, no odour	Light brown, no odour	Brown/black	Clear, sulphidic odour	_	Turbid, black	Trubid, black	Turbid	Faint yellow	Brown

Analyte grouping/Analyte

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.34	7.08	7.54	3.26	6.54	4.01	3.94	3.54	3.34	6.61	5.81	8.09	6.75	6.37	5.35	4.67	4.59
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.4	0.4	0.4	0.43	<u>6.2</u>	<u>1.9</u>	1.4	0.74	0.49	<u>8.1</u>	1.4	1.4	<u>15</u>	<u>8.6</u>	1.3	0.8	0.5
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	< 0.004	<0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	<0.004
Total Cyanide					mg/L	0.004	< 0.004	0.007	0.006	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.42	0.04	0.05	5.771	3	4.6	4.5	6.7	<u>28</u>	3.4	2.4	<u>9.1</u>	<u>24</u>	3.2	3.7	5.9	<u>23</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater													
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab													
				Sample date:	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21
				Sample ID:	N2	N2	N2	N2													
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring													
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri													
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4													
				Aquifer:	Deep	Deep	Deep	Deep													
				SWL (m AHD):	4.783	5.703	4.523	4.323	4.363	4.223	4.243	4.163	3.933	3.813	3.733	3.623	3.753	4.023	3.973	3.983	4.423
				Sample Description:	Brown	Milky	Faint yellow	-	Light brown, no odour	Clear, slightly brown	-	Clear, no odour	Clear to grey, no odour	Clear, no odour. Purged dry	Clear, no odour	Clear to turbid, slightly brown	Clear, sulphidic odour	Clear to slightly turbid, no odour	Clear, no odour	Very turbid, yellow/brown/ grey, no odour	Very turbid, pale brown, no odour

Analyte grouping/Analyte

LOR

Units

						<u> </u>																	
pH (field)	6.5-8ª			6.5-8.5	pH units	-	5.37	3.98	4.31	3.63	4.41	2.8	4.18	4.34	4.51	4.05	3.85	4.09	4.54	3.88	3.55	3.94	4.22
Soluble Fluoride		1	2	1.5	mg/L	0.1	1	<u>2.1</u>	2.4	<u>2.1</u>	1.5	1.3	1.4	1.1	1.1	1	0.4	0.9	0.7	0.8	0.8	0.8	1.1
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	0.054	0.013	0.01	0.005	< 0.004	0.005	0.007	<0.004	0.051	0.009	< 0.004	< 0.004	0.005	<0.004
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	<u>10</u>	<u>23</u>	5.7	5.2	6.9	4.7	5	4.2	6.2	8.4	7.7	8.5	6.7	4.5	3.1	<u>12</u>	<u>12</u>
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	3.1	3.8	3.9	4.2	3.2	3.2	3.5	2.6	2.6	3.1	2.8	2.4	2.1

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
				Sample ID:	N2	N2	N2	N2	N2	N2
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	4.423	4.473	4.67300	4.92300	5.24300	5.19300
				Sample Description:	Turbid, pale yellow brown, no odour	Turbid, pale grey, no odour	Pale yellow brown, no odour	Clear to slightly turbid, yellow, no odour	Slightly turbid, pale yellow brown, no odour	Pale yellow

LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	3.98	3.68	5.35	6.97	6.68	6.03
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.9	0.9	0.7	3.7	4.3	3
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	< 0.004	< 0.004	< 0.004	0.15	0.14	0.027
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	6.5	4.4	4.1	1.9	1.5	2.6
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	3.4	3	3	1.1	1.1	1.9

Units

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2	G2
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	6.632	6.502	6.552	6.552	6.492	6.482	6.622	6.682	6.712	6.712	6.552	6.552	6.502	6.352	6.342	6.342	6.142
				Sample Description:	Clear	Clear	Clear	Pale brown, slightly turbid, no odour	Light brown/orange, slight odour, slightly turbid	Light brown, no odour	Clear, slightly cloudy	Turbid, brown	_	Light brown, turbid	Clear	Slightly turbid	Faint yellow				

LOR

Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.04	6.09	6.09	6.1	6.03	5.7	6.01	6.04	7.87	6.11	6.09	6.33	6.22	5.71	6.08	6.16	6.19
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.28	0.28	0.25	0.28	0.28	0.28	0.3	0.3	0.3	<u><10</u>	0.3	0.3	0.3	0.4	0.2	0.3	0.4
Free Cyanide	0.007			0.8	mg/L	0.004	-	-	-	-	-	< 0.004	< 0.004	<0.02	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	<0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.115	0.1	0.04	1.2	2.1	2.9	2	4.1	1.8	<u>9.6</u>	1.2	1.6	1.2	1.2	6.6	1.8	1.7
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value $% \left({{{\rm{CON}}}} \right) = {{\rm{CON}}} \left({{{\rm{CON}}$

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater										
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab										
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22
				Sample ID:	G2	G2	G2	G2	G2	G2	G2										
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring										
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri										
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5										
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep										
				SWL (m AHD):	6.042	6.032	5.992	5.962	6.022	6.612	5.702	5.622	5.452	5.642	5.852	6.802	5.822	6.132	6.132	6.052	6.27200
				Sample Description:	Faint yellow	Clear, no odour	Light brown, no odour	Clear, no odour	Slightly turbid, pale yellow, no odour	Slightly turbid, light brown, no odour	Slightly turbid, pale grey	Clear to slightly turbid, colourless to pale grey, no	Slightly turbid, colourless, no odour	Turbid, grey, strong sulphidic odour	Dark grey, sulphidic odour						

LOR

Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.05	6.05	6.42	6.53	6.16	6.35	6.46	6.13	6.26	6.37	6.12	6.26	6	6.12	6.36	6.24	6.52
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.3	0.3	0.4	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.4	0.3	0.3	0.5	0.3
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	< 0.004	0.005	0.006	<0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	5	-		mg/L	0.01	0.5	2.4	0.57	1.5	1	0.68	1.1	1.3	0.41	1	1.9	1.7	0.62	0.73	0.62	0.1	0.31
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	<0.01	< 0.01	0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	0.02	0.01	<0.01	<0.01	0.03	< 0.01

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-22	Sep-22	Dec-22	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17
				Sample ID:	G2	G2	G2	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	6.53200	6.69200	6.76200	5.129	5.109	5.189	5.199	5.119	5.089	5.299	5.399	5.389	5.369	5.159	5.169	5.129	4.959
				Sample Description:	Clear and colourless with some black floccules, no	Clear, colourless, slight sulphidic odour	Clear, colourless, no odour	Clear	Clear	Clear	Pale brown, slightly turbid, no odour	Clear, no odour	Clear, no odour	Clear	Clear	-	Clear	Clear	Colourless, clear	Faint yellow	Clear

Analyte grouping/Analyte		

Units

LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.59	6.53	6.78	6.49	6.11	5.75	5.83	5.54	8.22	5.84	5.81	5.5	5.79	5.58	6.18	5.96	5.88
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.4	0.3	0.3	1.19	0.25	0.21	0.4	0.19	0.3	0.1	0.1	-	<u><10</u>	0.2	0.1	0.1	1.4
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	<0.004	-	< 0.004	<0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004
Total Cyanide					mg/L	0.004	0.018	< 0.004	< 0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.31	0.12	0.16	1.087	0.06	0.04	1.2	0.5	0.12	0.19	0.74	-	0.08	0.08	0.17	-	1.1
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	< 0.01	0.01	< 0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value $% \left({{\left({{{\left({{{\left({{\left({{\left({{{\left({{{c}}}} \right)}} \right.} \right.} \right)} \left({{{c}}} \right)} \right)} \right)} \right)} \right)} \right)} = 0}$

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater									
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab									
				Sample date:	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21
				Sample ID:	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D									
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring									
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri									
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5									
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep									
				SWL (m AHD):	4.949	4.949	4.749	4.589	4.609	4.509	4.559	4.569	4.289	4.269	4.169	3.959	4.089	4.379	4.339	4.319	4.679
				Sample Description:	Clear, colourless	Light yellow	Clear, colourless	Colourless with particles	Turbid, light brown, no odour	Clear, slightly brown	Clear, no odour	Slightly yellow	Clear, slight odour	Turbid, slightly brown, no odour	Clear, slight sulphidic odour	Clear, no odour	Clear, no odour	-	Turbid, yellow/brown, no odour	Very turbid, pale brown/grey, no odour	Very turbid, pale brown, no odour

LOR

Units

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.19	5.9	5.9	5.65	5.7	10.47	6.65	5.81	5.71	5.87	5.56	5.75	6.12	5.75	5.69	5.49	6.16
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.3	0.1	0.2	0.3	<0.1	0.2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004
Total Cyanide					mg/L	0.004	-	-	-	0.01	0.005	0.006	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	0.028
Aluminium (total)	0.055	5	5		mg/L	0.01	0.09	<u>25</u>	2.7	0.47	<u>19</u>	0.96	2.4	3.6	0.98	3.6	1.9	1.6	4.4	3.6	3.2	7.1	8.4
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	-	-	-	-	<0.01	<0.01	0.02	0.02	0.02	0.02	0.02	0.04	0.03	0.04	0.02	0.98	0.05

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
				Sample ID:	W6D	W6D	W6D	W6D	W6D	W6D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	rrigation Stock Watering Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep
			SWL (m AHD):	4.699	4.659	5.01900	5.22900	5.38900	5.36900	
				Sample Description:	Turbid, pale yellow brown, slight odour	Turbid, pale brown, no odour	Pale yellow- grey brown, no odour	Very turbid, pale yellow grey, no odour	Very turbid, pale grey brown, no odour	Very turbid, pale yellow brown grey, no odour

LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	5.65	5.78	5.55	5.92	5.9	6.24
Soluble Fluoride		1	2	1.5	mg/L	0.1	<0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Free Cyanide	0.007			0.8	mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	5.4	4.1	1.5	2.4	3.1	1.4
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.05	0.04	< 0.01	0.05	0.02	0.03

Units

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value $% \left({{\left({{{\left({{{\left({{\left({{\left({{{\left({{{c}}}} \right)}} \right.} \right.} \right)} \left({{{c}}} \right)} \right)} \right)} \right)} \right)} \right)} = 0}$

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table xii: Results Deep Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20
				Sample ID:	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	4.95	4.69	4.93	4.73	4.69	4.6	4.29	4.29	3.99	4.41	4.19	4.32	3.82	3.72	3.76	3.42	3.74
				Sample Description:	Clear	-	Colourless, clear	Colourless	Colourless with suspended solids	Turbid	Light brown with particles		Colourless with few particles	Clear, some particles, no odour	Clear	Clear, very slight sulphidic odour	Clear, slight sulphidic odour	Clear, sulphidic odour	Clear, black particulates, very slight sulphidic odour	Clear, no odour	Clear, very strong sulphidic odour

Units Analyte grouping/Analyte

LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.36	6.77	6.72	5.88	5.73	5.96	6.15	5.77	5.8	6.23	7.63	5.64	5.99	6	6.13	5.7	6.38
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u><10</u>	0.4	<0.1	0.3	0.6	0.3	0.3	0.3	0.2	0.4	1.3	0.2	<0.1	0.2	0.2	0.1	0.2
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	0.006	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	< 0.004	<0.004	0.01	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	1.8	<u>24</u>	0.14	0.17	6.2	3.6	4.9	0.26	0.19	0.9	0.04	0.21	0.29	0.12	0.29	0.41	0.11
Aluminium (dissolved)		5	5	0.2	mg/L	0.01	-	-	-	-	-	-	-	-	-	< 0.01	<0.01	0.03	0.03	< 0.01	0.01	0.02	<0.01

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table xii: Results Deep Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17
				Sample ID:	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	F6	F6	F6	F6	F6	F6
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	3.87	4.21	4.03	5.46	4.71	4.44	4.91	5.15000	5.02000	5.38000	5.06000	2.84	2.68	2.75	2.62	2.46	2.53
				Sample Description:	Clear, sulphidic odour, black particulate	Clear, no odour	Clear, no odour	Clear, colourless, no odour	Clear, colourless, slight sulphidic odour, slight	Clear with flocculants, colourless, slight odour	Clear, colourless, sulphidic odour, black flocculants	Colourless with black floccules, sulphidic odour	Clear, colourless, no odour	Slightly turbid, colourless to very pale grey brown,	Colourless with grey floccules	-	Clear	-	Colourless	Colourless with particles	Colourless

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8ª			6.5-8.5	pH units	-	5.86	5.85	5.61	5.26	5.5	5.59	5.39	5.49	5.92	6.19	6.1	6.99	6.67	7.05	6.54	6.29	7.08
Soluble Fluoride		1	2	1.5	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.3	0.1	0.3	0.2	0.2	<u><10</u>	0.6	0.5	0.5	0.5	0.5
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004
Total Cyanide					mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	0.08	0.07	0.06	0.09	0.15	0.18	0.06	0.26	0.25	0.82	0.45	0.57	0.7	0.15	0.12	0.33	0.08
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.48	0.08	-	-	-	-	-	-

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table xii: Results Deep Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater								
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab								
				Sample date:	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21
				Sample ID:	F6	F6	F6	F6	F6	F6	F6	F6	F6								
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring								
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri								
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background								
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep								
				SWL (m AHD):	2.28	1.9	1.78	1.93	1.82	1.77	1.52	1.38	1.25	1.07	1.03	1.16	1.52	1.32	1.51	2.25	2.12
				Sample Description:	Colourless with particles	Light grey with particles	Clear, colourless	Clear, no odour	Clear, no odour	Clear	Clear, slight sulphidic odour	Clear, sulphidic odour	Clear, black particulate, sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour	Clear, no odour	Clear, no odour	Clear, colourless, strong odour	Clear to slightly turbid, colourless, slight odour,	Clear to slightly turbid, colourless, no odour

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8ª			6.5-8.5	pH units	-	6.75	6.68	6.88	6.67	7.85	6.66	6.73	6.57	6.62	5.61	6.75	6.72	6.83	7.05	6.49	6.51	6.84
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.5	0.6	0.9	0.5	1	0.6	0.4	0.5	0.5	0.4	0.6	0.5	0.4	0.6	0.5	0.6	0.4
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004
Total Cyanide					mg/L	0.004	-	-	0.024	< 0.004	0.032	0.005	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	0.008	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	F	F	0.2	mg/L	0.01	0.11	7.6	0.16	0.06	0.03	0.05	0.06	0.05	0.12	0.07	0.03	0.04	0.27	0.03	0.05	0.08	0.03
Aluminium (dissolved)	0.055	3	3	0.2	mg/L	0.01	-	-	-	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
																							'

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
				Sample ID:	F6	F6	F6	F6	F6
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Background	Background	Background	Background	Background
				Aquifer:	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	2.06	1.85000	2.89000	3.32000	2.93000
				Sample Description:	Clear, colourless, sulphidic odour	Colourless, strong sulphidic odour	Clear, colourless, slight sulphidic odour	Clear and colourless with brown floccules, no odour	Clear, colourless, no odour

Units LOR

pH (field)	6.5-8ª			6.5-8.5	pH units	-	7.08	7.67	7.19	7.01	7.22
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.6	0.5	0.4	0.4	0.5
Free Cyanide	0.007			0.8	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	0.004
Aluminium (total)	0.055	5	5	0.2	mg/L	0.01	< 0.01	0.48	0.03	0.01	0.07
Aluminium (dissolved)	0.055	5	5	0.2	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Blank Cell indicates no criterion available

values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table xiii: Results QA/QC

Duplicate Type:	Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplciate		Primary	Intra- laboratory		Primary	Intra- laboratory		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Prima
Sample Type:	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundv
Sample date:	Feb-15	Feb-15	RPD%	Feb-15	Feb-15	RPD%	Feb-15	Feb-15	RPD%	Jun-15	Jun-15	RPD%	Jun-15	Jun-15	RPD%	Jun-15	Jun-15	RPD%	Sep-15	Sep-15	RPD%	Sep-
Sample ID:	G2	QA1	N D 76	G2	QA2	KI D70	E11	QA3	KI D 76	PUMP	QA1 (QA100)	NI D 76	W7M	QA2 (QA101)	KI D 76	W7M	QA3 (QC200)	KI D70	PUMP	QA100	IXI D 70	W71
Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarte Ground Monito
Sampling Method:	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	0.28	0.28	0.0	0.28	0.4	35.3	230	240	4.3	200	210	4.9	810	850	4.8	810	895	10.0	680	670	1.5	660
Free Cyanide	mg/L	0.004	<0.004	<0.004	NC	<0.004	< 0.004	NC	0.005	0.005	0.0	<0.08	<0.08	NC	<2	< 4	NC	<2	<0.040	NC	0.029	0.027	7.1	<0.04
Total Cyanide	mg/L	0.004	<0.004	<0.004	NC	< 0.004	< 0.004	NC	7.7	13	51.2	8.7	9.3	6.7	170	180	5.7	170	107	45.5	110	100	9.5	100
Aluminium (total)	mg/L	0.01	2.9	2.8	3.5	2.9	1.62	56.6	5	5.2	3.9	120	120	0.0	32	3.4	161.6	32	3.42	161.4	610	6,200	164.2	8700
Aluminium (dissolved)	mg/L	0.01	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-
																					-			,

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Duplicate Type:	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- Iboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate
Sample Type:	Groundwater		Groundwater	r Groundwate																		
Sample date:	Sep-15	RPD%	Sep-15	Sep-15	RPD%	Dec-15	Dec-15	RPD%	Dec-15	Dec-15	RPD%	Apr-16	Apr-16	RPD%	Apr-16	Apr-16	RPD%	Apr-16	Apr-16	RPD%	Jul-16	Jul-16
Sample ID:	QA101	RFD 76	W7M	QA200	RFD /0	W2D	QA101	RFD 76	W2D	QA201	RFD /6	G2	QA101	KFD 76	G2	QA201	KFD /6	E11	QA102	RFD 76	G2	QC101
Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwate Monitoring																		
Sampling Method:	Low-flow		Low-flow	Low-flow																		

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	13	192.3	660	648	1.8	1300	1200	8.0	1300	1300	0.0	0.2	0.2	0.0	0.2	0.3	40.0	120	120	0.0	0.3	0.3
Free Cyanide	mg/L	0.004	<0.004	NC	<0.04	<0.04	NC	0.88	0.67	27.1	0.88	0.7	22.8	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC	<0.004	< 0.004
Total Cyanide	mg/L	0.004	1.9	192.5	100	56.9	54.9	290	300	3.4	290	290	0.0	0.046	0.038	19.0	0.046	< 0.004	NC	15	15	0.0	< 0.004	< 0.004
Aluminium (total)	mg/L	0.01	2100	122.2	8700	2270	117.2	3.5	3	15.4	3.5	2.8	22.2	9.6	8.9	7.6	9.6	10	4.1	7.6	9.4	21.2	1.2	1.2
Aluminium (dissolved)	mg/L	0.01	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table xiii: Results QA/QC

Duplicate Type:		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate	
Sample Type:		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	1
Sample date:	RPD%	Jul-16	Jul-16	RPD%	Jul-16	Jul-16	RPD%	Oct-16	Oct-16	RPD%	Oct-16	Oct-16	RPD%	Oct-16	Oct-16	RPD%	Dec-16	Dec-16	RPD%	Dec-16	Dec-16	RPD%
Sample ID:	KI D 78	G2	QC102	KI D 76	W7M	QC100	KI D76	W5D	QA100	KI D 76	W5D	QA200	KI D 76	A7	QA101	KI D76	N2	2DUP	KI D 76	F5	5DUP	
Project Name:		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	l
Sampling Method:		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	1

Analyte grouping/Analyt Units LOR

Soluble Fluoride	mg/L	0.1	0.0	0.3	0.2	40.0	870	900	3.4	0.5	0.4	22.2	0.5	0.5	0.0	390	390	0.0	0.8	0.7	13.3	<0.1	<0.1	NC
Free Cyanide	mg/L	0.004	NC	<0.004	< 0.004	NC	0.072	0.084	15.4	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	0.03	0.03	0.0	<0.004	<0.004	NC	<0.004	< 0.004	NC
Total Cyanide	mg/L	0.004	NC	<0.004	< 0.004	NC	250	260	3.9	0.005	0.005	0.0	0.005	< 0.003	NC	76	94	21.2	0.12	0.098	20.2	< 0.004	< 0.004	NC
Aluminium (total)	mg/L	0.01	0.0	1.2	0.79	41.2	0.08	0.08	0.0	0.14	0.1	7.4	0.14	0.14	0.0	2.1	2.2	4.7	5.9	5.6	5.2	2.3	2.2	4.4
Aluminium (dissolved)	mg/L	0.01	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table xiii: Results QA/QC

Duplicate Type:	Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primar
Sample Type:	Groundwater	Groundwater		Groundwa																		
Sample date:	Mar-17	Mar-17	RPD%	Mar-17	Mar-17	RPD%	Mar-17	Mar-17	RPD%	Jun-17	Jun-17	RPD%	Jun-17	Jun-17	RPD%	Jun-17	Jun-17	RPD%	Sep-17	Sep-17	RPD%	Sep-1
Sample ID:	E5D	DUP1	RFD /0	E5D	TRIP1	RFD 76	W6D	DUP2	RFD 76	N8	DUP1	RFD 76	G2	TRIP1	RFD 76	G2	DUP2	RFD 76	G2	DUP1	KFD /0	G2
Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarte Groundw Monitor																		
Sampling Method:	Low-flow	Low-flow		Low-1																		

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	22	19	14.6	22	21.9	0.5	1.4	0.5	94.7	0.4	0.4	0.0	0.2	0.3	40.0	0.2	0.3	40.0	0.3	0.3	0.0	0.3
Free Cyanide	mg/L	0.004	<0.004	<0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC	< 0.004	<0.004	NC	<0.004	< 0.004	NC	<0.004
Total Cyanide	mg/L	0.004	5.5	2.3	82.1	5.5	3.04	57.6	0.043	0.043	0.0	<0.004	0.2	NC	<0.004	<0.004	NC	< 0.004	0.004	NC	<0.004	< 0.004	NC	<0.004
Aluminium (total)	mg/L	0.01	64	26	84.4	64	13.1	132.0	1.1	0.8	31.6	3.9	4.9	22.7	6.6	1.04	145.5	6.6	9.4	35.0	1.8	4.9	92.5	1.8
Aluminium (dissolved)	mg/L	0.01	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Duplicate Type:	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intr labora Duplie
Sample Type:	Groundwater		Groundwater	Ground																		
Sample date:	Sep-17	RPD%	Sep-17	Sep-17	RPD%	Dec-17	Dec-17	RPD%	Dec-17	Dec-17	RPD%	Dec-17	Dec-17	RPD%	Mar-18	Mar-18	RPD%	Mar-18	Mar-18	RPD%	Mar-18	Mai
Sample ID:	TRIP1	RFD 76	N8	DUP2	RFD /0	W2D	DUP1	RFD 76	W2D	TRIP1	RFD /6	G2	DUP2	RFD 76	F6	DUP1	RFD /0	G5	TRIP1	RFD /6	G5	DU
Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring																			
Sampling Method:	Low-flow		Low-flow	Low																		

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	0.4	28.6	0.4	0.4	0.0	1200	1200	0.0	1200	1430	17.5	0.4	0.4	0.0	0.9	1	10.5	0.2	0.2	0.0	0.2	0.2
Free Cyanide	mg/L	0.004	<0.004	NC	< 0.004	< 0.004	NC	0.006	0.012	66.7	0.006	<1	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC	<0.004	< 0.004
Total Cyanide	mg/L	0.004	<0.004	NC	0.41	0.027	175.3	200	230	14.0	200	268	29.1	< 0.004	<0.004	NC	0.024	0.023	4.3	<0.004	<0.004	NC	< 0.004	< 0.004
Aluminium (total)	mg/L	0.01	0.82	74.8	25	26.0	3.9	0.28	0.25	11.3	0.28	<100	NC	1.7	1.4	19.4	0.16	0.13	20.7	0.19	0.17	11.1	0.19	0.15
Aluminium (dissolved)	mg/L	0.01	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-
								•																

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table xiii: Results QA/QC

	Duplicate Type:		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate	
	Sample Type:	Π	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater										
	Sample date:	RPD%	Jun-18	Jun-18	RPD%	Jun-18	Jun-18	RPD%	Jun-18	Jun-18	RPD%	Sep-18	Sep-18	RPD%	Sep-18	Sep-18	RPD%	Sep-18	Sep-18	RPD%	Dec-18	Dec-18	RPD%
	Sample ID:		E5D	QA101	ICI D 76	W1D	QA102	ICI D 76	W1D	QA103	ICI D 76	W3D	QA101	ICI D 76	G2	QA102	KI D 76	G2	QA103	KI D 76	E5D	QA101	KI D 70
	Project Name:		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	
Γ	Sampling Method:	Π	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow										

Analyte grouping/Analyt Units LOR

Soluble Fluoride	mg/L	0.1	0.0	14	14	0.0	5.1	5.9	14.5	5.1	5.1	0.0	0.1	0.1	0.0	0.4	0.4	0.0	0.4	0.4	0.0	11	11	0.0
Free Cyanide	mg/L	0.004	NC	<0.004	< 0.004	NC	<0.004	<0.005	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC
Total Cyanide	mg/L	0.004	NC	1.6	1.7	6.1	0.69	0.532	25.9	0.7	0.7	4.3	< 0.004	< 0.004	NC	0.006	0.006	0.0	0.006	0.01	50.0	0.81	0.82	1.2
Aluminium (total)	mg/L	0.01	23.5	4.1	3.8	7.6	0.88	0.58	41.1	0.88	0.93	5.5	0.9	1.0	5.4	0.57	0.49	15.1	0.57	0.37	42.6	0.72	0.6	18.2
Aluminium (dissolved)	mg/L	0.01	NC	<0.01	<0.01	NC	0.14	0.1	33.3	0.1	0.1	0.0	0.9	1.0	9.4	< 0.01	<0.01	NC	<0.01	< 0.01	NC	0.03	0.02	40.0
																								T

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table xiii: Results QA/QC

Duplicate Type:	Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Prima
Sample Type:	Groundwater	Groundwater		Ground																		
Sample date:	Dec-18	Dec-18	RPD%	Dec-18	Dec-18	RPD%	Mar-19	Mar-19	RPD%	Mar-19	Mar-19	RPD%	Mar-19	Mar-19	RPD%	Jun-19	Jun-19	RPD%	Jun-19	Jun-19	RPD%	Jun-
Sample ID:	W1D	QA103	RFD /6	W1D	QA102	RFD /0	W5D	QA101	RFD 76	G5	QA103	RFD 76	W5D	QA102	KFD /6	G2	QA101	RFD /0	F6	QA102	KFD /0	Fé
Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quart Ground Monite																		
Sampling Method:	Low-flow	Low-flow		Low																		

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	4.8	5.7	17.1	4.8	4.8	0.0	0.3	0.3	0.0	<0.1	0.1	NC	0.3	0.5	50.0	0.3	0.3	0.0	0.5	0.5	0.0	0.5
Free Cyanide	mg/L	0.004	<0.004	< 0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	<0.004
Total Cyanide	mg/L	0.004	0.67	0.171	118.7	0.67	0.45	39.3	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	<0.004
Aluminium (total)	mg/L	0.01	0.43	0.76	55.5	0.43	0.51	17.0	0.44	0.38	14.6	0.3	0.3	12.9	0.44	0.36	20.0	0.7	0.7	0.0	0.05	0.04	22.2	0.05
Aluminium (dissolved)	mg/L	0.01	0.25	<0.01	NC	0.25	0.21	17.4	<0.01	< 0.01	NC	30.0	30.0	0.0	< 0.01	<0.01	NC	<0.01	< 0.01	NC	<0.01	<0.01	NC	< 0.01

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Duplicate Type:	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate
Sample Type:	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwate
Sample date:	Jun-19	RPD%	Sep-19	Sep-19	RPD%	Sep-19	Sep-19	RPD%	Sep-19	Sep-19	RPD%	Dec-19	Dec-19	RPD%	Dec-19	Dec-19	RPD%	Dec-19	Dec-19	RPD%	Mar-20	Mar-20
Sample ID:	QA103	RFD 76	F6	QA101	KFD /0	G5	QA102	KFD 76	G5	QA103	KFD /6	G2	QA101	RFD /0	G5	QA102	KFD /6	G5	QA103	KFD /6	F6	D01
Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Groundwater I	Groundwater N		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring									
Sampling Method:	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	1	Low-flow	Low-flow	1	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	0.5	0.0	0.5	0.5	0.0	0.2	0.3	40.0	0.2	0.3	40.0	0.3	<0.1	NC	0.1	<0.1	NC	0.1	0.1	0.0	0.6	0.6
Free Cyanide	mg/L	0.004	<0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC	< 0.004	<0.004
Total Cyanide	mg/L	0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	<0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	<0.004
Aluminium (total)	mg/L	0.01	0.08	46.2	0.12	0.18	40.0	0.29	0.32	9.8	0.29	0.48	49.4	1.3	1.2	8.0	0.41	0.37	10.3	0.41	0.29	34.3	0.03	0.02
Aluminium (dissolved)	mg/L	0.01	< 0.01	NC	<0.01	< 0.01	NC	0.01	<0.01	NC	0.01	< 0.01	NC	< 0.01	< 0.01	NC	0.02	0.02	0.0	0.02	0.02	0	< 0.01	< 0.01

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table xiii: Results QA/QC

Duplicate Type:		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate	
Sample Type:		Groundwater	Groundwater																			
Sample date:	RPD%	Mar-20	Mar-20	RPD%	Mar-20	Mar-20	RPD%	Jun-20	Jun-20	RPD%	Jun-20	Jun-20	RPD%	Jun-20	Jun-20	RPD%	Sep-20	Sep-20	RPD%	Sep-20	Sep-20	
Sample ID:	KFD //	G5	D02	RFD 76	G5	T01	RFD 76	G2	D01_170620	RFD 76	F6	D02_180620	RFD /0	F6	T01_180620	RFD /o	G2	DUP1	RFD 70	G5	DUP2	
Project Name:	T	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring																
Sampling Method:	П	Low-flow	Low-flow		Low-flow	Low-flow																

Analyte grouping/Analyl Units LOR

Soluble Fluoride	mg/L	0.1	0.0	0.2	0.3	40.0	0.2	0.3	40.0	0.3	0.3	0.0	0.5	0.5	0.0	0.5	0.6	18.2	0.2	0.3	40.0	<0.1	0.1	NC
Free Cyanide	mg/L	0.004	NC	<0.004	< 0.04	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	< 0.004	<0.004	NC	< 0.004	<0.004	NC	<0.004	< 0.004	NC
Total Cyanide	mg/L	0.004	NC	<0.004	< 0.04	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	<0.004	NC	< 0.004	<0.008	NC
Aluminium (total)	mg/L	0.01	40.0	0.11	0.08	31.6	0.11	0.12	8.7	1	1	0.0	0.04	0.05	22.2	0.04	0.06	40.0	1.9	1.7	11.1	0.07	0.08	13.3
Aluminium (dissolved)	mg/L	0.01	NC	<0.01	<0.01	NC	< 0.01	< 0.01	NC	<0.01	< 0.01	NC	<0.01	<0.01	NC	< 0.01	<0.01	NC	<0.01	< 0.01	NC	0.03	0.03	0.0

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Duplicate Type:	Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		P
Sample Type:	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Gr
Sample date:	Sep-20	Sep-20	RPD%	Dec-20	Dec-20	RPD%	Dec-20	Dec-20	RPD%	Dec-20	Dec-20	RPD%	Mar-21	Mar-21	RPD%	Mar-21	Mar-21	RPD%	Mar-21	Mar-21	RPD%	
Sample ID:	G5	TRIP1	RPD %	W6D	D01_202012	RPD %	W6D	T01_20201208	RPD%	F6	D02_091220	RPD %	W2D	D01_20210317	RPD %	F5	D02_202103	RPD %	W2D	T01_20210317	RPD %	
Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Gi
Sampling Method:	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	0.1	NC	0.6	0.7	15.4	1000	920	8.3	0.2	0.2	0.0	1000	930	7.3	0.3
Free Cyanide	mg/L	0.004	<0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	0.005	0.005	0.0	< 0.004	<0.004	NC	0.005	0.006	18.2	<0.004
Total Cyanide	mg/L	0.004	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	0.008	0.007	13.3	120	120	0.0	< 0.004	<0.004	NC	120	100	18.2	<0.004
Aluminium (total)	mg/L	0.01	0.07	0.07	0.0	3.2	2.6	20.7	3.2	1.46	74.7	0.03	0.03	0.0	1.6	1.4	13.3	2.6	2.6	0.0	1.6	1.1	37.0	0.73
Aluminium (dissolved)	mg/L	0.01	0.03	0.02	40.0	0.02	0.02	0.0	0.02	0.01	66.7	< 0.01	< 0.01	NC	0.73	0.69	5.6	2.2	2.2	0.0	0.73	0.72	1.4	<0.01

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Duplicate Type:	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate
Sample Type:	Groundwater		Groundwater	Groundwater																		
Sample date:	Jun-21	RPD%	Jun-21	Jun-21	RPD%	Jun-21	Jun-21	RPD%	Sep-21	Sep-21	RPD%	Sep-21	Sep-21	RPD%	Sep-21	Sep-21	RPD%	Dec-21	Dec-21	RPD%	Dec-21	Dec-21
Sample ID:	D01_202106	RFD /0	F6	D02_20210616	RFD 76	G2	101_2021061	KFD /0	E5D	D01_20210920	RFD 70	W5D	D02_202109	RFD 70	E5D	T01_20210920	RFD 76	W5D	D01_202112	KFD 76	G5	D02_20211202
Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring																		
Sampling Method:	Low-flow		Low-flow	Low-flow																		

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	0.3	0.0	0.3	0.6	66.7	0.3	0.3	0.0	7.6	7.7	1.3	0.3	0.3	0.0	7.6	< 0.0001	NC	0.5	0.5	0.0	0.3	0.3
Free Cyanide	mg/L	0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC	< 0.004	<0.00004	NC	< 0.004	<0.004	NC	<0.004	< 0.004
Total Cyanide	mg/L	0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	0.17	0.2	16.2	< 0.004	<0.004	NC	0.17	0.00126	197.1	< 0.004	<0.004	NC	<0.004	< 0.004
Aluminium (total)	mg/L	0.01	1.9	89.0	2.7	0.008	198.8	0.73	1.3	56.2	0.42	0.37	12.7	0.27	0.4	38.8	0.42	0.26	47.1	0.38	0.28	30.3	0.06	0.04
Aluminium (dissolved)	mg/L	0.01	< 0.01	NC	2	< 0.01	NC	<0.01	<0.01	NC	0.02	0.01	66.7	<0.01	0.01	NC	0.02	0.01	66.7	0.02	0.02	0.0	0.03	0.03
																								['

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table xiii: Results QA/QC

Duplicate Type:		Primary	Inter- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Inter- laboratory Duplicate
Sample Type:		Groundwater	Groundwater		Groundwater	r Groundwater															
Sample date:	RPD%	Dec-21	Dec-21	RPD%	Mar-22	Mar-22	RPD%	Mar-22	Mar-22	RPD%	Mar-22	Mar-22	RPD%	Jun-22	Jun-22	RPD%	Jun-22	Jun-22	RPD%	Jun-22	Jun-22
Sample ID:	KFD 76	W5D	101_2021120	RFD /0	G2	D01_20220317	RFD /6	G5	D02_20220318	RFD 76	G2	101_2022031	RFD /6	G5	D02_20220616	RFD 76	PUMP	D01_20220615	KFD /6	PUMP	101_2022061
Project Name:		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring																		
Sampling Method:		Low-flow	Low-flow																		

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	0.0	0.5	0.3	50.0	0.3	0.3	0.0	0.1	0.1	0.0	0.3	0.3	0.0	0.3	0.4	28.6	130	140	7.4	130	126
Free Cyanide	mg/L	0.004	NC	<0.004	< 0.004	NC	<0.002	< 0.002	NC	<0.002	<0.002	NC	<0.002	< 0.004	NC	< 0.002	<0.002	NC	4.8	4.7	2.1	4.8	4.04
Total Cyanide	mg/L	0.004	NC	<0.004	< 0.004	NC	<0.002	< 0.002	NC	<0.002	<0.002	NC	<0.002	< 0.004	NC	<0.002	<0.002	NC	< 0.002	<0.002	NC	<0.002	<0.200
Aluminium (total)	mg/L	0.01	40.0	0.38	0.1	116.7	310	260	17.5	260	280	7.4	310	560	57.5	40	40	0.0	600	620	3.3	600	440
Aluminium (dissolved)	mg/L	0.01	0.0	0.02	<0.01	NC	<5	<5	NC	30	30	0.0	<5	<10	NC	250	310	21.4	2800	3000	6.9	2800	2630

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table xiii: Results QA/QC

Duplicate Type:		Primary	Inter-laboratory Duplicate		Primary	Inter-laboratory Duplicate	-	Primary	Inter-laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Inter- laboratory Duplicate	
Sample Type:		Groundwater	Groundwater		Groundwater	Groundwater Groundwater	Groundwater	Groundwater	Г	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		
Sample date:	RPD%	Sep-22	Sep-22	RPD%	Sep-22	Sep-22	RPD%	Sep-22	Sep-22	RPD%	Sep-22	Sep-22	RPD%	Dec-22	Dec-22	RPD%	Dec-22	Dec-22	RPD%	Dec-22	Dec-22	
Sample ID:	11 0 76	W2S	D01_20220920	ICI D 76	G5	D01_20220921		10.00	KI D 70	W2S	T01_20220920	KI D70	G5	101_2022092	KI D76	E4	D02_20221221	KI D76	W2D	D01_20221220)	W2D
Project Name:		Quarterly Groundwater Monitoring	Groundwater Groundwater		Quarterly Quarterly Groundwater Groundwater Monitoring Monitoring Low-flow Low-flow	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring			
 Sampling Method:		Low-flow	Low-flow			Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow			

Analyte grouping/Analy1 Units LOR

Soluble Fluoride	mg/L	0.1	3.1	29	31	6.7	0.2	0.2	0.0	29	33.6	14.7	0.2	0.6	100.0	780	810	3.8	1100	1200	8.7	1100	1050
Free Cyanide	mg/L	0.004	17.2	0.23	0.18	24.4	<0.002	<0.002	NC	0.23	0.173	28.3	< 0.002	< 0.004	NC	210	210	0.0	230	220	4.4	230	214
Total Cyanide	mg/L	0.004	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	< 0.002	< 0.004	NC	< 0.002	< 0.004	NC	0.004	0.005	22.2	0.004	0.005	22.2	0.004	0.621
Aluminium (total)	mg/L	0.01	30.8	7000	7200	2.8	480	590	20.6	7000	6620	5.6	480	290	49.4	380	370	2.7	550	510	7.5	550	220
Aluminium (dissolved)	mg/L	0.01	6.3	7600	8300	8.8	820	840	2.4	7600	7350	3.3	820	670	20.1	390	370	5.3	450	450	0.0	450	1740

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Project No: 318001362 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2022 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 2/02/2023

 Duplicate Type:

 Sample Type:

 Sample date:

 Sample ID:

 Project Name:

 Sampling Method:

Analyte grouping/Analyl Units LOR

Soluble Fluoride	mg/L	0.1	4.7
Free Cyanide	mg/L	0.004	7.2
Total Cyanide	mg/L	0.004	197.4
Aluminium (total)	mg/L	0.01	85.7
Aluminium (dissolved)	mg/L	0.01	117.8

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR) Shaded cells exceed RPD >30%

NC = not calculated as one or more results are below the LC

Table xiii: Results QA/QC

Project No: 318001362 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2022 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 2/02/2023

Table xiv: Results Rinsate

Sample Type:	Rinsate Blank	Rinsate Blan																				
Sample date:	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20
Sample ID:	QB1	QA4 (QA300)	QA300	QA301	QA301	QA300	QA300	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	QC101	QC101	QC101	QC101	R01	QC101	QC101	R01	R01_18032
	Quarterly	Quarterly																				
Project Name:	Groundwater	Groundwater					Groundwater								Groundwater							Groundwate
	Monitoring	Monitorin																				

Analyte grouping/Analy Units LOR

Soluble Fluoride	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Free Cyanide	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004
Total Cyanide	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004
Aluminium (total)	mg/L	0.01	0.05	< 0.01	<0.01	0.02	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.01	<0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aluminium (dissolved)	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01
																							,	

LOR = Limit of Reporting <value = Less than the laboratory Limit of Reporting (LOR) Shaded cells indicate when above the acceptance criteria for Trip Spikes/Blanks and Rinsates

Project No: 318001362 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2022 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 2/02/2023

Table xiv: Results							
Rinsate							

Sample Type:	Rinsate Blank	Rinsate Blank
Sample date:	Sep-20	Dec-20
Sample ID:	R01_20200923	R01_091220
Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring

mg/L	0.1	<0.1	< 0.1
mg/L	0.004	<0.004	< 0.004
mg/L	0.004	<0.004	< 0.004
mg/L	0.01	< 0.01	< 0.01
mg/L	0.01	< 0.01	< 0.01
	mg/L mg/L mg/L	mg/L 0.004 mg/L 0.004 mg/L 0.004 mg/L 0.01	mg/L 0.004 <0.004 mg/L 0.004 <0.004

LOR

LOR = Limit of Reporting

Analyte grouping/Analy Units

 value = Less than the laboratory Limit of Reporting (LOR)
 Shaded cells indicate when above the acceptance criteria for Trip Spikes/Blanks and Rinsates

APPENDIX 4 FIELD PARAMETER FORMS

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

A7

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	1.59
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.32
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	2.74
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:23	Dark yellow brown	Strong sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
11:26		24.59	9.51	16900	-337	0.0	17.5	1.64	TDS - 10.4 g/L
11:29		24.69	9.49	16800	-355	0.0	17.1	1.71	TDS - 10.5 g/L
11:32		24.76	9.50	16400	-372	0.0	16.3	1.77	TDS - 10.1 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:36	Dark yellow brown	Strong sulphidic odour	NO	Final depth to water 1.84 mbTOC

Sample Date:	03/18/2022	COC:	
Sample Time:	11:34	Analysis:	
Sample ID:	A7	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E11

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	2.29
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.80
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	2.51
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
14:51	Pale yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
14:54		26.7	7.07	1240	-43	0.06	116	2.27	TDS - 0.841 g/L
14:57		26.46	7.05	1140	-37	0.0	106	2.28	TDS - 0.713 g/L
15:01		26.45	6.82	835	-27	0.0	77.6	2.28	TDS - 0.522 g/L
15:03		26.45	6.80	793	-25	0.0	73.5	2.28	TDS - 0.505 g/L
15:05		26.43	6.76	759	-23	0.0	68.4	2.28	TDS - 0.472 g/L
15:59		26.42	6.88	1060	-36	0.0	94.2	2.28	TDS - 0.653 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks	
15:08	Pale yellow brown	No odour	NO	Final depth to water 2.29 mbTOC	

Sample Date:	03/17/2022	COC:	
Sample Time:	15:06	Analysis:	
Sample ID:	E11	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E4

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	1.62
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.44
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	1.82
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:13	Dark yellow brown	Sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
12:17		28.22	9.83	29100	-268	0.28	20.3	3.64	TDS - 18.0 g/L
12:20		28.12	9.82	28800	-297	0.0	18.5	3.70	TDS - 17.8 g/L
12:23		27.98	9.82	28500	-317	0.0	18.0	3.75	TDS - 17.6 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks	
12:35	Dark yellow brown	Sulphidic odour	NO	Final depth to water 3.92 mbTOC	

Sample Date:	03/18/2022	COC:	
Sample Time:	12:33	Analysis:	
Sample ID:	E4	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	1.54
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.58
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	1.04
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:22	Dark brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
11:26		25.80	9.28	21300	147	0.17	7.4	1.62	TDS - 13.2 g/L
11:29		25.86	9.27	21300	157	0.10	6.7	1.67	TDS - 13.2 g/L
11:32		25.93	9.27	21200	172	0.0	6.6	1.75	TDS - 13.2 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:37	Dark brown	No odour	NO	Final depth to water 1.81 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	11:37	Analysis:	
Sample ID:	E5	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5D

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	1.82
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.43
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	3.61
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:48	Brown	Slight hydrocarbon odour	NO	

Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
11:51		26.63	7.39	15800	-37	0.68	26.3	1.99	TDS - 9.70 g/L
11:54		26.68	7.35	15500	-53	0.01	24.2	2.05	TDS - 9.60 g/L
11:57		26.68	7.26	15500	-55	0.0	24.4	2.06	TDS - 9.58 g/L
12:00		26.68	7.20	15400	-55	0.0	24.1	2.08	TDS - 9.55 g/L
12:03		26.67	7.24	15300	-54	0.0	24.0	2.08	TDS - 9.52 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:06	Dark yellow brown	Slight hydrocarbon odour	NO	Final depth to water 2.12 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	12:03	Analysis:	
Sample ID:	E5D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

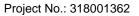
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F5

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	2.45
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	7.39
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	4.94
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:32	Colourless	Sulphidic odour	NO	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
09:36		20.87	5.52	12600	26	1.09	35.5	2.68	TDS - 7.76 g/L
09:39		20.97	5.47	12400	21	1.21	98.7	2.77	TDS - 7.72 g/L
09:42		20.75	5.45	12500	17	1.33	78.5	2.82	TDS - 7.82 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:45	Colourless	Sulphidic odour	NO	Final depth to water 2.90 mbTOC

Sample Date:	03/18/2022	COC:	
Sample Time:	09:46	Analysis:	
Sample ID:	F5	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F6

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	4.83
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	15.50
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	10.67
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:02	Colourless	Strong sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
10:05		22.14	8.14	9820	9	0.73	139	4.86	TDS - 6.21 g/L
10:08		22.14	7.89	9710	29	0.40	130	5.02	TDS - 6.12 g/L
10:11		22.11	7.76	9560	33	0.16	123	5.13	TDS - 5.98 g/L
10:14		22.06	7.66	9470	30	0.10	123	5.20	TDS - 5.98 g/L
10:17		22.03	7.67	9450	28	0.07	115	5.39	TDS - 5.95 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:20	Colourless	Strong sulphidic odour	NO	Final depth to water 5.87 mbTOC

Sample Date:	03/18/2022	COC:	
Sample Time:	10:19	Analysis:	
Sample ID:	F6	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G2 Date: 03/17/2022 Weather Conditions: Depth to Water 8.07 Sunny Purge Method: Water Quality Meter: Well Depth: Horiba 13.42 Purge Volume Units: ml Casing Material: PVC Water Column in Well: 5.35 Sampling Type: Casing Diameter: Water Volume in Well Low Flow Casing Volume to Pump Intake Depth: Remove: Total Volume to Remove: Comments:

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:47	Dark grey	Sulphidic odour	NO	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
12:52		27.86	6.75	6090	-10	2.60	473	8.13	TDS - 3.85 g/L
12:56		27.85	6.53	5940	-14	2.13	424	8.12	TDS - 3.75 g/L
13:00		27.78	6.51	5850	-15	2.45	390	8.10	TDS - 3.70 g/L
13:00		27.27	6.52	5800	-10	2.43	359	8.10	TDS - 3.66 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks	
	Dark grey	Sulphidic odour	NO	Final depth to water	

Sample Date:	03/17/2022	COC:	
Sample Time:	13:03	Analysis:	
Sample ID:	G2	Bottles:	
QC Sample ID:	D01_20220317 and T01_20220317	QC Sample Time:	13:03
Remarks:	Final depth to water 8.14 mbTOC		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G5

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	2.44
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	11.35
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	8.91
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

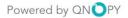
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:04	Colourless with black flocculants	Sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
09:04		20.05	5.71	7640	67	0.14	78.1	2.54	TDS - 4.83 g/L
09:06		20.20	5.57	7680	82	0.0	72.7	2.65	TDS - 4.84 g/L
09:10		20.26	5.52	7720	89	0.0	71.2	2.79	TDS - 4.86 g/L
09:13		20.10	5.49	7760	90	0.0	66.7	2.93	TDS - 4.89 g/L

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
09:19	Colourless with black flocculants	Sulphidic odour	NO	Final depth to water 3.29 mbTOC

Sample Date:	03/18/2022	COC:	
Sample Time:	09:18	Analysis:	
Sample ID:	G5	Bottles:	
QC Sample ID:	D02_20220318	QC Sample Time:	09:18
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G6

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	4.18
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.69
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	2.52
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:26	Colourless	Strong sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
10:29		22.25	4.75	8620	70	0.0	39.1	8.26	TDS - 5.43 g/L
10:32		22.24	4.70	8610	80	0.0	35.3	8.29	TDS - 5.43 g/L
10:35		22.23	4.47	8590	96	0.0	30.2	8.29	TDS - 5.41 g/L
10:37		22.15	4.40	8580	96	0.0	25.7	8.29	TDS - 5.41 g/L
10:40		22.11	4.37	8590	91	0.0	37.7	8.29	TDS - 5.42 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:44	Colourless	Strong sulphidic odour	NO	Final depth to water 8.29 mbTOC

Sample Date:	03/18/2022	COC:	
Sample Time:	10:42	Analysis:	
Sample ID:	G6	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N2

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	4.18
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.68
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	1.50
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth: Comments:		Casing Volume to Remove:		_ Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:26	Pale yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
08:29		20.17	4.27	7550	243	6.20	141	5.46	TDS - 4.73 g/L
08:32		20.01	4.39	7110	262	5.46	142	4.58	TDS - 4.43 g/L
08:35		19.99	4.81	6320	242	5.44	155	4.71	TDS - 4.04 g/L
08:38		19.96	5.27	5380	213	5.82	182	4.93	TDS - 3.36 g/L
08:41		20.45	5.33	4910	192	6.21	210	5.02	TDS - 2.63 g/L
08:42		20.46	5.35	4888	190	6.03	205	5.03	TDS - 3.13 g/L
08:47		20.47	5.35	4850	190	5.73	200	5.04	TDS - 3.11 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
08:49	Pale yellow brown	No odour	NO	Final depth to water 5.12 mbTOC

Sample Date:	03/18/2022	COC:
Sample Time:	08:47	Analysis:
Sample ID:	N2	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N8

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	2.70
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.77
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	3.07
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

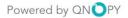
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
14:25	Yellow brown	Sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
14:27		27.36	6.91	11000	-88	1.88	430	2.77	TDS - 6.73 g/L
14:30		27.11	6.92	11000	-92	1.38	447	2.93	TDS - 6.78 g/L
14:33		26.86	6.91	10800	-90	1.41	456	3.06	TDS - 6.71 g/L

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
14:40	Yellow brown	Sulphidic odour	NO	Final depth to water 3.20 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	14:36	Analysis:	
Sample ID:	N8	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N9

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	1.81
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.86
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	1.05
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

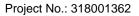
Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:27	Pale yellow brown	Sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
13:30		23.31	8.23	9400	-141	0.0	156	2.12	TDS - 5.9 g/L
13:32		23.36	8.24	9360	-156	0.0	125	2.17	TDS - 5.92 g/L
13:36		22.80	8.26	9460	-185	0.0	83.7	2.17	TDS - 5.96 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:38	Pale yellow brown	Sulphidic odour	NO	Final depth to water 2.15 mbTOC


Sample Date:	03/17/2022	COC:	
Sample Time:	13:39	Analysis:	
Sample ID:	N9	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

PUMP

Date:	03/17/2022	Weather Conditions:	Clear Partly Cloudy Sunny	Depth to Water	1.28
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.47
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	2.20
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:59	Brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
10:03		22.44	7.64	378	58	1.41	98.8	1.32	TDS - 0.245 g/L
10:06		22.51	7.55	367	71	1.30	104	1.35	TDS - 0.239 g/L
10:06		22.60	7.39	354	81	1.25	97.4	1.38	TDS -0.230 g/L
10:09		23.68	7.38	351	86	1.14	96.5	1.39	TDS - 0.229 g/L
10:12		22.70	7.37	352	87	1.19	94.3	1.39	TDS - 0.228 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:18	Brown	No odour	NO	Turbid. Final depth to water 1.42 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	10:17	Analysis:	
Sample ID:	PUMP	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1D

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	1.40
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	10.42
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	9.02
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:05	Dark yellow brown	Sulphidic odour		

Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
13:08		28.22	7.76	15100	-74	2.36	717	1.53	TDS - 9.32 g/L
13:11		28.19	7.76	14800	-71	1.87	762	1.64	TDS - 9.32 g/L
13:14		28.18	7.77	14700	-53	2.18	748	1.78	TDS - 9.37 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks	
13:20	Dark yellow brown	Sulphidic odour	NO	Final depth to water 2.23 mbTOC	

Sample Date:	03/18/2022	COC:	
Sample Time:	13:18	Analysis:	
Sample ID:	W1D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1S

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	1.52
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.43
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	0.92
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		_ Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:45	Dark yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
12:48		26.78	7.50	15900	-66	0.15	630	1.75	TDS - 9.83 g/L
12:51		27.20	7.49	15700	-58	0.0	575	1.96	TDS - 9.69 g/L
12:54		27.75	7.48	15600	-49	0.0	574	2.06	TDS - 9.65 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:00	Dark yellow brown	No odour	NO	Final depth to water 2.24 mbTOC

Sample Date:	03/18/2022	COC:	
Sample Time:	12:58	Analysis:	
Sample ID:	W1S	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W2D

Date:	03/17/2022	Weather Conditions:	Clear Sunny Partly Cloudy	Depth to Water	2.09
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.39
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	4.30
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:33	Dark brown	Slight sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
09:36		21.97	10.19	36000	-138	0.0	10.9	2.30	TDS 21.8 g/L
09:39		21.98	10.19	35800	-171	0.0	10.3	1.39	TDS 21.8 g/L
09:42		22.03	10.18	35700	-210	0.0	5.1	1.54	TDS 21.8 g/L
09:45		22.05	10.17	35800	-240	0.0	5.3	1.67	TDS - 21.9 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:50	Dark brown	Slight sulphidic odour	NO	Final depth to water 2.91 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	09:50	Analysis:	
Sample ID:	W2D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W2S

Date:	03/17/2022	Weather Conditions:	Clear Partly Cloudy	Depth to Water	1.39
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.39
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	1.01
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:57	Very pale brown	Slight sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
09:00		21.50	6.58	561	-4	1.53	1000	1.42	TDS 0.361 g/L
09:03		21.54	6.58	568	-9	1.16	1000	1.46	TDS 0.363 g/L
09:06		21.68	6.55	555	-14	0.78	1000	1.46	TDS 0.354 g/L
09:09		21.72	6.53	544	-15	0.68	1000	1.46	TDS 0.346 g/L
09:12		21.71	6.51	522	-17	0.63	1000	1.46	TDS 0.332 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:19	Very pale brown	Slight sulphidic odour	NO	Very turbid - 1000 NTU is max reading for turbidity on WQM. Final depth to water 1.46 mbTOC

Sample Date:	03/17/2022	COC:
Sample Time:	09:18	Analysis:
Sample ID:	W2S	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3D

Date:	03/18/2022	Weather Conditions:	Clear Sunny	Depth to Water	1.22
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.55
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	1.33
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:56	Pale brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
10:59		23.12	8.21	12000	-48	1.48	466	1.36	TDS - 7.44 g/L
11:02		23.21	8.22	12000	1	1.21	445	1.49	TDS - 7.44 g/L
11:05		23.37	8.21	12000	34	1.07	424	1.56	TDS - 7.45 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:10	Pale brown	No odour	NO	Final depth to water 1.61 mbTOC

Sample Date:	03/18/2022	COC:	
Sample Time:	11:08	Analysis:	
Sample ID:	W3S	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W4D

Date:	03/18/2022	Weather Conditions:		Depth to Water
Purge Method:		Water Quality Meter:	Horiba	Well Depth:
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NO	Insufficient water to sample - verv turbid

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
10:54									Insufficient water to sample - very turbid

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Insufficient water to sample - very turbid

Site: Hydro Quarterly Groundwater Monitoring 2022

Hart Rd, Loxford

W4S

Date:	03/18/2022	Weather Conditions:	Sunny Clear	Depth to Water	0.96
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	1.12
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	0.17
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Insufficient water	to sample - very turbid			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
				Insufficient water to sample - very turbid

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
11:51									Insufficient water to sample - very turbid

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Insufficient water to sample - very turbid

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Insufficient water to sample - verv turbid		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W5D

Date:	03/17/2022	Weather Conditions:		Depth to Water	5.49
Purge Method:		Water Quality Meter:	Horiba	Well Depth:	10.63
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	5.15
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
15:27	Colourless to very pale yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
15:30		25.11	6.35	6510	4	3.75	115	5.67	TDS - 4.1 g/L
15:33		25.61	6.35	6400	3	3.57	114	5.98	TDS - 4.02 g/L
15:36			6.36	6360	2	3.37	113	6.14	TDS - 4.02 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
15:43	Colourless to very pale yellow brown	No odour	NO	Final depth to water 6.31 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	15:40	Analysis:	
Sample ID:	W5D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W5S

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	1.63
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	1.7
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	0.08
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Dry - insufficient	water to sample			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NO	Dry - insufficient water to sample

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
15:15									Dry - insufficient water to sample

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
			NA	Dry - insufficient water to sample

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Dry - insufficient water to sample		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W6D

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	5.27
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	8.77
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	3.50
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

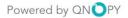
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:56	Pale yellow-grey brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
13:59		28.06	6.07	1170	63	0.84	434	5.55	TDS - 0.745 g/L
14:02		27.77	5.71	1120	94	0.41	418	5.81	TDS - 0.713 g/L
14:05		27.32	5.65	1050	101	0.0	406	5.88	TDS - 0.672 g/L
14:08		27.03	5.60	1020	104	0.0	401	5.97	TDS - 0.650 g/L
14:11		26.83	5.55	999	105	0.0	403		TDS - 0.638 g/L

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
14:16	Pale yellow-grey brown	No odour	NO	Final depth to water 5.95 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	14:15	Analysis:	
Sample ID:	W6D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W6S

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	3.10
Purge Method:		Water Quality Meter:	Horiba	Well Depth:	3.13
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	0.03
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Dry - insufficie	nt water to sample			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
13:48									Dry - insufficient water to sample

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
			NO	Dry - insufficient water to sample

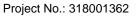
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7M

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	1.59
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.72
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	2.13
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:59	Pale brown	No odour	NO	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
11:02		24.80	9.29	8280	-32	0.27	66.8	1.90	TDS - 5.22 g/L
11:05		24.88	9.29	8300	-15	0.24	66.3	1.96	TDS - 5.22 g/L
11:08		24.99	9.29	8240	6	0.22	65.1	1.98	TDS - 5.19 g/L

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:14	Dark yellow brown	No odour	NO	Final depth to water 2.03 mbTOC

Sample Date:	03/17/2022	COC:
Sample Time:	11:12	Analysis:
Sample ID:	W7M	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

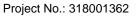
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7S

Date:	03/17/2022	Weather Conditions:	Sunny	Depth to Water	1.50
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.30
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	0.80
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

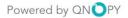
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:27	Pale brown	No odour	NO	

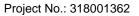

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	uS/cm	mV	mg/L	NTU	m bmp	
10:30		23.21	7.14	1210	-10	1.13	1000	1.53	TDS - 0.762 g/L
10:33		23.299	7.07	1130	-21	1.28	1000	1.56	TDS - 0.723 g/L
10:36		23.43	6.97	1070	-19	1.60	1000	1.67	TDS - 0.679 g/L
10:39		23.50	6.93	995	-15	1.83	1000	1.71	
10:42		23.59	6.95	974	-12	1.89	1000		TDS - 0.624 g/L

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
10:50	Pale brown	No odour	NO	Final depth to water 1.73 mbTOC

Sample Date:	03/17/2022	COC:	
Sample Time:	10:48	Analysis:	
Sample ID:	W7S	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

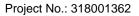


Gauging Data

Sampler

Jake Bourke

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
A7	03/18/2022 11:19		12.319	4.32	1.59	10.729					
E11	03/17/2022 14:48		10.84	4.80	2.27	8.57					
E4	03/18/2022 12:05		13.81	3.44	1.62	12.19					
E5	03/17/2022 11:20		14.104	2.58	1.54	12.564					
E5D	03/17/2022 11:39		14.182	5.44	1.82	12.362					
F5	03/18/2022 09:27		7.63	7.39	2.45	5.18					
F6	03/18/2022 09:57		6.68	15.50	4.83	1.85					
G2	03/17/2022 12:42		14.342	13.42	8.07	6.272					
G5	03/18/2022 08:59		7.59	11.35	2.44	5.15					
G6	03/18/2022 10:24		6.55	6.69	4.18	2.37					
N2	03/18/2022 08:09		8.853	5.63	4.18	4.673					
N8	03/17/2022 14:21		12.15	5.78	2.70	9.45					
N9	03/17/2022 13:23		11.532	2.86	1.81	9.722					
PUMP	03/17/2022 09:54		14.302	3.47	1.28	13.022					
W1D	03/18/2022 13:01		13.112	10.42	1.40	11.712					
W1S	03/18/2022 12:40		13.177	2.43	1.52	11.657					
W2D	03/17/2022 09:26		14.033	6.39	2.09	11.943					
W2S	03/17/2022 08:52		14.229	2.39	1.39	12.839					
W3D	03/18/2022 10:54		11.29	2.54	1.22	10.07					
W3S	03/18/2022 10:54		11.352			11.352					
W3SA	03/18/2022 10:54		10.786			10.786					
W4D	03/18/2022 10:54		10.839			10.839					
W4S	03/18/2022 11:50		10.629	1.12	0.96	9.669					
W5D	03/17/2022 15:15		10.571	10.63	5.49	5.081					



Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
W5S	03/17/2022 15:14		10.493	1.7	1.63	8.863					Dry - insufficient water to sample
W6D	03/17/2022 13:51		10.289	8.77	5.27	5.019					
W6S	03/17/2022 13:46		10.69	3.13	3.10	7.59					
W7M	03/17/2022 10:55		14.318	3.72	1.59	12.728					
W7S	03/17/2022 10:24		14.299	2.30	1.50	12.799					

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

A7

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	1.69
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.32
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.63
Sampling Type:	Low Flow	Casing Diameter:	100	Water Volume in Well	
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:41	Clear, yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
11:44	0.16	17.09	9.78	12.8	-191	1.94	26.3	1.76	Clear, yellow brown, no odour
11:47	0.16	17.17	9.81	12.5	-195	0.59	26.0	1.79	Clear, yellow brown, no odour
11:50	0.16	17.25	9.80	12.6	-189	0.51	25.5	1.84	Clear, yellow brown, no odour
11:53	0.16	17.32	9.80	12.5	-186	0.16	24.7	1.88	Clear, yellow brown, no odour
11:56	0.16	17.47	9.78	12.5	-184	0.00	23.7	1.94	Clear, yellow brown, no odour
11:59	0.16	17.62	9.78	12.4	-183	0.0	22.9	2.05	Clear, yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:03	Clear, yellow brown	No odour	NO	Final depth to water 2.10 mbTOC

Sample Date:	06/16/2022	COC:	
Sample Time:	12:02	Analysis:	
Sample ID:	A7	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Groundwater Monitoring Field Data Form Site: Hydro Quarterly Groundwater Monitoring 2022

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E11

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	2.35
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.82
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.47
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor Sheen/Product		Remarks
14:47	Turbid, pale yellow grey	Sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
14:50	0.16	17.26	8.37	1.46	-117	0.74	409	2.37	Turbid, pale yellow grey, no odour
14:53	0.16	17.35	7.58	1.34	-91	0.15	401	2.37	Turbid, pale yellow grey, no odour
14:56	0.16	17.40	7.46	1.28	-91	0.05	344	2.37	Turbid, pale yellow grey, no odour
14:59	0.16	17.41	7.40	1.21	-91	0.0	270	2.37	Turbid, pale yellow grey, no odour
15:02	0.16	17.40	7.37	1.17	-91	0.0	213	2.37	Turbid, pale yellow grey, no odour

Final Observations

End purge time	Color	Color Odor Sheen/Product		Remarks	
15:06	Turbid, pale yellow grey	No odour	NO	Final depth to water 2.36 mbTOC	

Sample Date:	06/15/2022	COC:	
Sample Time:	15:02	Analysis:	
Sample ID:	E11	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E4 Date: Weather Conditions: 06/16/2022 Depth to Water Sunny 1.62 Low Flow -Purge Method: Peristaltic Pump Water Quality Meter: Well Depth: Horiba 3.40 Purge Volume Units: Casing Material: PVC Water Column in Well: L 1.77 Sampling Type: Casing Diameter: Water Volume in Well Low Flow 100 Casing Volume to Pump Intake Depth: Remove: Total Volume to Remove: Comments:

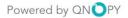
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:52	Clear to slightly turbid, yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
12:55	0.16	18.34	10.30	28.8	-275	0.0	107	1.71	Clear to slightly turbid, yellow brown, no odour
12:58	0.16	18.00	10.29	29.0	-298	0.0	100	1.73	Clear to slightly turbid, yellow brown, no odour
13:01	0.16	17.92	10.28	28.8	-311	0.0	95.1	1.82	Clear to slightly turbid, yellow brown, no odour

Final Observations


End purge time	Color Odor		Sheen/Product	Remarks	
13:05	Clear to slightly turbid, yellow brown	No odour	NO	Final depth to water 1.89 mbTOC	

Sample Date:	06/16/2022	COC:	
Sample Time:	13:04	Analysis:	
Sample ID:	E4	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.57
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.57
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.99
Sampling Type:	Low Flow	Casing Diameter:	100	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:07	Clear, dark yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
12:10	0.16	15.36	9.67	20.0	199	0.22	15.7	1.63	Clear, dark yellow brown, no odour
12:13	0.16	15.65	9.65	20.1	204	0.04	15.8	1.74	Clear, dark yellow brown, no odour
12:16	0.16	15.83	9.64	20.2	204	0.02	14.6	1.83	Clear, dark yellow brown, no odour
12:19	0.16	15.97	9.63	20.1	205	0.01	14.9	1.87	Clear, dark yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:23	Clear, dark yellow brown	No odour	NO	Final depth to water 1.96 mbTOC

Sample Date:	06/15/2022	COC:	
Sample Time:	12:20	Analysis:	
Sample ID:	E5	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5D

Date:	06/15/2022	Weather Conditions:	Sunny High Winds	Depth to Water	1.79
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.44
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	3.65
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:34	Clear to slightly turbid, yellow	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks	
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp		
12:37	0.16	16.13	7.69	14.8	191	3.89	49.7	1.96	Clear to slightly turbid, yellow, no odour	
12:40	0.16	16.26	7.63	15.0	188	1.69	46.1	2.05	Clear to slightly turbid, yellow, no odour	
12:43	0.16	16.37	7.62	15.0	182	1.40	42.3	2.11	Clear to slightly turbid, yellow, no odour	

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:48	Clear to slightly turbid, yellow	No odour	NO	Final depth to water 2.09 mbTOC

Sample Date:	06/15/2022	COC:	
Sample Time:	12:46	Analysis:	
Sample ID:	E5D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F5

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	2.59
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	7.37
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	4.78
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		_ Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:16	Clear, colourless	Sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
09:19	0.16	12.53	5.69	10.8	108	1.39	24.5	2.79	Clear, colourless, sulphidic odour
09:22	0.16	12.61	5.54	10.9	136	0.37	19.5	2.92	Clear, colourless, sulphidic odour
09:25	0.16	12.72	5.48	10.9	139	0.25	17.8	2.96	Clear, colourless, sulphidic odour
09:28	0.16	12.88	5.37	10.9	142	0.12	15.3	2.99	Clear, colourless, sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks	
09:34	Clear, colourless	No odour	NO	Final depth to water 2.93 mbTOC	

Sample Date:	06/16/2022	COC:	
Sample Time:	09:32	Analysis:	
Sample ID:	F5	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F6

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	3.79
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	15.48
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		_ Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:53	Clear, colourless	Slight sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
09:56	0.16	13.13	6.92	9.51	5	1.74	6.6	4.04	Clear, colourless, slight sulphidic odour
09:59	0.16	13.35	7.14	9.49	7	0.76	4.9	4.22	Clear, colourless, slight sulphidic odour
10:02	0.16	13.44	7.15	9.57	8	0.47	5.3	4.33	Clear, colourless, slight sulphidic odour
10:05	0.16	13.70	7.19	9.48	7	0.30	4.5	4.54	Clear, colourless, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:11	Clear, colourless	Slight sulphidic odour	NO	Final depth to water 4.79 mbTOC

Sample Date:	06/16/2022	COC:	
Sample Time:	10:10	Analysis:	
Sample ID:	F6	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G2

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	7.81
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	13.42
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.61
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		_ Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:59	Clear, colourless	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
13:02	0.16	16.16	7.31	5.40	-74	0.90	40.5	7.86	Clear, colourless, no odour
13:05	0.16	16.23	7.10	5.62	-65	4.74	42.2	7.91	Clear, colourless, no odour
13:08	0.16	16.36	6.60	5.75	-61	4.71	45.3	7.93	Clear, colourless, no odour
13:11	0.16	16.56	6.59	5.72	-60	4.58	109	7.91	Clear with some black floccules, colourless, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:18	Clear with black floccules	No odour	NO	Final depth to water 7.88 mbTOC

Sample Date:	06/15/2022	COC:
Sample Time:	13:16	Analysis:
Sample ID:	G2	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G5

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	2.57
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	11.31
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	8.74
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:42	Clear, colourless	No odour	NO	

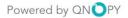
Field Parameters

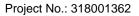
Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
08:45	0.16	11.62	7.06	6.44	-43	1.26	38.7	2.80	Clear, colourless, no odour
08:48	0.16	11.90	6.07	6.50	35	0.56	38.7	2.98	Clear, colourless, no odour
08:51	0.16	12.13	6.01	6.51	38	0.39	30.4	3.09	Clear, colourless, no odour
08:54	0.16	12.37	5.97	6.54	39	0.24	33.6	3.20	Clear, colourless, no odour
08:57	0.16	12.57	5.92	6.60	40	0.16	31.1		Clear, colourless, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:09	Clear, colourless	No odour	NO	Final depth to water 3.39 mbTOC

Sample Date:	06/16/2022	COC:	
Sample Time:	09:07	Analysis:	
Sample ID:	G5	Bottles:	
QC Sample ID:	D02_20220616 and T02_20220616	QC Sample Time:	09:07
Remarks:			





Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G6

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	3.90
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.68
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.78
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:18	Clear, colourless	Strong sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
10:21	0.16	14.37	5.37	7.89	108	1.29	26.8	3.97	Clear, colourless, strong sulphidic odour
10:24	0.16	14.48	4.74	7.92	113	0.59	18.6	3.99	Clear, colourless, strong sulphidic odour
10:27	0.16	14.71	4.51	7.90	118	0.30	11.8	3.99	Clear, colourless, strong sulphidic odour
10:30	0.16	14.97	4.33	7.89	123	0.22	11.8	3.99	Clear, colourless, strong sulphidic odour
10:33	0.16	15.15	4.29	7.83	122	0.18	11.3	3.99	Clear, colourless, strong sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:37	Clear, colourless	Strong sulphidic odour	NO	Final depth to water 3.94 mbTOC

Sample Date:	06/16/2022	COC:	
Sample Time:	10:34	Analysis:	
Sample ID:	G6	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N2

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	3.93
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.64
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.7
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
07:00	Clear, yellow	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
08:00	0.16	12.45	7.02	1.93	-134	5.52	77.3	4.22	Clear, yellow, no odour
08:03	0.16	12.74	6.91	1.87	-90	4.46	68.9	4.33	Clear, yellow, no odour
08:06	0.16	12.96	6.89	1.76	-71	3.95	59.9	3.47	Clear, yellow, no odour
08:09	0.16	13.07	6.89	1.64	-63	3.85	70.0	3.64	Clear, yellow, no odour
08:12	0.16	13.24	6.91	1.53	-52	3.97	75.7	3.67	Clear to slightly turbid, yellow, no odour
08:15	0.16	13.11	6.97	1.54	-42	4.04	91.4	3.67	Clear to slightly turbid, yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
08:22	Clear to slightly turbid, yellow	No odour	NO	Final depth to water 3.80 mbTOC

Sample Date:	06/16/2022	COC:
Sample Time:	08:20	Analysis:
Sample ID:	N2	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N8

Date:	06/15/2022	Weather Conditions:	Sunny High Winds	Depth to Water	2.75
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.28
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.53
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
14:22	Slightly turbid, yellow	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
14:25	0.16	17.00	7.04	10.1	-106	0.32	167	2.97	Slightly turbid, yellow, no odour
14:28	0.16	17.01	7.06	10.1	-110	0.02	176	3.05	Slightly turbid, yellow, no odour
14:31	0.16	17.10	7.09	9.97	-116	0.0	139	3.22	
14:34	0.16	17.14	7.11	9.89	-119	0.0	155	3.31	Slightly turbid, yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks	
	Slightly turbid, yellow	No odour	NO	Final depth to water 3.48 mbTOC	

Sample Date:	06/15/2022	COC:	
Sample Time:	14:38	Analysis:	
Sample ID:	N8	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N9

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.82
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.83
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.01
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:29	Turbid, pale yellow grey	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
13:32	0.16	16.30	8.64	1.62	2	6.62	204	2.02	Turbid, pale yellow grey, no odour
13:35	0.16	16.16	8.84	1.59	13	6.65	205	2.13	Turbid, pale yellow grey, no odour
13:38	0.16	16.10	8.86	1.55	19	6.48	210	2.18	Turbid, pale yellow grey, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:44	Turbid, pale yellow grey	No odour	NO	Final depth to water 2.08 mbTOC

Sample Date:	06/15/2022	COC:	
Sample Time:	13:41	Analysis:	
Sample ID:	N9	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

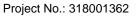
PUMP

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.36
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.44
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.08
Sampling Type:	Low Flow	Casing Diameter:	100	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

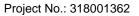
Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:17	Clear to slightly turbid, pale yellow	No odour	NO	

Field Parameters


Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
10:20	0.16	12.90	9.64	4.30	-151	2.14	27.0	1.40	Clear to slightly turbid, pale yellow, no odour
10:23	0.16	12.97	9.61	4.27	-179	0.7	21.4	1.42	Clear to slightly turbid, pale yellow, no odour
10:26	0.16	13.06	9.58	4.23	-182	0.39	20.7	1.44	Clear to slightly turbid, pale yellow, no odour
10:29	0.16	13.14	9.57	4.21	-180	0.26	19.7	1.45	Clear to slightly turbid, pale yellow, no odour
10:32	0.16	13.20	9.56	4.17	-177	0.19	21.7	1.48	Clear to slightly turbid, pale yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:44	Clear to slightly turbid, pale yellow	No odour	NO	Finals depth to water 1.55 mbTOC


Sample Date:	06/15/2022	COC:	
Sample Time:	10:42	Analysis:	
Sample ID:	PUMP	Bottles:	
QC Sample ID:	D01_20220615 and T01_20220615	QC Sample Time:	10:42
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1D

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	1.03
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	10.40
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	9.37
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:16	Slightly turbid, brown yellow	Slight sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
13:19	0.16	19.65	8.48	14.4	-80	0.23	43.6	1.31	Slightly turbid, brown yellow, slight sulphidic odour
13:22	0.16	19.69	8.49	14.4	-103	0.03	44.7	1.44	Slightly turbid, brown yellow, slight sulphidic odour
13:25	0.16	19.92	8.50	14.3	-135	0.0	41.6	1.69	Slightly turbid, brown yellow, slight sulphidic odour
13:28	0.16	20.08	8.51	14.3	-164	0.0	40.5	1.94	Slightly turbid, brown yellow, slight sulphidic odour
13:31	0.16	20.24	8.51	13.8	-157	0.0	36.9	2.14	Slightly turbid, brown yellow, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:37	Slightly turbid, brown yellow	Slight sulphidic odour	NO	Final depth to water 2.46 mbTOC

Sample Date:	06/16/2022	COC:
Sample Time:	13:36	Analysis:
Sample ID:	W1D	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1S

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	1.31
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.41
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.1
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:58	Clear, dark yellow	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
14:02	0.125	21.35	8.23	12.7	49	1.94	47.2	1.56	Clear, dark yellow, no odour
14:06	0.125	21.04	8.28	12.8	67	1.61	45.4	1.73	Clear, dark yellow, no odour
14:10	0.125	20.87	8.37	11.9	50	7.28	40.4	1.82	Clear, dark yellow, no odour
14:14	0.125	20.73	8.44	10.9	43	3.99	41.3	1.87	Clear, dark yellow, no odour
14:18	0.125	20.64	8.54	10.5	52	2.82	42.5	2.91	Clear, dark yellow, no odour
14:23	0.125	20.55	8.60	10.1	56	1.76	43.6		Clear, dark yellow, no odour

Final Observations

End purge time	rge time Color		Sheen/Product	Remarks	
14:31	Clear, dark yellow	No odour	NO	Final depth to water 2.24 mbTOC	

Sample Date:	06/16/2022	COC:	
Sample Time:	14:30	Analysis:	
Sample ID:	W1S	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

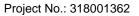
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W2D

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.34
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.39
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.05
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:37	Clear, dark brown	No odour	NO	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
09:40	0.16	10.60	10.69	36.2	-292	0.48	19.6	1.62	Clear, dark brown, no odour
09:43	0.16	10.90	10.66	36.7	-323	0.0	16.8	1.91	Clear, dark brown, no odour
09:46	0.16	11.18	10.65	36.6	-333	0.0	15.1	2.04	Clear, dark brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:52	Clear, dark brown	No odour	NO	Finals depth to water 2.37 mbTOC

Sample Date:	06/15/2022	COC:
Sample Time:	09:48	Analysis:
Sample ID:	W2D	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

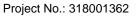
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W2S

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.57
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.37
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.8
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

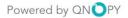
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:05	Turbid, pale yellow grey	No odour	NO	


Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
09:08	0.16	9.66	7.87	1.07	157	4.83	546	1.63	Turbid, pale yellow grey, no odour
09:11	0.16	10.00	7.40	1.03	45	3.72	361	1.61	Turbid, pale yellow grey, no odour
09:14	0.16	10.08	7.09	0.875	-72	2.28	305	1.61	Turbid, pale yellow grey, no odour
09:17	0.16	10.16	6.93	0.736	-79	2.06	237	1.62	Turbid, pale yellow grey, no odour
09:20	0.16	10.27	6.84	0.653	-80	1.56	160	1.62	Turbid, pale yellow grey, no odour
09:23	0.16	10.35	6.80	0.615	-78	1.23	116	1.62	Turbid, pale yellow brown, no odour
09:26	0.16	10.44	6.77	0.592	-78	0.93	88.7	1.62	Turbid, pale yellow grey, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
09:34	Slightly turbid, pale yellow grey	No odour	NO	Final depth to water 1.58 mbTOC

Sample Date:	06/15/2022	COC:
Sample Time:	09:31	Analysis:
Sample ID:	W2S	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3D

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water
Purge Method:		Water Quality Meter:	Horiba	Well Depth:
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:

Initial Observations

Purge Start Time	Start Time Color Odor		Sheen/Product	Remarks	
				Well not sampled - damaged	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
13:21									Well not sampled - damaged

Final Observations

End purge time	e time Color Odor		Sheen/Product	Remarks	
				Well not sampled - damaged	

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well not sampled - damaged		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3S

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	1.15
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.54
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.39
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:56	Turbid, yellow brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
10:59	0.16	15.81	8.81	10.1	53	2.64	233	1.40	Turbid, yellow brown, no odour
11:02	0.16	15.84	8.78	10.0	153	0.55	231	1.48	Turbid, yellow brown, no odour
11:05	0.16	15.88	8.85	9.87	185	0.44	225	1.60	Turbid, yellow brown, no odour
11:08	0.16	15.92	8.96	9.56	191	0.70	176	1.70	Turbid, yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:13	Turbid, yellow brown	No odour	NO	Final depth to water 1.71 mbTOC

Sample Date:	06/16/2022	COC:	
Sample Time:	11:12	Analysis:	
Sample ID:	W3S	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3SA

Date:	06/15/2022	Weather Conditions:		Depth to Water	
Purge Method:		Water Quality Meter:	Horiba	Well Depth:	
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Well not sampl	ed - destroyed			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
				Well not sampled - destroved

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
13:23									Well not sampled - destroyed

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Well not sampled - destroyed

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well not sampled - destroyed		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W4D

Date:	06/15/2022	Weather Conditions:		Depth to Water
Purge Method:		Water Quality Meter:	Horiba	Well Depth:
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:
Comments:	Well not sampl	ed - destroyed		

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
				Well not sampled - destroyed

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
13:24									Well not sampled - destroyed

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Well not sampled - destroyed

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well not sampled - destroyed		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W4S

Date:	06/16/2022	Weather Conditions:	Sunny	Depth to Water	1.01
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	1.12
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.11
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Well not samples	- insufficient water			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NO	Well not samples - insufficient water

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
11:26									Well not samples - insufficient water

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Well not samples - insufficient water

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well not samples - insufficient water		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W5D

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	5.30
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	10.63
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.33
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor Sheen/Product		Remarks
15:30	Clear to slightly turbid, colourless	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
15:33	0.16	17.65	6.43	5.86	-7	0.79	69.4		Clear to slightly turbid, colourless, no odour
15:36	0.16	17.76	6.30	5.78	9	0.31	63.6		Clear to slightly turbid, colourless, no odour
15:39	0.16	17.78	6.31	5.38	15	0.19	61.2		Clear to slightly turbid, colourless, no odour
15:42	0.16	17.78	6.32	5.15	17	0.18	69.5		Clear to slightly turbid, colourless, no odour
15:45	0.16	17.77	6.33	4.81	20	0.16	65.5		Clear to slightly turbid, colourless, no odour
15:48	0.16	17.77	6.34	4.68	22	0.13	56.6		Clear to slightly turbid, colourless, no odour

Final Observations

End purge time	Color	Color Odor		Remarks	
15:51	Clear to slightly turbid, colourless	No odour	NO	Final depth to water 6.95 mbTOC	

Sample Date:	06/15/2022	COC:	
Sample Time:	15:50	Analysis:	
Sample ID:	W5D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W5S

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.64
Purge Method:		Water Quality Meter:	Horiba	Well Depth:	1.70
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.06
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Well not sampled	I - insufficient water			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NO	Well not sampled - insufficient water

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
15:13									Well not sampled - insufficient water

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
			NO	Well not sampled - insufficient water

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well not sampled - insufficient water		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W6D

Date:	06/15/2022	Weather Conditions:	Sunny High Winds	Depth to Water	5.06
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	8.79
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	3.72
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:57	Turbid, pale yellow grey	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU	mS/cm		mg/L	NTU	m bmp	
14:00	0.16	16.74	6.52	0.966	44	1.18	719	5.33	Very turbid, pale yellow grey, no odour
14:03	0.16	16.81	6.10	0.969	55	0.70	720	5.41	Very turbid, pale yellow grey, no odour
14:06	0.16	17.01	5.86	0.972	50	0.51	717	5.46	Very turbid, pale yellow grey, no odour
14:09	0.16	17.04	5.92	0.972	51	0.36	700	5.52	Very turbid, pale yellow grey, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
14:17	Turbid, pale yellow grey	No odour	NO	Final depth to water 5.38 mbTOC

Sample Date:	06/15/2022	COC:	
Sample Time:	14:14	Analysis:	
Sample ID:	W6D	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W6S

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	2.69
Purge Method:		Water Quality Meter:	Horiba	Well Depth:	3.1
Purge Volume Units:	ml	Casing Material:	PVC	Water Column in Well:	0.41
Sampling Type:	Low Flow	Casing Diameter:		Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Well not samp	led - insufficient water			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NO	Well not sampled - insufficient water

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
13:51									Well not sampled - insufficient water

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Well not sampled - insufficient water

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well not sampled - insufficient water		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7M

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.78
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.72
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.94
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:18	Clear, dark brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
11:21	0.16	14.65	9.82	8.92	196	0.53	38.0	2.28	Clear, dark brown, no odour
11:24	0.16	14.89	9.87	8.29	197	0.49	25.3	2.37	Clear, dark brown, no odour
11:27	0.16	15.10	9.99	9.50	113	0.23	23.6	2.48	Clear,dark brown, no odour
11:30	0.16	15.24	10.24	11.2	-180	0.0	16.4	2.54	Clear, dark brown, no odour
11:33	0.16	15.40	10.34	15.2	-255	0.0	16.8	2.57	Clear, dark brown, no odour
11:36	0.16	15.56	10.36	17.7	-284	0.0	16.2	2.59	Clear, dark brown, no odour
11:39	0.16	15.69	10.40	19.9	-300	0.0	15.6	2.61	Clear, dark brown, no odour
11:42	0.16	15.85	10.40	21.5	-311	0.0	14.6	2.62	Clear, dark brown, no odour
11:45	0.16	16.00	10.39	22.3	-314	0.0	13.8	2.63	Clear, dark brown, no odour
11:48	0.16	16.18	10.39	23.3	-322	0.0	13.8	2.64	Clear, dark brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:55	Clear, dark brown	No odour	NO	Final depth to water 2.41 mbTOC

Sample Date:	06/15/2022	COC:	
Sample Time:	11:51	Analysis:	
Sample ID:	W7M	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7S

Date:	06/15/2022	Weather Conditions:	Sunny	Depth to Water	1.51
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.30
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.78
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:55	Turbid, pale yellow grey	No odour	NO	

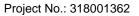
Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
10:58	0.16	13.71	7.62	0.643	68	6.53	140	1.59	Turbid, pale yellow grey, no odour
11:01	0.16	13.82	7.45	0.640	70	6.80	143	1.60	Turbid, pale yellow grey, no odour
11:04	0.16	13.96	7.40	0.636	72	6.82	146	1.60	Turbid, pale yellow grey, no odour
11:07	0.16	14.12	7.38	0.625	70	6.96	157	1.60	Turbid, pale yellow grey, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:14	Turbid, pale yellow grey	No odour	NO	Final depth to water 1.64 mbTOC

Sample Date:	06/15/2022	COC:
Sample Time:	11:11	Analysis:
Sample ID:	W7S	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:		


Gauging Data

Sampler

Jake Bourke

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
A7	06/16/2022 11:40		12.319	4.32	1.69	10.629					
E11	06/15/2022 14:46		10.84	4.82	2.35	8.49					
E4	06/16/2022 12:51		13.81	3.40	1.62	12.19					
E5	06/15/2022 12:03		14.104	2.57	1.57	12.534					
E5D	06/15/2022 12:26		14.182	5.44	1.79	12.392					
F5	06/16/2022 09:13		7.63	7.37	2.59	5.04					
F6	06/16/2022 09:50		6.68	15.48	3.79	2.89					
G2	06/15/2022 12:56		14.342	13.42	7.81	6.532					
G5	06/16/2022 08:34		7.59	11.31	2.57	5.02					
G6	06/16/2022 10:16		6.55	6.68	3.90	2.65					
N2	06/16/2022 07:52		8.853	5.64	3.93	4.923					
N8	06/15/2022 14:22		12.15	5.28	2.75	9.4					
N9	06/15/2022 13:26		11.532	2.83	1.82	9.712					
PUMP	06/15/2022 10:15		14.302	3.44	1.36	12.942					
W1D	06/16/2022 13:15		13.112	10.40	1.03	12.082					
W1S	06/16/2022 13:39		13.177	2.41	1.31	11.867					
W2D	06/15/2022 09:37		14.033	6.39	1.34	12.693					
W2S	06/15/2022 09:03		14.229	2.37	1.57	12.659					
W3D	06/15/2022 13:21		11.29			11.29					
W3S	06/16/2022 10:48		11.352	2.54	1.15	10.202					
W3SA	06/15/2022 13:22		10.786			10.786					Well not sampled - destroyed
W4D	06/15/2022 13:24		10.839			10.839					Well not sampled - destroyed
W4S	06/16/2022 11:25		10.629	1.12	1.01	9.619					Well not samples - insufficient water

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
W5D	06/15/2022 15:15		10.571	10.63	5.30	5.271					
W5S	06/15/2022 15:12		10.493	1.70	1.64	8.853					Well not sampled - insufficient water
W6D	06/15/2022 13:53		10.289	8.79	5.06	5.229					
W6S	06/15/2022 13:50		10.69	3.1	2.69	8					Well not sampled - insufficient water
W7M	06/15/2022 11:17		14.318	3.72	1.78	12.538					
W7S	06/15/2022 10:51		14.299	2.30	1.51	12.789					

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

<u>A7</u>

Date:	09/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	1.60
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.31
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.7
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	275.24
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:39	Clear, dark yellow brown, no odour	Strong sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
10:42	0.17	19.63	9.99	13600	-156	0.0	11.1	1.65	Clear, dark yellow brown, strong sulphidic odour
10:45	0.17	19.59	9.99	13600	-186	0.0	10.9	1.70	Clear, dark yellow brown, strong sulphidic odour
10:48	0.17	19.57	9.98	13600	-197	0.0	11.0	1.74	Clear, dark yellow brown, strong sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:52	Clear, dark yellow brown	Strong sulphidic odour	NO	Final depth to water 1.77 mbTOC

Sample Date:	09/21/2022	COC:	
Sample Time:	10:51	Analysis:	
Sample ID:	A7_20220921	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E11

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	2.21
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.78
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.57
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	261.98
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:54	Pale brown	Sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
13:57	0.17	20.43	8.36	2070	-45	0.60	61.8	2.21	Turbid, pale brown, sulphidic odour
14:00	0.17	20.33	8.25	2080	-73	0.22	62.3	2.22	Turbid, pale brown, sulphidic odour
14:03	0.17	20.21	8.00	1720	-92	0.03	43.7	2.22	Turbid, pale brown, sulphidic odour
14:06	0.17	19.02	7.53	1230	-73	0.0	26.6	2.23	Slightly turbid, pale brown, sulphidic odour
14:09	0.17	18.84	7.30	814	-57	0.0	20.8	2.23	Slightly turbid, pale brown, sulphidic odour
14:12	0.17	17.87	7.36	666	-47	0.00	18.8	2.23	Clear to slightly turbid, pale brown, sulphidic odour
14:15	0.17	18.47	7.06	604	-39	0.0	15.6	2.23	Clear to slightly turbid, colourless to pale brown, sulphidic odour
14:18	0.17	19.08	6.96	562	-32	0.0	14.1	2.23	Clear to slightly turbid, colourless to pale brown, sulphidic odour
14:21	0.17	19.18	6.93	536	-31	0.0	12.1	2.23	Clear to slightly turbid, colourless to pale brown, sulphidic odour
14:24	0.17	18.83	6.91	532	-28	0.0	11.7	2.22	Clear to slightly turbid, colourless to pale brown, sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
14:28	Colourless to pale brown	Sulphidic odour	NO	Final depth to water 2.22 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	14:26	Analysis:	
Sample ID:	E11_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E4

Date:	09/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	1.59
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.4
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.8
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	183.49
Pump Intake Depth:		Casing Volume to Remove:	Total Volume to Remove		
Comments:					

Initial Observations

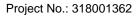
Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:06	Clear dark brown	Slight sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
11:09	0.17	19.81	10.46	26400	-199	0.26	12.7	1.66	Clear, dark brown, slight sulphidic odour
11:12	0.17	19.78	10.45	26600	-230	0.0	12.8	1.69	Clear, dark brown, slight sulphidic odour
11:15	0.17	19.85	10.45	26600	-248	0.0	11.8	1.74	Clear, dark brown, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:19	Clear, dark brown	Slight sulphidic odour	NO	Final depth to water 1.79 mbTOC


Sample Date:	09/21/2022	COC:	
Sample Time:	11:18	Analysis:	
Sample ID:	E4_20220921	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.54
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.57
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.02
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	103.97
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:32	Dark yellow brown	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
10:35	0.17	19.00	9.85	19000	178	0.95	3.5	1.65	Clear, dark yellow brown, no odour
10:38	0.17	18.40	9.85	19300	191	0.56	3.6	1.63	Clear, dark yellow brown, no odour
10:41	0.17	17.95	9.84	19500	201	0.06	3.6	1.75	Clear, dark yellow brown, no odour
10:44	0.17	17.63	9.84	19600	206	0.0	4.0	1.87	Clear, dark yellow brown, no odour
10:47	0.17	17.49	9.84	19700	209	0.0	4.0	1.96	Clear, dark yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:56	Dark yellow brown	No odour	NO	Final depth to water 2.09 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	10:54	Analysis:	
Sample ID:	E5_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

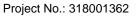
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5D

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.93
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.43
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	3.5
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	356.79
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:00	Pale yellow brown	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
11:03	0.17	19.35	7.67	13500	176	1.29	46.6	2.13	Slightly turbid, pale yellow brown, no odour
11:06	0.17	18.28	7.56	14100	110	0.15	44.4	2.21	Slightly turbid, pale yellow brown, no odour
11:09	0.17	17.81	7.55	14100	-1	0.0	38.8	2.27	Slightly turbid, pale yellow brown, no odour
11:12	0.17	17.76	7.54	14100	-27	0.0	37.4	2.31	Slightly turbid, pale yellow brown, no odour
11:15	0.17	17.80	7.51	14000	-48	0.0	46.2	2.39	Slightly turbid, pale yellow brown, no odour
11:18		17.77	7.51	14000	-49	0.0	47.1	2.44	Slightly turbid, pale yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:24	Pale yellow brown	No odour	NO	Final depth to water 2.41 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	11:23	Analysis:	
Sample ID:	E5D_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Groundwater Monitoring Field Data Form Site: Hydro Quarterly Groundwater Monitoring 2022

Hart Rd, Loxford

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F5

Date:	09/21/2022	Weather Conditions:	Cloudy	Depth to Water	2.27
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	7.38
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.1
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	519.89
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:04	Clear and colourless with brown floccules	Strong sulphidic odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
09:07	0.17	17.77	5.12	9720	115	0.77	17.0	2.46	Clear and colourless with brown floccules, strong sulphidic odour
09:10	0.17	17.83	5.08	10000	110	0.29	17.3	2.55	Clear and colourless with brown floccules, strong sulphidic odour
09:13	0.17	17.87	5.08	10100	108	0.11	18.2	2.62	Clear and colourless with brown floccules, strong sulphidic odour
09:16	0.17	17.92	5.07	10100	107	0.03	14.5	2.66	Clear and colourless with brown floccules, strong sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:21	Clear and colourless with brown floccules	Strong sulphidic odour	NO	Final depth to water 2.60 mbTOC

Sample Date:	09/21/2022	COC:	
Sample Time:	09:19	Analysis:	
Sample ID:	F5_20220921	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F6

Date:	09/21/2022	Weather Conditions:	Cloudy	Depth to Water	3.36
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	15.49
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	12.13
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	1236.54
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

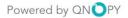
Initial Observations

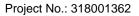
Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:34	Clear and colourless with some brown floccules	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
09:37	0.17	18.30	6.97	8940	-21	1.33	8.9	3.65	Clear and colourless with some brown floccules, no odour
09:40	0.17	18.36	6.98	8940	-23	0.97	7.6	3.72	Clear and colourless with some brown floccules, no odour
09:43	0.17	18.40	6.99	8950	-26	0.68	8.0	4.03	Clear and colourless with some brown floccules, no odour
09:46	0.17	18.40	7.01	8960	-27	0.75	7.5	4.17	Clear and colourless with some brown floccules, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
09:51	Clear and colourless with some brown floccules	No odour	NO	Final depth to water 4.44 mbTOC


Sample Date:	09/21/2022	COC:	
Sample Time:	09:49	Analysis:	
Sample ID:	F6_20220921	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

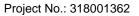
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G2

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	7.65
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	13.34
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.68
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	579.02
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:41	Colourless	Slightly sulphidic odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
11:44	0.17	20.04	7.22	5280	-28	0.67	22.3	7.73	Clear, colourless, slight sulphidic odour
11:47	0.17	20.39	6.84	5290	-14	0.48	21.1	7.76	Clear, colourless, slight sulphidic odour
11:50	0.17	20.02	6.59	5330	-2	0.17	18.8	7.76	Clear, colourless, slight sulphidic odour
11:53	0.17	19.97	6.54	5330	0	0.03	19.3	7.76	Clear, colourless, slight sulphidic odour
11:56	0.17	20.08	6.53	5310	1	0.0	18.1	7.76	Clear, colourless, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:00	Clear, colourless	Slight sulphidic odour	NO	Final depth to water 7.74 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	12:58	Analysis:	
Sample ID:	G2_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G5

••					
Date:	09/21/2022	Weather Conditions:	Cloudy	Depth to Water	2.21
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	11.31
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	9.1
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	927.66
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:17	Colourless to very pale grey brown	Slight sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
08:20	0.17	15.93	7.92	2040	-22	0.93	40.0	2.48	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour
08:23	0.17	16.17	6.36	1340	47	0.53	26.6	2.69	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour
08:26	0.17	16.29	6.29	808	55	0.45	23.8	2.80	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour
08:29	0.17	16.43	6.28	595	64	0.33	24.3	2.96	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour
08:32	0.17	16.54	6.26	498	73	0.25	26.1	3.09	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour
08:35	0.17	16.64	6.23	436	82	0.20	22.9	3.22	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour
08:38	0.17	16.81	6.21	430	89	0.15	20.2	3.41	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour
08:41	0.17	16.93	6.19	457	90	0.11	18.6	3.56	Slightly turbid, colourless to very pale grey brown, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:00	Colourless to very pale brown	Slight sulphidic odour	NO	Final depth to water 3.82 mbTOC

Sample Date:	09/21/2022	COC:	
Sample Time:	08:56	Analysis:	
Sample ID:	G5_20220921	Bottles:	
QC Sample ID:	D01_20220921 and T01_20220921	QC Sample Time:	08:56
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G6

Date:	09/21/2022	Weather Conditions:	Cloudy	Depth to Water	3.43
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.66
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	3.23
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	329.26
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

F	Purge Start Time	Color	Odor	Sheen/Product	Remarks
	09:58	Clear and colourless with light grey floccules	Strong sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
10:01	0.17	18.74	6.10	7450	108	0.67	8.2	3.50	Clear and colourless with light grey floccules, strong sulphidic odour
10:04	0.17	18.80	5.71	7480	142	0.31	7.4	3.51	Clear and colourless with light grey floccules, strong sulphidic odour
10:07	0.17	18.83	5.56	7470	147	0.24	8.6	3.51	Clear and colourless with light grey floccules, strong sulphidic odour
10:10	0.17	18.89	5.47	7420	150	0.16	6.5	3.51	Clear and colourless with light grey floccules, strong sulphidic odour
10:13	0.17	18.92	5.35	7410	149	0.11	5.5	3.52	Clear and colourless with light grey floccules, strong sulphidic odour
10:16	0.17	18.99	5.36	7410	147	0.09	6.1	3.52	Clear and colourless with light grey floccules, strong sulphidic odour
10:19	0.17	19.02	5.30	7390	146	0.08	5.3		Clear and colourless with light grey floccules, strong sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:25	Clear and colourless with light grey floccules	Strong sulphidic odour	NO	Final depth to water 3.49 mbTOC

Sample Date:	09/21/2022	COC:	
Sample Time:	10:24	Analysis:	
Sample ID:	G6_20220921	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N2

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	3.61
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.62
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.01
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	204.9
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

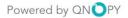
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
15:01	Pale yellow brown	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
15:04	0.17	20.07	6.76	2360	94	5.39	10.4	3.87	Slightly turbid, pale yellow brown, no odour
15:07	0.17	19.97	6.70	2360	108	5.05	9.4	3.98	Slightly turbid, pale yellow brown, no odour
15:10	0.17	19.56	6.68	2380	121	4.88	11.2	4.14	Slightly turbid, pale yellow brown, no odour
15:13	0.17	19.76	6.68	2370	131	4.80	11.3	4.35	Slightly turbid, pale yellow brown, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
15:20	Pale yellow brown	No odour	NO	Final depth to water 4.54 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	15:18	Analysis:	
Sample ID:	N2_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

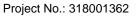
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N8

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	2.44
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.27
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.82
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	287.47
Pump Intake Depth:		Casing Volume to Remove:		_ Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	e Color Odor		Sheen/Product	Remarks
13:31	Dark yellow	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
13:34	0.17	20.71	7.46	9450	-22	0.11	93.9	2.78	Turbid, dark yellow, no odour
13:37	0.17	20.70	7.46	9540	-20	0.02	88.1	2.90	Turbid, dark yellow, no odour
13:40	0.17	20.54	7.52	9610	-40	0.00	79.9	2.98	Turbid, dark yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:45	Dark yellow	No odour		Final depth to water 3.17 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	13:43	Analysis:	
Sample ID:	N8_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Groundwater Monitoring Field Data Form Site: Hydro Quarterly Groundwater Monitoring 2022

Hart Rd, Loxford

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N9

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.71
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.84
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.13
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	115.19
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:09	Pale yellow brown	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
12:12	0.17	16.77	8.22	266	-31	6.74	382	1.98	Turbid, pale yellow brown, no odour
12:15	0.17	17.84	8.25	261	-24	5.69	1000	2.06	Turbid, pale yellow brown, no odour
12:18	0.17	16.94	8.37	244	-15	5.01	1000	2.12	Turbid, pale yellow brown, no odour
12:21	0.17	16.54	8.39	240	-15	4.08	1000	2.12	Turbid, pale yellow brown, no odour
12:24	0.17	16.12	8.41	237	-12	3.30	1000	2.15	Turbid, pale yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:31	Pale yellow brown	No odour	NO	Finals depth to water 1.97 mbTOC

Sample Date:	09/20/2022	COC:
Sample Time:	12:29	Analysis:
Sample ID:	N9_20220920	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:	1000 NTU is the max reading for turbidity on WQM	

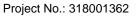
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

PUMP

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.40
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.45
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.05
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	208.97
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

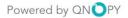
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:01	Pale yellow brown	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
09:04	0.17	15.68	9.77	7030	-20	1.43	27.2	1.45	Slightly turbid, pale yellow brown, no odour
09:07	0.17	15.55	9.77	7120	-39	0.56	28.7	1.47	Slightly turbid, pale yellow brown, no odour
09:10	0.17	15.55	9.78	7150	-50	0.38	30.9	1.49	Slightly turbid, pale yellow brown, no odour
09:13		15.59	9.78	7110	-55	0.3	31.4	1.51	Slightly turbid, pale yellow brown, no odour
09:16	0.17	15.64	9.78	7110	-58	0.22	31.9	1.53	Slightly turbid, pale yellow brown, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
09:20	Pale brown	No odour	NO	Final depth with to water 1.57 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	09:18	Analysis:	
Sample ID:	PUMP_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1D

Date:	09/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	0.98
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	10.39
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	9.41
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	959.26
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:33	Dark yellow	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
11:36	0.17	21.08	8.76	14000	17	2.03	15.2	1.22	Clear, dark yellow, no odour
11:39	0.17	21.33	8.60	13900	11	0.86	13.4	1.39	Clear, dark yellow, no odour
11:42	0.17	21.60	8.54	13700	12	0.0	13.5	1.55	Clear, dark yellow, no odour
11:45	0.17	21.74	8.57	13600	14	0.0	12.2	1.75	Clear, dark yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:56	Dark yellow	No odour	NO	Final depth to water 2.04 mbTOC

Sample Date:	09/21/2022	COC:	
Sample Time:	11:54	Analysis:	
Sample ID:	W1D_20220921	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1S

Date:	09/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	1.15
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.34
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.19
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	121.3
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

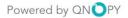
Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:04	Dark yellow	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
12:07	0.17	22.34	8.46	11700	-6	0.67	54.5	1.53	Slightly turbid, dark yellow, no odour
12:10	0.17	21.51	8.22	11800	-27	0.59	53.2	1.62	Slightly turbid, dark yellow, no odour
12:13	0.17	22.71	8.13	11800	-36	0.01	44	1.70	Slightly turbid, dark yellow, no odour
12:16	0.17	22.81	8.12	11800	0	0.03	40	1.79	Slightly turbid, dark yellow, no odour
12:19	0.17	22.83	8.10	11800	12	0.0	33.5	1.83	Slightly turbid, dark yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:24	Dark yellow	No odour	NO	Final depth to water 1.99 mbTOC


Sample Date:	09/21/2022	COC:	
Sample Time:	12:22	Analysis:	
Sample ID:	W1S_20220921	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Groundwater Monitoring Field Data Form Site: Hydro Quarterly Groundwater Monitoring 2022

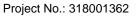
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W2D

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.29
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.38
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.09
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	518.87
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:36	Dark brown	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
08:38	0.17	15.23	10.81	31200	-234	1.71	8.8	1.47	Clear, dark brown, no odour
08:41	0.17	15.31	10.82	31900	-209	0.14	8.2	1.73	Clear, dark brown, no odour
08:44	0.17	15.39	10.81	32000	-188	0.0	5.6	1.91	Clear, dark brown, no odour
08:47	0.17	15.75	10.80	31800	-177	0.0	9.0	2.04	Clear, dark brown, no odour
08:50	0.17	15.96	10.79	31700	-167	0.0	7.5	2.17	Clear, dark brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
08:54	Clear dark brown	No odour	NO	Final depth to water 2.41 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	08:52	Analysis:	
Sample ID:	W2D_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W2S

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.53
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.38
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.84
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	85.63
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
07:56	Pale yellow brown	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
07:59	0.17	14.71	7.48	1130	-27	1.37	204	1.61	Very turbid, pale yellow brown, no odour
08:02	0.17	14.76	7.38	1120	-31	1.29	134	1.62	Turbid, pale brown, no odour
08:05	0.17	14.77	7.32	1100	-31	1.16	213	1.63	Turbid, pale brown, no odour ,
08:08	0.17	14.80	7.24	1040	-34	0.87	60.2	1.64	Clear, colourless, no odour
08:11	0.17	14.83	7.15	925	-37	0.37	24.5	1.65	Clear, colourless, no odour
08:14	0.17	14.87	7.08	841	-37	0.20	19.9	1.64	Clear, colourless, no odour
08:17	0.17	14.90	7.06	808	-38	0.13	19.2	1.64	Clear, colourless, no odour
08:20	0.17	14.94	7.02	767	-46	0.03	15.6	1.64	Clear, colourless, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
08:30	Clear and colourless	No odour	NO	Final depth to water 1.60 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	08:30	Analysis:	
Sample ID:	W2S_20220920	Bottles:	
QC Sample ID:	D01_20220920 and T01_20220920	QC Sample Time:	08:30
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3D

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:
Comments:	Damaged - unab	le to be sampled		

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Damaged - unable to be sampled

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU	mS/cm	mV	mg/L	NTU	m bmp	
15:14									Damaged - unable to be sampled

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Damaged - unable to be sampled

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Damaged - unable to be sampled		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3S

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.17
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.53
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.35
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	137.62
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
15:30	Yellow	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
15:33	0.17	21.41	9.07	3500	50	3.74	10.2	1.40	Clear, yellow, no odour
15:36	0.17	21.32	9.11	3420	52	3.34	10.3	1.52	Clear, yellow, no odour
15:39	0.17	21.15	9.11	3350	56	3.06	10.8	1.61	Clear, yellow, no odour
15:42	0.17	20.45	9.30	3770	61	3.34	10.0	1.65	Clear, yellow, no odour
15:45	0.17	20.64	9.30	4500	54	2.86	9.8	1.71	Clear, yellow, no odour
15:48	0.17	20.57	9.29	4810	52	0.66	9.5	1.75	Clear, yellow, no odour
15:51	0.17	20.49	9.30	4930	67	0.44	9.3	1.80	Clear, yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
15:56	Yellow	No odour	NO	Final depth to water 1.80 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	15:54	Analysis:	
Sample ID:	W3S_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3SA

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:
Comments:	Destroyed - unab	le to be sampled		

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Destroyed - unable to be sampled

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
15:11									Destroyed - unable to be sampled

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Destroyed - unable to be sampled

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Destroved - unable to be sampled		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W4D

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:
Comments:	Destroyed - unab	le to be sampled		

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Destroyed - unable to be sampled

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
15:12									Destroyed - unable to be sampled

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Destroyed - unable to be sampled

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Destroved - unable to be sampled		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W4S

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	0.96
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	1.09
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.13
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	13.25
Pump Intake Depth: Comments:	Insufficient water	Casing Volume to Remove:		Total Volume to Remove:	
Commonto.	Insumcient water	to sample			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Insufficient water to sample

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
15:59									Insufficient water to sample

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks	
				Insufficient water to sample	

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Insufficient water to sample		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W5D

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	4.88
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	10.63
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.75
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	586.16
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
14:42	Clear and colourless with brown floccules	Sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
14:45	0.17	19.21	6.98	928	33	5.41	25.2	5.56	Clear and colourless with brown floccules, sulphidic odour
14:48	0.17	19.40	7.05	934	34	4.81	20.8	5.65	Clear and colourless with brown floccules, sulphidic odour
14:51	0.17	19.32	7.08	943	37	4.88	20.1	5.74	Clear and colourless with brown floccules, sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
14:55	Clear and colourless with brown floccules	Sulphidic odour	NO	Final depth to water 6.93 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	14:54	Analysis:	
Sample ID:	W5D_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

<u>W5S</u>

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.62
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	1.71
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.08
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	8.15
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Insufficient water	to sample			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Insufficient water to sample

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
14:33									Insufficient water to sample

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
			NA	Insufficient water to sample

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Insufficient water to sample		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W6D

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	4.90
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	8.79
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	3.88
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	395.53
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:55	Pale grey brown	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
12:58	0.17	19.90	6.35	742	127	3.36	1000	5.15	Very turbid, pale grey brown, no odour
13:01	0.17	19.76	6.06	737	132	3.16	1000	5.26	Very turbid, pale grey brown, no odour
13:04	0.17	20.10	6.00	726	140	3.25	585	5.28	Very turbid, pale grey brown, no odour
13:07	0.17	19.12	6.07	730	127	3.31	442	5.34	Very turbid, pale grey brown, no odour
13:10	0.17	19.71	5.95	721	163	3.01	721	5.38	Very turbid, pale grey brown, no odour
13:13	0.17	19.64	5.95	722	166	2.99	555	5.41	Very turbid, pale grey brown, no odour
13:16	0.17	19.67	5.90	719	168	3.14	799	5.43	Very turbid, pale grey brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:22	Pale grey brown	No odour	NO	Final depth to water 5.37 mbTOC

Sample Date:	09/20/2022	COC:
Sample Time:	13:20	Analysis:
Sample ID:	W6D_20220920	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:	1000 NTU is the max reading for turbidity on WQM	

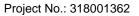
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

<u>W6S</u>

09/20/2022	Weather Conditions:	Sunny	Depth to Water	2.51
Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.1
L	Casing Material:	PVC	Water Column in Well:	0.59
Low Flow	Casing Diameter:	50	Water Volume in Well	60.14
	Casing Volume to Remove:		Total Volume to Remove:	
		Low Flow - Peristaltic Pump L Low Flow Kasing Diameter: Casing Volume to	Low Flow - Peristaltic Pump Water Quality Meter: Horiba L Casing Material: PVC Low Flow Casing Diameter: 50 Casing Volume to Casing Volume to	Low Flow - Peristaltic Pump Water Quality Meter: Horiba Well Depth: L Casing Material: PVC Water Column in Well: Low Flow Casing Diameter: 50 Water Volume in Well

Initial Observations

Purge Start Time	Color Odor		Sheen/Product	Remarks
12:36	Pale yellow brown	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
12:39	0.17	19.48	8.46	8200	3	2.41	138	2.71	Turbid pale yellow brown, no odour
12:42	0.17	19.50	8.55	8260	19	1.92	125	2.76	Turbid, pale yellow brown, no odour
12:45	0.17	19.49	8.56	8250	43	1.58	109	2.84	Turbid, pale yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:50	Yellow brown	No odour	NO	Final depth to water 2.91 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	12:48	Analysis:	
Sample ID:	W6S_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7M

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.61
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.73
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.11
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	215.09
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:02	Dark yellow	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
10:05	0.17	17.71	10.07	9800	-169	0.27	9.6	1.93	Slightly turbid, dark yellow, no odour
10:08	0.17	17.81	10.09	9820	9.83	0.49	9.0	2.28	Turbid, pale yellow brown, no odour
10:11	0.17	17.96	10.11	10300	94	0.15	7.6	2.36	Turbid, pale yellow brown, no odour
10:14	0.17	18.05	10.16	10800	-165	0.0	6.6	2.42	Turbid, pale yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:21	Pale yellow brown	No odour	NO	Finals depth to water 2.55 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	10:19	Analysis:	
Sample ID:	Yw7M_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

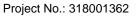
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7S

Date:	09/20/2022	Weather Conditions:	Sunny	Depth to Water	1.51
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.33
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.82
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	83.59
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:29	Colourless with orange brown floccules	Slight sulphidic odour	NA	

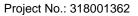

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
09:32	0.17	16.37	7.43	647	-40	1.04	291	1.63	Turbid, pale yellow brown, no odour
09:35	0.17	16.51	7.67	600	-63	1.23	138	1.63	Turbid, pale yellow brown, no odour
09:38	0.17	16.60	7.78	597	-67	1.18	117	1.63	Turbid, pale yellow brown, no odour
09:41	0.17	16.76	7.83	569	-71	1.14	79.1	1.65	Turbid, pale yellow brown, no odour
09:44	0.17	16.90	7.29	641	-62	0.49	132	1.67	Turbid, pale yellow brown, no odour
09:47	0.17	17.03	7.18	573	-63	0.34	75.2	1.72	Turbid, pale yellow brown, no odour
09:50	0.17	17.19	7.14	542	-63	0.31	61.2	1.77	Turbid, pale yellow brown, no odour
09:53	0.17	17.32	7.13	538	-64	0.22	53.0	1.83	Turbid, pale yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:58	Pale yellow brown	Slight sulphidic odour	NO	Final depth to water 1.93 mbTOC

Sample Date:	09/20/2022	COC:	
Sample Time:	09:56	Analysis:	
Sample ID:	W7S_20220920	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			


Gauging Data

Sampler

Jake Bourke

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
A7	09/21/2022 10:37		12.319	4.31	1.60	10.719					
E11	09/20/2022 13:51		10.84	4.78	2.21	8.63					
E4	09/21/2022 11:04		13.81	3.4	1.59	12.22					
E5	09/20/2022 10:30		14.104	2.57	1.54	12.564					
E5D	09/20/2022 10:59		14.182	5.43	1.93	12.252					
F5	09/21/2022 09:02		7.63	7.38	2.27	5.36					
F6	09/21/2022 09:31		6.68	15.49	3.36	3.32					
G2	09/20/2022 11:36		14.342	13.34	7.65	6.692					
G5	09/21/2022 08:12		7.59	11.31	2.22	5.37					
G6	09/21/2022 09:53		6.55	6.66	3.43	3.12					
N2	09/20/2022 14:59		8.853	5.62	3.61	5.243					
N8	09/20/2022 13:25		12.15	5.27	2.44	9.71					
N9	09/20/2022 12:07		11.532	2.84	1.71	9.822					
PUMP	09/20/2022 08:56		10.629	3.45	1.40	9.229					
W1D	09/21/2022 11:30		13.112	10.39	0.98	12.132					
W1S	09/21/2022 11:59		13.177	2.34	1.15	12.027					
W2D	09/20/2022 08:33		14.033	6.38	1.29	12.743					
W2S	09/20/2022 07:54		14.229	2.39	1.53	12.699					
W3D	09/20/2022 15:13		11.29			11.29					Damaged - unable to be sampled
W3S	09/20/2022 15:30		11.352	2.53	1.17	10.182					
W3SA	09/20/2022 15:11		10.786			10.786					Destroyed - unable to be sampled
W4D	09/20/2022 15:12		10.839			10.839					Destroyed - unable to be sampled
W4S	09/20/2022 15:58		10.629	1.09	0.96	9.669					Insufficient water to sample

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
W5D	09/20/2022 14:35		10.571	10.63	4.88	5.691					
W5S	09/20/2022 14:32		10.493	1.71	1.62	8.873					Insufficient water to sample
W6D	09/20/2022 12:51		10.289	8.79	4.90	5.389					
W6S	09/20/2022 12:33		10.69	3.1	2.51	8.18					
W7M	09/20/2022 09:59		14.318	3.73	1.62	12.698					
W7S	09/20/2022 09:25		14.299	2.33	1.51	12.789					

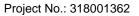
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

A7

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.02
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.32
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.3
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	234.46
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:24	Dark yellow brown	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
11:27	0.17	21.08	10.21	13.6	-236	0.57	12.9	2.12	Clear, dark yellow brown, no odour
11:30	0.17	21.66	10.20	13.5	-240	0.28	9.4	2.19	Clear, dark yellow brown, no odour
11:33	0.17	21.78	10.20	13.4	-232	0.16	8.3		Clear, dark yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
11:38	Dark yellow brown	No odour	NA	Final depth to water 2.27 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	11:37	Analysis:	
Sample ID:	A7_20221221	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E11

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.74
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	4.77
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.02
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	205.92
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
13:10	Brown yellow	Slight sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
13:13	0.17	23.96	9.84	7.39	-170	0.36	340	2.76	Turbid, brown yellow, slight sulphidic odour
13:16	0.17	23.83	9.80	6.35	-175	0.20	236	2.76	Turbid, brown yellow, slight sulphidic odour
13:19	0.17	23.59	9.67	4.85	-185	0.14	129	2.78	Turbid, brown yellow, slight sulphidic odour
13:22	0.17	23.31	9.37	3.71	-216	0.41	81.1	2.78	Turbid, brown yellow, slight sulphidic odour
13:25	0.17	23.32	8.91	3.20	-208	0.85	53.8	2.78	Turbid, brown yellow, slight sulphidic odour
13:28	0.17	23.33	8.84	2.92	-192	0.92	38.9	2.78	Turbid, brown yellow, slight sulphidic odour
13:31	0.17	23.34	8.80	2.79	-182	0.95	36.8	2.78	Turbid, brown yellow, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:33	Brown yellow	Slight sulphidic odour	NA	Final depth to water 2.76 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	13:31	Analysis:	
Sample ID:	E11_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

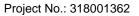
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

<u>E</u>4

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.12
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.42
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.29
Sampling Type:	Low Flow	Casing Diameter:	100	Water Volume in Well	131.5
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
07:59	Dark yellow brown	Slight sulphidic odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
08:02	0.17	18.05	10.69	27.8	-204	0.64	5.5	2.19	Clear, dark yellow brown, slight sulphidic odour
08:05	0.17	18.20	10.69	27.8	-209	0.38	5.4	2.23	Clear, dark yellow brown, slight sulphidic odour
08:08	0.17	18.30	10.70	27.9	-215	0.25	5.4	2.29	Clear, dark yellow brown, slight sulphidic odour
08:11	0.17	18.31	10.70	28.0	-221	0.22	5.2	2.34	Clear, dark yellow brown, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
08:19	Dark yellow brown	Slight sulphidic odour	NA	Final depth to water 2.48 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	08:17	Analysis:	
Sample ID:	E4_20221221	Bottles:	
QC Sample ID:	D02_20221221	QC Sample Time:	08:17
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.08
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.58
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.5
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	50.97
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:08	Dark yellow brown	Sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
10:11	0.17	18.81	10.22	19.2	-31	1.16	5.3	2.19	Clear, dark yellow brown, sulphidic odour
10:14	0.17	18.92	10.21	19.6	-48	0.64	5.2	2.23	Clear, dark yellow brown, sulphidic odour
10:17	0.17	19.34	10.19	19.7	-60	0.29	5.1	2.29	Clear, dark yellow brown, sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:20	Dark yellow brown	Sulphidic odour	NO	Final depth to water 2.39 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	10:20	Analysis:	
Sample ID:	E5_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

E5D

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.07
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.45
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	3.38
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	344.56
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:25	Dark yellow	Sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
10:28	0.17	18.52	8.41	13.4	-64	1.7	75.1	2.24	Slightly turbid, dark yellow, sulphidic odour
10:31	0.17	18.72	8.33	13.3	-92	0.83	71.2	2.27	Slightly turbid, dark yellow, sulphidic odour
10:34	0.17	19.18	8.30	13.2	-102	0.21	71.5	2.31	Slightly turbid, dark yellow, sulphidic odour
10:37	0.17	19.72	8.17	13.2	-102	0.06	66.6	2.36	Slightly turbid, dark yellow, sulphidic odour
10:40	0.17	20.07	8.1	13.1	-102	0.0	58.1	2.40	Slightly turbid, dark yellow, sulphidic odour
10:43	0.17	20.27	8.1	13.1	-100	0.0	55.5		Slightly turbid, dark yellow, sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:50	Dark yellow	Sulphidic odour	NO	Final depth to water 2.36 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	10:50	Analysis:	
Sample ID:	E5D_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F5

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.56
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	7.39
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	4.83
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	492.37
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:59	Pale grey	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
10:02	0.17	20.45	5.13	8.63	113	1.02	64.2	2.91	Clear, colourless with grey floccules, no odour
10:05	0.17	20.35	4.83	9.66	117	0.20	40.1	3.04	Clear, colourless with grey floccules, no odour
10:08	0.17	20.33	4.77	9.78	116	0.06	27.3	3.13	Clear, colourless with grey floccules, no odour
10:11	0.17	19.52	4.74	10.1	116	0.02	15.6	3.19	Clear, colourless with grey floccules, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:15	Colourless with grey floccules	No odour	NA	Final depth to water 3.21 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	10:14	Analysis:	
Sample ID:	F5_20221221	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

F6

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	3.75
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	15.47
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	11.72
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	1194.74
Pump Intake Depth: Comments:		Casing Volume to Remove:		_ Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:24	Colourless	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
10:27	0.17	19.29	7.03	9.07	-43	1.46	27.8	3.28	Clear, colourless, no odour
10:30	0.17	19.24	7.13	9.02	-52	1.00	7.3	4.15	
10:33	0.17	19.20	7.18	8.99	-54	0.75	9.1	4.26	Clear, colourless, no odour
10:36	0.17	19.05	7.22	9.02	-53	0.57	8.7	4.39	Clear, colourless, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
10:38	Colourless	No odour	NA	Finals depth to water 4.67 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	10:37	Analysis:	
Sample ID:	F6_20221221	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

<u>G</u>2

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	7.58
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	13.35
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.77
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	588.19
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

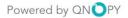
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:19	Colourless	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
11:22	0.17	22.08	7.75	5.06	-80	0.5	41.5	7.69	Clear, colourless, no odour
11:25	0.17	22.08	6.91	4.97	-28	0.22	38.9	7.70	Clear, colourless, no odour
11:28	0.17	22.07	6.85	4.96	-18	0.21	36.5	7.70	Clear, colourless, no odour
11:31	0.17	22.05	6.78	4.93	-13	0.19	37.3	7.70	Clear, colourless, no odour
11:34	0.17	21.99	6.74	4.95	-12	0.1	36.2	7.0	Clear, colourless, no odour
11:37	0.17	21.94	6.78	4.89	-13	0.09	33.1	7.70	Clear, colourless, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
11:40	Colourless	No odour	NA	Final depth to water 7.69 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	11:38	Analysis:	
Sample ID:	G2_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

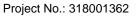
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G5

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.53
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	11.34
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	8.81
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	898.09
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

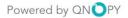
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:36	Pale grey	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
09:39	0.17	20.74	7.19	5.16	-38	0.25	290	2.94	Turbid, pale grey, no odour
09:42	0.17	19.60	6.32	5.34	47	0.10	131	3.26	Turbid, pale grey, no odour
09:45	0.17	20.33	6.16	4.72	62	0.07	114	3.32	Slightly turbid, pale grey, no odour
09:48	0.17	20.87	6.14	4.17	64	0.05	79.5	3.57	Slightly turbid, pale grey, no odour
09:51	0.17	21.07	6.12	3.71	65	0.05	56.2	3.72	Clear, colourless with grey floccules, no odour
09:54	0.17	21.14	6.10	3.50	66	0.05	43.2	3.77	Clear, colourless with grey floccules, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
09:56	Colourless with grey floccules	No odour	NA	Final depth to water 3.92 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	09:55	Analysis:	
Sample ID:	G5_20221221	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

G6

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	3.81
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.68
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.86
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	291.55
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
10:43	Colourless with grey floccules	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
10:46	0.17	19.11	5.76	8.49	-42	0.98	37.7	3.89	Clear, colourless with grey floccules, strong sulphidic odour
10:49	0.17	18.80	5.02	8.53	31	0.87	6.8	3.94	Clear, colourless with grey floccules, strong sulphidic odour
10:52	0.17	18.72	4.89	8.56	38	0.76	6.3	3.91	Clear, colourless with grey floccules, strong sulphidic odour
10:55	0.17	18.69	4.45	8.60	65	0.40	3.8	3.91	Clear, colourless with grey floccules, strong sulphidic odour
10:58	0.17	18.62	4.33	8.65	68	0.29	2.7	4.92	Clear, colourless with grey floccules, strong sulphidic odour
11:01	0.17	18.66	4.17	8.69	78	0.0	2.4	3.92	Clear, colourless with grey floccules, strong sulphidic odour
11:04	0.17	18.64	4.15	8.74	84	0.00	3.0	3.92	Clear, colourless with grey floccules, strong sulphidic odour
11:07	0.17	18.75	4.10	8.75	86	0.0	2.7	3.92	Clear, colourless with grey floccules, strong sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
	Colourless with grey floccules	Strong sulphidic odour	NA	Final depth to water 3.91 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	11:09	Analysis:	
Sample ID:	G6_20221221	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

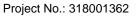
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N2

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	3.66
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.62
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.96
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	199.8
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
15:29	Pale yellow	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
15:32	0.17	22.45	8.01	2.02	47	0.97	5.8	3.94	Clear, pale yellow, no odour
15:35	0.17	22.46	7.75	2.09	59	0.96	6.1	4.06	Clear, pale yellow, no odour
15:38	0.17	21.91	7.43	3.58	35	2.58	19.3	4.13	Clear, pale yellow, no odour
15:41	0.17	22.25	6.16	3.58	115	0.72	16.1	4.19	Clear, pale yellow, no odour
15:44	0.17	21.85	6.11	3.74	122	0.65	23.5	4.42	Clear, pale yellow, no odour
15:47	0.17	21.17	6.03	3.91	124	0.64	22.2	4.54	Clear, pale yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
15:50	Pale yellow	No odour	NA	Finals depth to water 4.85 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	15:49	Analysis:	
Sample ID:	N2_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N8

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.83
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	5.23
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	2.4
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	244.65
Pump Intake Depth: Comments:		Casing Volume to Remove:		_ Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:48	Dark yellow	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
12:51	0.17	23.85	7.45	9.11	-117	1.14	139	3.17	Turbid, dark yellow, no odour
12:54	0.17	24.48	7.49	8.97	-119	0.67	122	3.21	Turbid, dark yellow, no odour
12:57	0.17	24.63	7.51	8.91	-120	0.67	106	3.41	Turbid, dark yellow, no odour
13:00	0.17	24.67	7.54	8.92	-122	0.66	129	3.59	Turbid, dark yellow, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
13:03	Dark yellow	No odour	NA	Final depth to water 3.77 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	13:02	Analysis:	
Sample ID:	N8_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Groundwater Monitoring Field Data Form Site: Hydro Quarterly Groundwater Monitoring 2022

Hart Rd, Loxford

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

N9

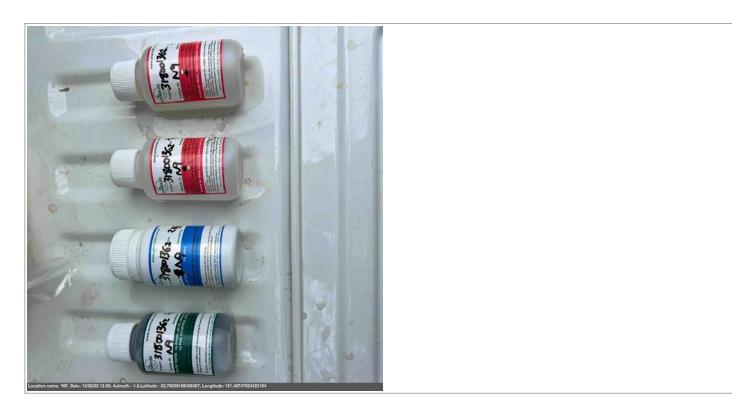
Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.32
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.82
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.5
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	50.97
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
11:48	Colourless	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
11:51	0.17	18.92	8.24	0.389	-123	1.78	323	2.58	Turbid, colourless, no odour
11:54	0.17	19.24	7.97	0.406	-110	1.19	252	2.61	Turbid, colourless, no odour
11:57	0.17	19.54	7.84	0.419	-100	2.13	536	2.64	Turbid, pale grey, no odour
12:00	0.17	19.98	7.81	0.447	-91	2.94	594	2.66	Turbid, pale grey, no odour


Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
12:06	Pale grey	No odour	NO	Final depth to water 2.74 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	12:06	Analysis:	
Sample ID:	N9_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

PUMP

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.11
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.43
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.32
Sampling Type:	Low Flow	Casing Diameter:	100	Water Volume in Well	134.56
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

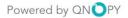
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:10	Pale brown	Sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
09:13	0.17	19.22	10.54	9.79	-258	1.39	236	2.17	Turbid, yellow brown, sulphidic odour
09:16	0.17	19.31	10.52	9.49	-253	0.25	229	2.23	Turbid, yellow brown, sulphidic odour
09:19	0.17	19.44	10.48	9.00	-245	0.02	215	2.30	Turbid, yellow brown, sulphidic odour
09:22	0.17	19.50	10.45	8.69	-238	0.0	208	2.34	Turbid, yellow brown, sulphidic odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
09:25	Yellow brown	Sulphidic odour	NA	Final depth to water 2.39 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	09:24	Analysis:	
Sample ID:	PUMP_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1D

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	1.30
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	10.4
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	9.1
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	927.66
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:38	Pale yellow brown	Slight sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
08:41	0.17	20.27	9.53	12.6	-188	1.54	299	1.66	Turbid, pale yellow brown, slight sulphidic odour
08:44	0.17	20.32	9.51	12.5	-194	1.76	290	1.87	Turbid, pale yellow brown, slight sulphidic odour
08:47	0.17	20.42	9.23	12.4	-197	1.94	290	2.11	Turbid, pale yellow brown, slight sulphidic odour
08:50	0.17	20.50	8.97	12.4	-197	2.01	286	2.22	Turbid, pale yellow brown, slight sulphidic odour
08:53	0.17	20.67	8.84	12.6	-197	2.09	267	2.56	Turbid, pale yellow brown, slight sulphidic odour
08:56	0.17	20.80	8.84	12.7	-192	2.12	261	2.71	Turbid, pale yellow brown, slight sulphidic odour
08:59	0.17	20.92	8.92	12.6	-190	2.12	257	2.92	Turbid, pale yellow brown, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:02	Pale yellow brown	Slight sulphidic odour	NA	Final depth to water 3.12 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	08:59	Analysis:	
Sample ID:	W1D_20221221	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

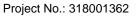
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W1S

Date:	12/21/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	1.55
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.43
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.88
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	89.7
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:10	Yellow	Slight sulphidic odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
09:13	0.17	21.67	7.96	12.3	-140	0.77	70.5	1.86	Slightly turbid, yellow, slight sulphidic odour
09:16	0.17	21.72	7.96	12.2	-144	0.71	54.8	1.92	Slightly turbid, yellow, slight sulphidic odour
09:19	0.17	21.76	7.98	11.9	-147	0.70	23.1	2.03	Slightly turbid, yellow, slight sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:22	Yellow	Slight sulphidic odour	NA	Final depth to water 2.23 mbTOC

Sample Date:	12/21/2022	COC:	
Sample Time:	09:20	Analysis:	
Sample ID:	W1S_20221221	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

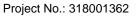
W2D

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	1.9
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	6.38
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	4.48
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	456.69
Pump Intake Depth: Comments:		Casing Volume to Remove:		_ Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:34	Dark brown	Sulphidic odour	NA	

Field Parameters


Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
08:37	0.16	18.56	11.0	31.7	-301	0.37	3.7	2.26	Clear, dark brown, sulphidic odour
08:40	0.17	18.63	11.0	31.7	-311	0.0	2.5	2.38	Clear, dark brown, sulphidic odour
08:43	0.17	18.62	10.99	31.7	-312	0.0	2.1	2.51	Clear, dark brown, no odour
08:46	0.17	18.66	10.99	31.7	-314	0.0	2.0	2.76	Clear, dark brown, sulphidic odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:04	Dark brown	Sulphidic odour	NO	Final depth to water 3.47 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	09:05	Analysis:	
Sample ID:	W2D_20221220	Bottles:	
QC Sample ID:	D01_20221220 and T01_20221220	QC Sample Time:	09:05
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W2S

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.12
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.39
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.27
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	27.52
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

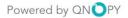
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
08:15	Pale brown	No odour	NO	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
08:23		18.96	7.17	4.78	-55	1.72	1000	2.39	Very turbid, pale brown, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
08:23	Pale brown	No odour	NO	Very turbid. 1000 NTU is max reading for turbidity on WQM

Sample Date:	12/20/2022	COC:
Sample Time:	08:24	Analysis:
Sample ID:	W2S_20221220	Bottles:
QC Sample ID:		QC Sample Time:
Remarks:	Well purged dry - sample taken from flow cell	

Site: Hydro Quarterly Groundwater Monitoring 2022

Hart Rd, Loxford

W3D

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Well damaged - unable to be sampled				

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Well damaged - unable to be sampled

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
10:35									Well damaged - unable to be sampled

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Well damaged - unable to be sampled

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well damaged - unable to be sampled		

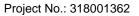
Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3S

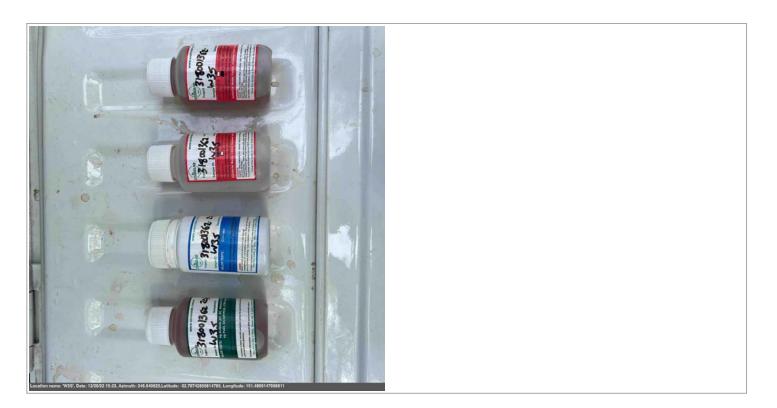
Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	1.64
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.54
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.9
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	91.74
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
15:04	Dale yellow	No odour	NA	


Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
15:07	0.17	22.05	9.34	8.31	25	1.45	4.1	1.70	Clear, dark yellow, no odour
15:10	0.17	22.61	9.32	8.20	17	1.48	4.0	1.88	Clear, dark yellow, no odour
15:13	0.17	22.98	8.34	8.18	-7	0.07	3.9	1.97	Clear, dark yellow, no odour
15:16	0.17	22.99	8.35	8.19	-6	0.04	3.7	2.12	Clear, dark yellow, no odour
15:19	0.17	22.99	8.30	8.18	7	0.17	3.7	2.16	Clear, dark yellow, no odour


Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
15:22	Dark yellow	No odour	NA	Final depth to water 2.35 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	15:21	Analysis:	
Sample ID:	W3S_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W3SA

Date:	12/20/2022	Weather Conditions:	Sunny	Depth to Water	
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Well damaged - unable to be sampled				

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Well damaged - unable to be sampled

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
10:36									Well damaged - unable to be sampled

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Well damaged - unable to be sampled

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well damaged - unable to be sampled		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W4D

Date:	12/20/2022	Weather Conditions:	Sunny	Depth to Water
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:
Comments:	Well damaged - u	unable to be sampled		

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Well damaged - unable to be sampled

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
10:39									Well damaged - unable to be sampled

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Well damaged - unable to be sampled

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well damaged - unable to be sampled		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W4S

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.11
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth: Comments:	Well dry	Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Well dry

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
13:40									Well dry

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
			NA	Well dry

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well dry		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W5D

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	5.0
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	10.53
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	5.52
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	562.71
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

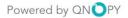
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
14:29	Colourless	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU			mg/L	NTU	m bmp	
14:32	0.17	22.44	8.45	1.59	11	1.32	8.7	5.62	Clear, colourless, no odour
14:35	0.17	22.53	8.36	1.46	20	0.91	10.4	5.78	Clear, colourless, no odour
14:38	0.17	22.57	8.26	1.69	32	3.68	7.0	5.82	Clear, colourless, no odour
14:41	0.17	22.54	7.79	2.08	4	4.16	5.4	5.85	Clear, colourless, no odour
14:44	0.17	22.60	7.57	2.16	15	3.17	5.0	5.88	Clear, colourless, no odour
14:47	0.17	22.70	7.45	0.843	20	4.13	4.5	5.88	Clear, colourless, no odour
14:50	0.17	22.84	7.51	0.824	11	4.60	4.4	5.88	Clear, colourless, no odour
14:53	0.17	22.89	7.54	0.812	8	5.13	4.5	5.88	Clear, colourless, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
14:55	Colourless	No odour	NA	Final depth to water 5.88 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	14:54	Analysis:	
Sample ID:	W5D_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W5S

Date:	12/20/2022	Weather Conditions:	Sunny	Depth to Water	
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	1.26
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	
Pump Intake Depth: Comments:	Well dry	Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Well dry

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
14:16									Well dry

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
			NA	Well dry

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Well dry		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W6D

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	4.92
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	8.79
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	3.86
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	393.49
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:					

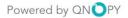
Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
12:16	Pale yellow brown grey	No odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
12:19	0.17	20.67	6.79	0.840	85	0.95	720	5.14	Very turbid, pale yellow brown grey, no odour
12:22	0.17	20.76	6.40	0.842	141	0.78	709	5.28	Very turbid, pale yellow brown grey, no odour
12:25	0.17	20.84	6.31	0.844	162	0.61	403	5.35	Very turbid, pale yellow brown grey, no odour
12:28	0.17	20.95	6.28	0.851	175	0.54	394	5.42	Very turbid, pale yellow brown grey, no odour
12:31	0.17	21.24	6.24	0.841	167	0.36	413	5.38	Very turbid, pale yellow brown grey, no odour

Final Observations


End purge time	Color	Odor	Sheen/Product	Remarks
12:42	Pale yellow brown grey	No odour	NO	Final depth to water 5.21 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	12:39	Analysis:	
Sample ID:	W6D_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W6S

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.87
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.11
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.23
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	23.44
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Insufficient water	to sample			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Insufficient water to sample

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
12:11									Insufficient water to sample

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Insufficient water to sample

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Insufficient water to sample		

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7M

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.35
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	3.73
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	1.38
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	140.67
Pump Intake Depth: Comments:		Casing Volume to Remove:		Total Volume to Remove:	

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
09:35	Yellow brown	Slight sulphidic odour	NA	

Field Parameters

Time	Flow Rate	Temp	pН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min	С	SU	mS/cm	mV	mg/L	NTU	m bmp	
09:38	0.17	19.48	10.39	12.6	-188	0.35	5.9	2.77	Clear, yellow brown, slight sulphidic odour
09:41	0.17	19.51	10.36	12.8	-33	0.32	7.8	2.87	Clear, yellow brown, slight sulphidic odour
09:44	0.17	19.34	10.43	14.5	-124	0.32	10.2	3.02	Clear, yellow brown, slight sulphidic odour
09:47	0.17	19.38	10.78	23	-270	0.0	88.8	3.17	Turbid, dark yellow brown, no odour
09:50		19.35	10.78	23.2	-270	0.0	83.5	3.21	Turbid, dark yellow brown, no odour
09:53	0.17	19.43	10.81	23.3	-255	0.0	177		Turbid, dark yellow brown, no odour

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
09:58	Dark yellow brown	Slight sulphidic odour	NA	Final depth to water 3.11 mbTOC

Sample Date:	12/20/2022	COC:	
Sample Time:	09:54	Analysis:	
Sample ID:	W7M_20221220	Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:			

Groundwater Monitoring Field Data Form Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

Groundwater Monitoring Field Data Form

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

W7S

Date:	12/20/2022	Weather Conditions:	Sunny Cloudy	Depth to Water	2.11
Purge Method:	Low Flow - Peristaltic Pump	Water Quality Meter:	Horiba	Well Depth:	2.32
Purge Volume Units:	L	Casing Material:	PVC	Water Column in Well:	0.2
Sampling Type:	Low Flow	Casing Diameter:	50	Water Volume in Well	20.38
Pump Intake Depth:		Casing Volume to Remove:		Total Volume to Remove:	
Comments:	Insufficient water	to sample			

Initial Observations

Purge Start Time	Color	Odor	Sheen/Product	Remarks
			NA	Insufficient water to sample

Field Parameters

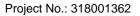
Time	Flow Rate	Temp	рН	Cond.	ORP	DO	Turbidity	DTW	Remarks
	L/min		SU				NTU	m bmp	
09:31									Insufficient water to sample

Final Observations

End purge time	Color	Odor	Sheen/Product	Remarks
				Insufficient water to sample

Sampling Summary

Sample Date:		COC:	
Sample Time:		Analysis:	
Sample ID:		Bottles:	
QC Sample ID:		QC Sample Time:	
Remarks:	Insufficient water to sample		



Gauging Data

Sampler

Jake Bourke

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
A7	12/21/2022 11:23		12.319	4.32	2.02	10.299					
E11	12/20/2022 13:08		10.84	4.77	2.74	8.1					
E4	12/21/2022 07:54		13.81	3.42	2.12	11.69					
E5	12/20/2022 10:05		14.104	2.58	2.08	12.024					
E5D	12/20/2022 10:20		14.182	5.45	2.07	12.112					
F5	12/21/2022 09:58		7.63	7.39	2.56	5.07					
F6	12/21/2022 10:20		6.68	15.47	3.75	2.93					
G2	12/20/2022 11:11		14.342	13.35	7.58	6.762					
G5	12/21/2022 09:34		7.59	11.34	2.53	5.06					
G6	12/21/2022 10:41		6.55	6.68	3.81	2.74					
N2	12/20/2022 15:26		8.853	5.62	3.66	5.193					
N8	12/20/2022 12:46		12.15	5.23	2.83	9.32					
N9	12/20/2022 11:45		11.532	2.82	2.32	9.212					
PUMP	12/20/2022 09:10		14.302	3.43	2.11	12.192					
W1D	12/21/2022 08:33		13.112	10.4	1.30	11.812					
W1S	12/21/2022 09:07		13.177	2.43	1.55	11.627					
W2D	12/20/2022 08:32		14.033	6.38	1.90	12.133					
W2S	12/20/2022 07:54		14.229	2.39	2.12	12.109					
W3D	12/20/2022 10:34		11.29			11.29					Well damaged - unable to be sampled
W3S	12/20/2022 15:01		11.352	2.54	1.64	9.712					
W3SA	12/20/2022 10:36		10.786			10.786					Well damaged - unable to be sampled
W4D	12/20/2022 10:39		10.839			10.839					Well damaged - unable to be sampled

Groundwater Monitoring Field Data Form

Site: Hydro Quarterly Groundwater Monitoring 2022 Hart Rd, Loxford

Well	Date/Time	Depth Installed	Reference Elevation (ft)	Well Depth (ft)	Depth To Water (ft)	GW Elevation (ft)	NAPL Start Depth	NAPL End Depth	Calculate NAPL Thickness	PID (ppmv)	Remarks
W4S	12/20/2022 13:39		10.629	3.11		10.629					Wells dry
W5D	12/20/2022 14:21		10.571	10.53	5.0	5.571					
W5S	12/20/2022 14:15		10.493	1.26		10.493					Well dry
W6D	12/20/2022 12:12		10.289	8.79	4.92	5.369					
W6S	12/20/2022 12:10		10.69	3.11	2.87	7.82					Insufficient water to sample
W7M	12/20/2022 09:34		14.318	3.73	2.35	11.968					
W7S	12/20/2022 09:30		14.299	2.32	2.11	12.189					Insufficient water to sample

APPENDIX 5 LABORATORY REPORTS

CERTIFICATE OF ANALYSIS 291631

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Bourke, J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	Hydro Groundwater Plume Monitoring - 318001362
Number of Samples	26 Water
Date samples received	22/03/2022
Date completed instructions received	22/03/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	30/03/2022
Date of Issue	30/03/2022
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 291631 Revision No: R00

Page | 1 of 14

Miscellaneous Inorganics						
Our Reference		291631-1	291631-2	291631-3	291631-4	291631-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	W7S
Date Sampled		17/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/03/2022	24/03/2022	24/03/2022	24/03/2022	24/03/2022
Date analysed	-	24/03/2022	24/03/2022	24/03/2022	24/03/2022	24/03/2022
Fluoride, F	mg/L	37	970	19	400	27
Total Cyanide	mg/L	0.27	220	0.035	29	0.51
Free Cyanide in Water	mg/L	<0.004	0.066	<0.004	0.030	<0.004
Miscellaneous Inorganics						
Our Reference		291631-6	291631-7	291631-8	291631-9	291631-10
Your Reference	UNITS	E5	E5D	G2	N8	N9
Date Sampled		17/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/03/2022	24/03/2022	24/03/2022	24/03/2022	24/03/2022
Date analysed	-	24/03/2022	24/03/2022	24/03/2022	24/03/2022	24/03/2022
Fluoride, F	mg/L	360	10	0.3	0.5	79
Total Cyanide	mg/L	56	0.70	<0.004	0.38	0.65
Free Cyanide in Water	mg/L	0.30	<0.004	<0.004	<0.004	<0.004
Miscellaneous Inorganics						
Miscellaneous Inorganics Our Reference		291631-11	291631-12	291631-13	291631-14	291631-15
	UNITS	291631-11 W6D	291631-12 E11	291631-13 W5D	291631-14 N2	291631-15 F5
Our Reference	UNITS					
Our Reference Your Reference	UNITS	W6D	E11	W5D	N2	F5
Our Reference Your Reference Date Sampled	UNITS	W6D 17/03/2022	E11 17/03/2022	W5D 17/03/2022	N2 18/03/2022	F5 18/03/2022
Our Reference Your Reference Date Sampled Type of sample	UNITS - -	W6D 17/03/2022 Water	E11 17/03/2022 Water	W5D 17/03/2022 Water	N2 18/03/2022 Water	F5 18/03/2022 Water
Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS - - mg/L	W6D 17/03/2022 Water 24/03/2022	E11 17/03/2022 Water 24/03/2022	W5D 17/03/2022 Water 24/03/2022	N2 18/03/2022 Water 24/03/2022	F5 18/03/2022 Water 24/03/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	-	W6D 17/03/2022 Water 24/03/2022 24/03/2022	E11 17/03/2022 Water 24/03/2022 24/03/2022	W5D 17/03/2022 Water 24/03/2022 24/03/2022	N2 18/03/2022 Water 24/03/2022 24/03/2022	F5 18/03/2022 Water 24/03/2022 24/03/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F	- - mg/L	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide	- - mg/L mg/L	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1 <0.1	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water	- - mg/L mg/L	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1 <0.1	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics	- - mg/L mg/L	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1 <0.004 <0.004	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20 <0.004	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004 <0.004	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004 <0.004	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2 <0.004 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference	- - mg/L mg/L mg/L	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1 <0.004 <0.004 291631-16	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20 <0.004 291631-17	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004 <0.004 291631-18	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004 <0.004 291631-19	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2 <0.004 <0.004 291631-20
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference	- - mg/L mg/L mg/L	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1 <0.004 <0.004 291631-16 G5	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20 <0.004 291631-17 F6	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004 <0.004 291631-18 G6	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004 <0.004 291631-19 W3S	F5 18/03/2022 Water 24/03/2022 0.2 0.2 <0.004 <0.004 291631-20 A7
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled	- - mg/L mg/L mg/L	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1 <0.004 <0.004 <0.004 291631-16 G5 18/03/2022	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20 <0.004 291631-17 F6 18/03/2022	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004 <0.004 <0.004 291631-18 G6 18/03/2022	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004 <0.004 <0.004 291631-19 W3S 18/03/2022	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2 <0.004 <0.004 <0.004 291631-20 A7 18/03/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample	- - mg/L mg/L UNITS	W6D 17/03/2022 Water 24/03/2022 24/03/2022 < <0.1 <0.004 <0.004 <291631-16 G5 18/03/2022 Water	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20 <0.004 291631-17 F6 18/03/2022 Water	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004 <0.004 <0.004 291631-18 G6 18/03/2022 Water	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004 <0.004 <0.004 291631-19 W3S 18/03/2022 Water	F5 18/03/2022 Water 24/03/2022 0.2 0.2 0.2 <0.004 <0.004 <0.004 291631-20 A7 18/03/2022 Water
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Your Reference Date Sampled Type of sample Date prepared	- - mg/L mg/L UNITS	W6D 17/03/2022 Water 24/03/2022 24/03/2022 <0.1 <0.004 <0.004 291631-16 G5 18/03/2022 Water 24/03/2022	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20 <0.004 291631-17 F6 18/03/2022 Water 24/03/2022	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004 <0.004 <0.004 291631-18 G6 18/03/2022 Water 24/03/2022	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004 <0.004 291631-19 W3S 18/03/2022 Water 24/03/2022	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2 0.2 <0.004 <0.004 291631-20 A7 18/03/2022 Water 24/03/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Pate Sampled Type of sample Date prepared Date analysed	- mg/L mg/L mg/L UNITS	W6D 17/03/2022 Water 24/03/2022 24/03/2022 < 24/03/202240.004<0.004	E11 17/03/2022 Water 24/03/2022 24/03/2022 8.3 0.20 <0.004 291631-17 F6 18/03/2022 Water 24/03/2022 24/03/2022	W5D 17/03/2022 Water 24/03/2022 24/03/2022 0.8 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.0	N2 18/03/2022 Water 24/03/2022 24/03/2022 0.7 <0.004 <0.004 <0.004 291631-19 W3S 18/03/2022 Water 24/03/2022	F5 18/03/2022 Water 24/03/2022 24/03/2022 0.2 0.2 0.2 (0.004 <0.004 <0.004 (0.004) 291631-20 A7 18/03/2022 Water 24/03/2022

Miscellaneous Inorganics						
Our Reference		291631-21	291631-22	291631-23	291631-24	291631-25
Your Reference	UNITS	E4	W1S	W1D	D01_20220317	D02_20220318
Date Sampled		18/03/2022	18/03/2022	18/03/2022	17/03/2022	18/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/03/2022	24/03/2022	24/03/2022	24/03/2022	24/03/2022
Date analysed	-	24/03/2022	24/03/2022	24/03/2022	24/03/2022	24/03/2022
Fluoride, F	mg/L	710	13	12	0.3	0.1
Total Cyanide	mg/L	140	0.72	0.81	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004

Miscellaneous Inorganics		
Our Reference		291631-26
Your Reference	UNITS	R01_20220318
Date Sampled		18/03/2022
Type of sample		Water
Date prepared	-	24/03/2022
Date analysed	-	24/03/2022
Fluoride, F	mg/L	<0.1
Total Cyanide	mg/L	<0.004
Free Cyanide in Water	mg/L	<0.004

HM in water - dissolved						
Our Reference		291631-1	291631-2	291631-3	291631-4	291631-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	W7S
Date Sampled		17/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Dissolved	µg/L	12,000	730	2,300	750	23,000
HM in water - dissolved	1	1	1			
Our Reference		291631-6	291631-7	291631-8	291631-9	291631-10
Your Reference	UNITS	E5	E5D	G2	N8	N9
Date Sampled		17/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Dissolved	µg/L	90	20	<10	70	170
HM in water - dissolved						
Our Reference		291631-11	291631-12	291631-13	291631-14	291631-15
Your Reference	UNITS	W6D	E11	W5D	N2	F5
Date Sampled		17/03/2022	17/03/2022	17/03/2022	18/03/2022	18/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Dissolved	µg/L	<10	2,100	40	3,000	250
HM in water - dissolved						
Our Reference		291631-16	291631-17	291631-18	291631-19	291631-20
Your Reference	UNITS	G5	F6	G6	W3S	A7
Date Sampled		18/03/2022	18/03/2022	18/03/2022	18/03/2022	18/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Dissolved	µg/L	30	<10	10,000	310	160
HM in water - dissolved						
Our Reference		291631-21	291631-22	291631-23	291631-24	291631-25
Your Reference	UNITS	E4	W1S	W1D	D01_20220317	D02_20220318
Date Sampled		18/03/2022	18/03/2022	18/03/2022	17/03/2022	18/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Dissolved	µg/L	360	180	240	<10	30

HM in water - dissolved		
Our Reference		291631-26
Your Reference	UNITS	R01_20220318
Date Sampled		18/03/2022
Type of sample		Water
Date prepared	-	25/03/2022
Date analysed	-	25/03/2022
Aluminium-Dissolved	μg/L	<10

HM in water - total						
Our Reference		291631-1	291631-2	291631-3	291631-4	291631-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	W7S
Date Sampled		17/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Total	µg/L	17,000	870	9,000	4,200	32,000
HM in water - total						
Our Reference		291631-6	291631-7	291631-8	291631-9	291631-10
Your Reference	UNITS	E5	E5D	G2	N8	N9
Date Sampled		17/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Total	µg/L	310	270	310	610	1,600
HM in water - total						
Our Reference		291631-11	291631-12	291631-13	291631-14	291631-15
Your Reference	UNITS	W6D	E11	W5D	N2	F5
Date Sampled		17/03/2022	17/03/2022	17/03/2022	18/03/2022	18/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Total	µg/L	1,500	3,300	280	4,100	1,300
HM in water - total						
Our Reference		291631-16	291631-17	291631-18	291631-19	291631-20
Your Reference	UNITS	G5	F6	G6	W3S	A7
Date Sampled		18/03/2022	18/03/2022	18/03/2022	18/03/2022	18/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Total	µg/L	260	480	10,000	4,700	200
HM in water - total						
Our Reference		291631-21	291631-22	291631-23	291631-24	291631-25
Your Reference	UNITS	E4	W1S	W1D	D01_20220317	D02_20220318
Date Sampled		18/03/2022	18/03/2022	18/03/2022	17/03/2022	18/03/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Date analysed	-	25/03/2022	25/03/2022	25/03/2022	25/03/2022	25/03/2022
Aluminium-Total	µg/L	410	1,100	1,000	260	280

HM in water - total		
Our Reference		291631-26
Your Reference	UNITS	R01_20220318
Date Sampled		18/03/2022
Type of sample		Water
Date prepared	-	25/03/2022
Date analysed	-	25/03/2022
Aluminium-Total	μg/L	<10

	Method ID	Methodology Summary
ſ	Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
		Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
		Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
	Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
	Metals-022	Determination of various metals by ICP-MS.

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	291631-2
Date prepared	-			24/03/2022	1	24/03/2022	24/03/2022		24/03/2022	28/03/2022
Date analysed	-			24/03/2022	1	24/03/2022	24/03/2022		24/03/2022	28/03/2022
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	37	38	3	83	108
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	0.27	0.26	4	84	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	96	[NT]

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	291631-3
Date prepared	-			[NT]	11	24/03/2022	24/03/2022		24/03/2022	24/03/2022
Date analysed	-			[NT]	11	24/03/2022	24/03/2022		24/03/2022	24/03/2022
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	<0.1	<0.1	0	116	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	96	108
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	96	114

QUALITY CC	NTROL: Mis	cellaneou	is Inorganics		Duplicate				Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	291631-22	
Date prepared	-			[NT]	21	24/03/2022	24/03/2022		[NT]	28/03/2022	
Date analysed	-			[NT]	21	24/03/2022	24/03/2022		[NT]	28/03/2022	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	21	710	690	3	[NT]	95	
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	21	140	[NT]		[NT]	[NT]	
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	21	<0.004	<0.004	0	[NT]	[NT]	

QUALITY CO	NTROL: Mis	cellaneou	s Inorganics		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	291631-26
Date prepared	-			[NT]	25	24/03/2022	24/03/2022		[NT]	24/03/2022
Date analysed	-			[NT]	25	24/03/2022	24/03/2022		[NT]	24/03/2022
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	25	0.1	[NT]		[NT]	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	25	<0.004	<0.004	0	[NT]	99
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	25	<0.004	<0.004	0	[NT]	98

QUALITY C	ONTROL: HN	/l in water	- dissolved			Du	plicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	291631-2	
Date prepared	-			25/03/2022	1	25/03/2022	25/03/2022		25/03/2022	25/03/2022	
Date analysed	-			25/03/2022	1	25/03/2022	25/03/2022		25/03/2022	25/03/2022	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	12000	12000	0	116	#	
QUALITY C	- dissolved			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	291631-22	
Date prepared	-			[NT]	11	25/03/2022	25/03/2022		25/03/2022	25/03/2022	
Date analysed	-			[NT]	11	25/03/2022	25/03/2022		25/03/2022	25/03/2022	
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	11	<10	<10	0	114	#	
QUALITY CO	ONTROL: HN	/l in water	- dissolved			Du	plicate		Spike Re	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	21	25/03/2022	25/03/2022		[NT]	[NT]	
Date analysed	-			[NT]	21	25/03/2022	25/03/2022		[NT]	[NT]	

360

21

370

3

Metals-022

µg/L

10

Aluminium-Dissolved

QUALIT	Y CONTROL:	HM in wa	ter - total		Duplicate Spike				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	291631-2
Date prepared	-			25/03/2022	1	25/03/2022	25/03/2022		25/03/2022	25/03/2022
Date analysed	-			25/03/2022	1	25/03/2022	25/03/2022		25/03/2022	25/03/2022
Aluminium-Total	µg/L	10	Metals-022	<10	1	17000	17000	0	108	#
QUALIT	ter - total		Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	291631-22
Date prepared	-			[NT]	11	25/03/2022	25/03/2022		25/03/2022	25/03/2022
Date analysed	-			[NT]	11	25/03/2022	25/03/2022		25/03/2022	25/03/2022
Aluminium-Total	µg/L	10	Metals-022	[NT]	11	1500	1400	7	106	#
QUALIT	Y CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	25/03/2022	25/03/2022		[NT]	[NT]
Date analysed	-			[NT]	21	25/03/2022	25/03/2022		[NT]	[NT]

410

21

410

0

Metals-022

µg/L

10

Aluminium-Total

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP

			CHA	IN OF	CU	ST	OD	•Y -	- C	lie	nt									ENVIROLAB
				ENVI	ROL	AB (<u>GRC</u>	OUP	_				_							GROUP
Client: Ramb	oli				Client	Proje	ct Nam	ie / Nu	mber ,	/ Site	etc (ie :	report	title):		Envi	irolab	Ser	vices	5	
Contact perso	Contact person: Jake Bourke					Hydro	Groun	dwate	r Plum	te Mor	itoring	- 318	00136	2	12 A	shley (St, C	hatsv	vood	I, NSW 2067
Project Mgr: 1	Jordyn Kirsch				PO No										Phor	1e: 02	991(0 620	0	Fax :02 9910 6201
Sampler: Jak	e Bourke	<u> </u>					iote N								E-ma	ail: ah	ie@e	enviro	olabs	services.com.au
Address: Leve	e <mark>l 2 Suite 18,</mark> 50 Glebe Roa	ad,			Date	results	requi	ed:							_	act: A		_		
The Junction]										Envi	irolab	Ser	vices	5 WA	t/a MPL
-	1				Or ch	oose: s	standa	rd / sa	me da	y/10	lay / 2	day /	3 day		16-1	8 Hay	den (Crt, M	1yar e	ee WA 6154
Phone:	(02) 49625444	Mob:	046	7580473				_			l is requin	ed - sun	charge a _l	pplies_	Phor	ne: 08	9317	7 250	5	Fax :08 9317 4163
Fax:					Lab co	ommer	nts: Hig	ghly co	ntamii	nated						ail: Ial		-		i
Email: j	kirsch@ramboll.com; jbou	irke@ramboll.com													Cont	act: Jo	oshu	a Lim	1	
	Samp	ole information	, ,		<u> </u>						Tes	ts Req	uired							Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium											Provide as much information about the sample as you can
	W2S		17/03/2022	WATER	X	Х	X	X	X											
2	W2D		17/03/2022	WATER	x	х	x	x	x						_					
2	PUMP		17/03/2022	WATER	x	X	X	x	x											
4	W7M		17/03/2022	WATER	x	х	X	x	x						<u> </u>					
5	W7S		17/03/2022	WATER	X	х	X	x	X											
6	E5	_	17/03/2022	WATER	X	X	X	x	X											
7	E5D		17/03/2022	WATER	X	X	x	x	x											
_ 8_	G2		17/03/2022	WATER	x	X	x	x	X					<u> </u>						
<u> </u>	<u>N8</u>	<u> </u>	17/03/2022	WATER	×	X	X	x	x	<u> </u>		<u> </u>								·
10	N9		17/03/2022	WATER	X	X	X	x	_ X	Ļ			ļ	<u> </u>						<u> </u>
<u>()</u>	W6D		17/03/2022	WATER	×	х	x	×	x	ļ		<u> </u>		<u> </u>						
12	<u>E11</u>		17/03/2022	WATER	X	X	x	x	X					I						<u> </u>
13	W5D		17/03/2022	WATER	x	x	x	x	x										[
TYT	N2		18/03/2022	WATER	×	x	x	x	x	1			1	1-						
Relinquished	by (company):	Ramboll			Received by (company):						Lab u	se only:				2911631				
Print Name:		Jake Bourke			Print Name: CEOFF					Samples Received: Cool or Ambient (circle one)										
Date & Time:		18/03/2022			Date & Time: 22-3-72 4 23-3-72						Temperature Received at: (if applicable)									
Signature:					Signat	ture;		15	\supset)										d courier

				ENVI		AB (GRO	UP												
Client: Ramb Contact pers	ooll son: Jake Bourke			•								Envirolab Services 12 Ashley St, Chatswood, NSW 2067								
	Jordyn Kirsch				PO No											ne: 02	-		-	Fax :02 9910 6201
Sampler: Jak		<u>-</u>				olab Qu	iote No	o. :												ervices.com.au
	vel 2 Suite 18, 50 Glebe Ro	ad.				esuits										tact: /	-			
The Junction		,			1										Fnv	irola	h Ser	vice	s WΔ	t/a MPL
	· · · · · · · · · · · · · · · · · · ·				Or cho	oose: e	standa	rd / sa	me day	y / 1 d	lay / 2	day / 3	3 day							e WA 6154
Phone:	(02) 49625444	Mob:	04	67580473	Note: Ir	nform lat) in adva	nce if un	gent turn	around	' is requir	red - surc	tharge ap	oplies	Pho	ne: 08	3 931	7 250)5	Fax :08 9317 4163
Fax:					Lab co	mmen	its: Hig	jhly co	ntamin	nated					E-m	ail: la	ap@m	nol.co	m.au	
	jkirsch@ramboll.com; jbo	urke@ramboll.com			1											tact:		-		
		aple information					_				Tes	ts Req	uired							Comments
	301			1					Е		1						<u> </u>	<u> </u>		
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	∵. Total Aluminium	Dissolved Aluminium											Provide as much information about the sample as you can
15	F5		18/03/2022	WATER	x	x	X	×	x											
C	G5		18/03/2022	WATER	X	X	X	х	x											
	F6		18/03/2022	WATER	X	x	X	х	x]		
18	G6		18/03/2022	WATER	X	x	х	X	x											
- 19-	W3S		18/03/2022	WATER	X	X	х	х	х											
20	A7		18/03/2022	WATER	X	х	X	X	х											
21	E4		18/03/2022	WATER	X	х	х	X	x									[
z	W1S		18/03/2022	WATER	x	х	х	X	x											
23	W1D		18/03/2022	WATER	X	х	x	X	x											
24	D01_20220317		17/03/2022	WATER	X	х	х	X	x							-			• • •	
	T01_20220317	1	17/03/2022	WATER	X	х	х	X	х							1			1 -	Please forward to ALS
25	D02_20220318		18/03/2022	WATER	x	x	x	x	x									<u> </u>	1	
26	R01_20220348		18/03/2022	WATER	x	х	х	x	х							1			1	
	· · · · · · · · · · · · · · · · · · ·									-		<u> </u>				1 -	1		1	
												<u> </u>		4		1 -	1		1	
	······································				1						<u> </u>	1		<u> -</u>		<u>†</u>			1	<u> </u>
Relinquished	d by (company):	Ramboll			Receiv	ved by	(comp	any):		4	25	5	1	<u> </u>	Lab u	se only	v:	1	1	291631
Print Name:		Jake Bourke			Print			an	1							-		2001	Ame	bient (circle one)
Date & Time:		18/03/2022								7	3/3	Tri							· (<u> </u>
Signature:					Date & Time: 22/3/22 23/3/22 Signature:					_	Temperature Received at: (if applicable) Transported by: Hand delivered / courie)									

ļ:

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Bourke, J Kirsch

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001362
Envirolab Reference	291631
Date Sample Received	22/03/2022
Date Instructions Received	22/03/2022
Date Results Expected to be Reported	30/03/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	26 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

One esky received 22/3, one received 23/03

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total
W2S	✓	✓	✓	✓	\checkmark
W2D	✓	✓	✓	\checkmark	\checkmark
PUMP	✓	✓ ✓	✓ ✓	✓ ✓	✓
W7M	✓	\checkmark	✓	✓	✓
W7S	J J <t< td=""><td>✓ ✓ ✓</td><td>✓ ✓ ✓ ✓</td><td>✓ ✓ ✓ ✓</td><td>$\begin{tabular}{ c c c c } \hline \end{tabular} \\$</td></t<>	✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓ ✓ ✓	$ \begin{tabular}{ c c c c } \hline \end{tabular} \\ $
E5	✓	✓	✓	\checkmark	\checkmark
E5D	✓	✓	✓	\checkmark	✓
G2	✓	✓	✓	\checkmark	\checkmark
N8	✓	✓	✓ ✓	✓	✓
N9	✓	 <	✓	\checkmark	\checkmark
W6D	✓	✓	✓ ✓ ✓ ✓	\checkmark	\checkmark
E11	✓	✓	✓	\checkmark	✓
W5D	✓	✓	✓	✓	✓
N2	✓	✓	✓	\checkmark	\checkmark
F5	✓	✓	✓	\checkmark	✓
G5	✓	✓	✓ ✓	✓	✓
F6	✓	✓	✓	✓	✓
G6	✓	✓	✓	✓	✓
W3S	✓	✓	✓	✓	✓
A7	✓	✓	✓	✓	✓
E4	✓	✓ ✓ ✓ ✓	✓ ✓ ✓ ✓	> > <td>✓</td>	✓
W1S	✓	✓	✓	✓	✓
W1D	✓	✓ ✓ ✓	✓ ✓	✓	\checkmark
D01_20220317	✓	✓	✓	✓	✓
D02_20220318	✓	✓	✓ ✓	✓	✓
R01_20220318	✓	✓	✓	✓	✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS

Work Order	ES2210212	Page	÷ 1 of 2
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Olivia Barbato
Address	: PO BOX 560	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	NORTH SYDNEY NSW, AUSTRALIA 2060		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 23-Mar-2022 17:30
Order number	:	Date Analysis Commenced	: 26-Mar-2022
C-O-C number	:	Issue Date	: 31-Mar-2022 13:36
Sampler	: JAKE BOURKE		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	T01_20220317	 	
		Samplii	ng date / time	17-Mar-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2210212-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	10	µg/L	<10	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	10	µg/L	560	 	
EK025SF: Free CN by Segmented Flow	Analyser					
Free Cyanide		0.004	mg/L	<0.004	 	
EK026SF: Total CN by Segmented Flow	Analyser					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	

QUALITY CONTROL REPORT

Work Order	: ES2210212	Page	: 1 of 3
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Olivia Barbato
Address	: PO BOX 560 NORTH SYDNEY NSW, AUSTRALIA 2060	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 23-Mar-2022
Order number	:	Date Analysis Commenced	: 26-Mar-2022
C-O-C number	:	Issue Date	: 31-Mar-2022
Sampler	: JAKE BOURKE		Iac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi

Senior Chemist - Inorganics

Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS(QC Lot: 4254036)							
ES2207094-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2210452-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG020T: Total Metal	Is by ICP-MS (QC Lo	ot: 4253081)							
ES2210246-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2210514-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.70	0.70	0.0	0% - 20%
EK025SF: Free CN	by Segmented Flow	Analyser (QC Lot: 4256933)							
ES2210212-001	T01_20220317	EK025SF: Free Cyanide		0.004	mg/L	<0.004	<0.004	0.0	No Limit
EK026SF: Total CN	by Segmented Flow	/ Analyser (QC Lot: 4256934)							
ES2210212-001	T01_20220317	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit
EK040P: Fluoride by	PC Titrator (QC Lo	ot: 4251097)							
ES2210132-002	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
ES2210386-004	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.4	0.4	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 4	254036)							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	90.5	80.0	116
EG020T: Total Metals by ICP-MS (QCLot: 42530	81)							
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	97.1	82.0	120
EK025SF: Free CN by Segmented Flow Analyse	er (QCLot: 4256933)							
EK025SF: Free Cyanide		0.004	mg/L	<0.004	0.2 mg/L	106	88.0	128
EK026SF: Total CN by Segmented Flow Analys	er (QCLot: 4256934)							
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	98.0	73.0	133
EK040P: Fluoride by PC Titrator (QCLot: 42510	97)							
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	102	82.0	116

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				M	atrix Spike (MS) Report	f	
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK025SF: Free CN	by Segmented Flow Analyser (QCLot: 4256933)						
ES2210212-001	T01_20220317	EK025SF: Free Cyanide		0.2 mg/L	91.8	70.0	130
EK026SF: Total C	by Segmented Flow Analyser (QCLot: 4256934)						
ES2210212-001	T01_20220317	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	96.7	70.0	130
EK040P: Fluoride b	by PC Titrator (QCLot: 4251097)						
ES2210064-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	102	70.0	130

	QA/QC Compliance Assessm	ent to assist wit	h Quality Review
Work Order	: ES2210212	Page	: 1 of 4
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: JORDYN KIRSCH	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 23-Mar-2022
Site	:	Issue Date	: 31-Mar-2022
Sampler	: JAKE BOURKE	No. of samples received	: 1
Order number	:	No. of samples analysed	: 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	6	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

				Lvalaation	i. • – Holding time		in norung time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) T01_20220317	17-Mar-2022				29-Mar-2022	13-Sep-2022	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) T01_20220317	17-Mar-2022	28-Mar-2022	13-Sep-2022	1	28-Mar-2022	13-Sep-2022	~
EK025SF: Free CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK025SF) T01_20220317	17-Mar-2022				30-Mar-2022	31-Mar-2022	~
EK026SF: Total CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK026SF) T01_20220317	17-Mar-2022				30-Mar-2022	31-Mar-2022	✓
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P) T01_20220317	17-Mar-2022				26-Mar-2022	14-Apr-2022	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	6	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	6	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	0	9	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Free CN by Segmented Flow Analyser	EK025SF	WATER	In house: Referenced to ASTM D7237, APHA 4500-CN-C&O and ISO 14403: Using an automated segmented flow analyser, a sample at high pH (sodium hydroxide preserved) is buffered to pH 6.0. The hydrogen cyanide present passes across a gas dialysis membrane into an acceptor stream consisting of 0.01 M sodium hydroxide. The acceptor stream mixes with a buffer at pH 5.2 and reacts with chloramine-T to form cyanogen chloride reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour, measured at 600nm. This method is compliant with NEPM Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2210212		
Client Contact Address	: RAMBOLL AUSTRALIA PTY LTD : JORDYN KIRSCH : PO BOX 560 NORTH SYDNEY NSW, AUSTRALIA 2060	Contact :	Environmental Division Sydney Olivia Barbato 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: jkirsch@ramboll.com : :	Telephone :	olivia.barbato@alsglobal.com +61-2-8784 8555 +61-2-8784 8500
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Page :	1 of 2
Order number C-O-C number Site Sampler	: : : : JAKE BOURKE		EB2017ENVIAUS0001 (EN/222) NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Receive Client Requested Due Date		Issue Date Scheduled Reporting Da	: 24-Mar-2022 ate : 31-Mar-2022
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	S : Carrier :	Security Seal Temperature No. of samples received	: Intact. : 12.3'c - Ice Bricks present I / analysed : 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The laboratory will process these samples unless instructions are received from
 you indicating you do not wish to proceed. The absence of this summary table indicates that all
 samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

component			20F	E Z	25SF gme	026SF e by S	Ч Ч
Matrix: WATER			- EG02	- EG03 etals by	- EK02 By Seg	- EK02 anide t	- EK0 ² (PCT)
Laboratory sample ID	Sampling date / time	Sample ID	WATER Dissolve	WATER Total M€	WATER Free CN	WATER Total Cy	WATER Fluoride
ES2210212-001	17-Mar-2022 00:00	T01_20220317	✓	1	✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

ACCOUNTET ATABLE		
- A4 - AU Tax Invoice (INV)	Email	AsiaPac-Accounts@Ramboll.com
JAKE BOURKE		
 *AU Certificate of Analysis - NATA (COA) 	Email	JBOURKE@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	JBOURKE@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	JBOURKE@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	JBOURKE@ramboll.com
- Chain of Custody (CoC) (COC)	Email	JBOURKE@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	JBOURKE@ramboll.com
- EDI Format - XTab (XTAB)	Email	JBOURKE@ramboll.com
JORDYN KIRSCH		
 *AU Certificate of Analysis - NATA (COA) 	Email	jkirsch@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jkirsch@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jkirsch@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jkirsch@ramboll.com
- Chain of Custody (CoC) (COC)	Email	jkirsch@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	jkirsch@ramboll.com
- EDI Format - XTab (XTAB)	Email	jkirsch@ramboll.com

by ICP/MS (including digestion)

etals by ICP/MS

Segmented Flow Analyser

K025SF

le by Segmented Flow Analyser

K040-P CT)

<026SF

															讈		lov-wiki S	×				
. 🔎		CHA	CHAIN OF CUSTODY - Client	CUS	STO	ğ	~	<u></u>	ien	7							KREET,				ENVIROLAB	
÷	1		ENVIROLAB GROUP	ROL	AB G	RO	Ę		- 												4ROUP	
Client: Ramboll				Client I	Client Project Name / Number / Site etc (ie report title):	Name	/ Nun	1ber / :	Site et	: (ie re	port ti	tle):		Envi	Envirolab Services	b Se	rvice	ŝ				
Contact person: Jake Bourke				Ţ	Hydro Groundwater Plume Monitoring - 318001362	round	water	Plume	Monit	oring -	31800	1362		12 A	shley	rSt, I	Chat	SMO	ă, N	WSI	12 Ashley St, Chatswood, NSW 2067	
Project Mgr: Jordyn Kirsch				PO No.:	**									Phone: 02 9910 6200	1e: 0:	2 991	10 62	lõ 0	-	ax :	Fax :02 9910 6201	
Sampler: Jake Bourke				Envirol	Envirolab Quote No. :	te No.								m-m	ii: a	hie@	envi	irola	bser	vices	E-mail: ahie@envirolabservices.com.au	
Address: Level 2 Suite 18, 50 Glebe Road,	īd,			Date re	Date results required:	equire	8							Cont	Contact: Aileen Hie	Ailee	n Hie	œ				
The Junction														Envi	Envirolab Services WA t/a MPL	b Se	₹.	es M	Ā	a M	PL	
				Or cho	Or choose: standard / same day / 1 day / 2 day / 3 day	andarı	d / san	ne day	/ 1 da	//2d	av / 3	day		16-1	16-18 Hayden Crt, Myaree WA 6154	yden	, F	Mya	ree	MA (5154	
Phone: (02) 49625444	Mob:	046	0467580473	Note: Int	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	in advan	ce if urg	ent turna	round is	required	- surch	nge app	lies	Phone: 08 9317 2505	1e: 0	3 931	17 25	о G		ax :	Fax :08 9317 4163	
Pax:				Lab co	Lab comments: Highly contaminated	s: Higt	ily con	tamina	ited					E-ma	E-mail: lab@mpl.com.au	ab@r	npl.c	öm.	au			
Email: jkirsch@ramboll.com; jbourke@ramboll.com	rke@ramboll.com													Cont	Contact: Joshua Lim	Josh	ua Li	З				
in Samp	Sample information									Tests	Tests Required	red			(SAZARA)						Comments	
Envirolab Client Sample ID or Sample ID information	Depth	Date sampled	Type of sample	uble Fluoride	otal Cyanide	ee Cyanide	al Aluminium	lved Aluminium												Provi	Provide as much information about the sample as you can	about the
								D						I	Ì	Ī						
1 W2S		17/03/2022	WATER	×	×	×	×	×								\square		├	<u> </u>			
2 W2D		17/03/2022	WATER	×	×	×	×	×		-									_			
2 PUMP		17/03/2022	WATER	×	×	×	×	×											ш	nviro	Environmental Division	
A W7M		17/03/2022	WATER	×	×	×	×	×										 	ပ္	Sydney	NY Defense	
SZM SZM		17/03/2022	WATER	×	×	×	×	×														
с ES		17/03/2022	WATER	×	×	×	×	×												П	21201220	
フ ESD		17/03/2022	WATER	×	×	×	×	×														
		17/03/2022	WATER	×	×	×	×	×			L					-						
SN N8		17/03/2022	WATER	×	×	×	×	×														
6N 60		17/03/2022	WATER	×	×	×	×	×	ļ							Ì						
() W6D		17/03/2022	WATER	×	×	×	×	×														
12 E11		17/03/2022	WATER	×	×	×	×	×											To	ephone	Telephone : + 61-2-8784 8555	
W5D		17/03/2022	WATER	×	×	×	×	×											_			
IM N2		18/03/2022	WATER	×	×	×	×	×														
Relinguished by (company):	Ramboll	ELJ or	10	Receiv	Received by (company):	compa	ny):		4	SD.				Lab u	Lab use only:	Υ.)		5	5/1631	
Print Name:	Jake Bourke	Aibre	>	Print Name:	lame:			G	G	TT TT				Samp	les Re	ceive	ŝ	Å To	mbie	: 같 (Samples Received: (cool of Ambient (circle one)	
Date & Time:	18/03/2022	23/3/	22 1310	Date & Time:	Time:	22-	7	ز ۲	Ð	22-2	10	5		Temperature Received at:	eratui	e Rec	eived	<u>ہ</u> /	0	f	(if applicable)	
Signature:		SP-0	Y	Signature:	ure:		R							Trans	Transported by: Hand delivered courier	by:	Hand	deliv	ared	ŝ	ien	
		~				\			¥_	Ŕ	À,	ASS A	Å.	theo	X	Acr	, .			(ς γ γ	
									<	{	1	٦Û	<u>j</u> (5.	C v		ן ני ני	J J	1	*		

Enrm and , Chain of Cilicitudu-Cilicet Iseried 18/03/10 Version 4 Pare 1 of 1

23/3/22/730 123

Client: Ramboll				Client Project Name / Number / Site etc (ie report title):	Project	Name	/ Num	ber / s	ite etc	(ie repo	ort title	÷	Env	virola	b Se	Envirolab Services	•.	
Contact person: Jake Bourke				H	lydro G	round	water F	vlume	Hydro Groundwater Plume Monitoring - 318001362	ùng - 3	180013	362	12/	Ashle	y St, (Chatsv	vood,	12 Ashley St, Chatswood, NSW 2067
Project Mgr: Jordyn Kirsch				PO No.:									Pho	ine: 0	2 991	Phone: 02 9910 6200	¢	Fax :02 9910 6201
Sampler: Jake Bourke		-		Envirolab Quote No. :	ab Quo	ote No.							Ē	nail: a	hie@	envir	olabse	E-mail: ahie@envirolabservices.com.au
Address: Level 2 Suite 18, 50 Glebe Road,	Road,			Date results required:	suits r	equire	d:						<u>Q</u>	Contact: Aileen Hie	Ailee	n Hie		
The Junction				- d									Env	virola	b Se	vices	WA	Envirolab Services WA t/a MPL
				Or choose: standard / same day / 1 day / 2 day / 3 day	ose: st	andaro	t / sam	e day ,	1 day	/ 2 day	/ 3 da	Y	16-	18 Ha	ıyden	Crt, N	fyare	16-18 Hayden Crt, Myaree WA 6154
Phone: (02) 49625444	Mob:	040	0467580473	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	orm lab i	in advan	e if urge	nt turnar	ound is re	equired	surcharge	e applies		one: 0	8 931	Phone: 08 9317 2505	Ū	Fax :08 9317 4163
				Lab comments: Highly contaminated	nment	s: Higt	ily cont	amina	ted		:		E-3	nail:	ab@r	E-mail: lab@mpl.com.au	m.au	
Email: jkirsch@ramboll.com; jbourke@ramboll.com	bourke@ramboll.com												Cor	ntact:	Joshi	Contact: Joshua Lim		
	Sample information					ан 19				Tests Required	equire							Comments (* 1949)
Envirolab Sample ID information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	रू Free Cyanide	Total Aluminium	Dissolved Aluminium					:					Provide as much information about the sample as you can
IN F5		18/03/2022	WATER	×	×	×	×	×										
<u>رام</u> G5		18/03/2022	WATER	×	×	×	×	×										
		18/03/2022	WATER	×	×	×	×	×										
		18/03/2022	WATER	×	×	×	×	×										
VA W3S		18/03/2022	WATER	×	×	×	×	×										
		18/03/2022	WATER	×	×	×	×	×			· ·				<u> </u>			
2 ₋₁ E4		18/03/2022	WATER	×	×	×	×	×										
22 W1S		18/03/2022	WATER	×	×	×	×	×										
23 W1D		18/03/2022	WATER	×	×	×	×	×	-			-		+				
24 D01 20220317		17/03/2022	WATER	××	××	××	< ×	× ×										Dipase forward to AIS
1		18/03/2022	WATER	×	×	×	×	×		_								
9 R01		18/03/2022	WATER	×	×	×	×	×										
															·			
Relinquished by (company):	Ramboll	ELS JYD	0	Received by (company):	ed by (compa	ny):		$\tilde{\lambda}$				Lab	use or	<u>₹</u>			Lab use only: 09103
Print Name:	Jake Bourke	ABr		Print Name:	ame:	6	Ľ			ł			Sam	iples R	eceive	1: [660]	o) Anph	vient (circle one)
Date & Time:	18/03/2022	23/3/2	2 1310	Date & Time:	Time:	4	3	L	1-	<u>()</u>	4		Tem	iperatı	re Rec	eived a	π γ	Temperature Received at: (if applicable)
Signature:		0-12	5	Signature:	ure:		\square) [r.) Trar	nsporte	d by:	Hand d	elivere	orted by: Hand delivered / courier

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 298454

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	Hydro Groundwater Plume Monitoring - 318001362
Number of Samples	27 Water
Date samples received	21/06/2022
Date completed instructions received	21/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	28/06/2022
Date of Issue	28/06/2022
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Greta Petzold, Assistant Operation Manager Loren Bardwell, Development Chemist Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 298454 Revision No: R00

Page | 1 of 14

Miccollanoouo Inorganico						
Miscellaneous Inorganics Our Reference		298454-1	298454-2	298454-3	298454-4	298454-5
Your Reference	UNITS	W6D	G5	G2	F5	G6
Date Sampled	ontro	15/06/2022	16/06/2022	15/06/2022	16/06/2022	16/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed		23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Fluoride, F	mg/L	<0.1	0.3	0.4	0.2	0.5
Total Cyanide	mg/L	<0.004	< 0.004	0.018	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	< 0.004	<0.004	<0.004
	ing/L	~0.004	~0.004	~0.004	~0.004	~0.004
Miscellaneous Inorganics Our Reference		298454-6	000454.7	200454.0	200454-0	200454.40
			298454-7	298454-8	298454-9	298454-10
Your Reference	UNITS	F6	N2	W5D	N8	E11
Date Sampled		16/06/2022	16/06/2022	15/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Fluoride, F	mg/L	0.4	3.7	0.4	0.5	11
Total Cyanide	mg/L	<0.004	0.15	< 0.004	0.62	0.93
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Miscellaneous Inorganics				00045440		
Our Reference		298454-11	298454-12	298454-13	298454-14	298454-15
Our Reference Your Reference	UNITS	E5D	W1D	W1S	PUMP	W7S
Our Reference Your Reference Date Sampled	UNITS	E5D 15/06/2022	W1D 16/06/2022	W1S 16/06/2022	PUMP 15/06/2022	W7S 15/06/2022
Our Reference Your Reference Date Sampled Type of sample	UNITS	E5D 15/06/2022 Water	W1D 16/06/2022 Water	W1S 16/06/2022 Water	PUMP 15/06/2022 Water	W7S 15/06/2022 Water
Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS	E5D 15/06/2022 Water 23/06/2022	W1D 16/06/2022 Water 23/06/2022	W1S 16/06/2022 Water 23/06/2022	PUMP 15/06/2022 Water 23/06/2022	W7S 15/06/2022 Water 23/06/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	-	E5D 15/06/2022 Water 23/06/2022 23/06/2022	W1D 16/06/2022 Water 23/06/2022 23/06/2022	W1S 16/06/2022 Water 23/06/2022 23/06/2022	PUMP 15/06/2022 Water 23/06/2022 23/06/2022	W7S 15/06/2022 Water 23/06/2022 23/06/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F	- - mg/L	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide	- - mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1 1.2	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8 1.4	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8 1.4	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130 4.8	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F	- - mg/L	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide	- - mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1 1.2	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8 1.4	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8 1.4	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130 4.8	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water	- - mg/L mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1 1.2	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8 1.4 <0.004	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8 1.4	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130 4.8	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics	- - mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 9.1 1.2 <0.004	W1D 16/06/2022 Water 23/06/2022 8.8 1.4 <0.004	W1S 16/06/2022 Water 23/06/2022 9.8 1.4 <0.004	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130 4.8 <0.004	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference	- - mg/L mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1 1.2 <0.004	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8 1.4 <0.004	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8 1.4 <0.004	PUMP 15/06/2022 Water 23/06/2022 130 4.8 <0.004	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference	- - mg/L mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 9.1 1.2 <0.004 298454-16 W2S	W1D 16/06/2022 Water 23/06/2022 8.8 1.4 <0.004 298454-17 N9	W1S 16/06/2022 Water 23/06/2022 9.8 1.4 <0.004 298454-18 W3S	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130 4.8 <0.004 298454-19 A7	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 <0.004 298454-20 E5
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled	- - mg/L mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1 1.2 <0.004 298454-16 W2S 15/06/2022	W1D 16/06/2022 Water 23/06/2022 8.8 1.4 <0.004 298454-17 N9 15/06/2022	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8 1.4 <0.004 298454-18 W3S 16/06/2022	PUMP 15/06/2022 Water 23/06/2022 130 4.8 <0.004 298454-19 A7 16/06/2022	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 <0.004 298454-20 E5 15/06/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample	- - mg/L mg/L mg/L	E5D 15/06/2022 Water 23/06/2022 9.1 1.2 <0.004 298454-16 W2S 15/06/2022 Water	W1D 16/06/2022 Water 23/06/2022 8.8 1.4 <0.004 298454-17 N9 15/06/2022 Water	W1S 16/06/2022 Water 23/06/2022 9.8 1.4 <0.004 298454-18 W3S 16/06/2022 Water	PUMP 15/06/2022 Water 23/06/2022 130 4.8 <0.004 298454-19 A7 16/06/2022 Water	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 <0.004 298454-20 E5 15/06/2022 Water
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Your Reference Date Sampled Type of sample Date prepared	- mg/L mg/L UNITS	E5D 15/06/2022 Water 23/06/2022 9.1 1.2 <0.004 298454-16 W2S 15/06/2022 Water 23/06/2022	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8 1.4 <0.004 298454-17 N9 15/06/2022 Water 23/06/2022	W1S 16/06/2022 Water 23/06/2022 9.8 1.4 <0.004 298454-18 W3S 16/06/2022 Water 23/06/2022	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130 4.8 <0.004 298454-19 A7 16/06/2022 Water 23/06/2022	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 <0.004 298454-20 E5 15/06/2022 Water 23/06/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	- mg/L mg/L mg/L UNITS	E5D 15/06/2022 Water 23/06/2022 23/06/2022 9.1 1.2 <0.004 298454-16 W2S 15/06/2022 Water 23/06/2022 23/06/2022	W1D 16/06/2022 Water 23/06/2022 23/06/2022 8.8 1.4 <0.004 298454-17 N9 15/06/2022 Water 23/06/2022 23/06/2022	W1S 16/06/2022 Water 23/06/2022 23/06/2022 9.8 1.4 <0.004 298454-18 W3S 16/06/2022 Water 23/06/2022 23/06/2022	PUMP 15/06/2022 Water 23/06/2022 23/06/2022 130 4.8 <0.004 298454-19 A7 16/06/2022 Water 23/06/2022	W7S 15/06/2022 Water 23/06/2022 23/06/2022 16 0.21 4 0.21 <0.004 298454-20 E5 15/06/2022 Water 23/06/2022

Miscellaneous Inorganics						
Our Reference		298454-21	298454-22	298454-23	298454-24	298454-25
Your Reference	UNITS	W7M	E4	W2D	D01_20220615	D02_20220616
Date Sampled		15/06/2022	16/06/2022	15/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Fluoride, F	mg/L	710	820	1,100	140	0.4
Total Cyanide	mg/L	99	180	180	4.7	<0.004
Free Cyanide in Water	mg/L	0.029	0.029	0.055	<0.004	<0.004

Miscellaneous Inorganics		
Our Reference		298454-27
Your Reference	UNITS	R01_20220616
Date Sampled		16/06/2022
Type of sample		Water
Date prepared	-	23/06/2022
Date analysed	-	23/06/2022
Fluoride, F	mg/L	<0.1
Total Cyanide	mg/L	<0.004
Free Cyanide in Water	mg/L	<0.004

HM in water - dissolved						
Our Reference		298454-1	298454-2	298454-3	298454-4	298454-5
Your Reference	UNITS	W6D	G5	G2	F5	G6
Date Sampled		15/06/2022	16/06/2022	15/06/2022	16/06/2022	16/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Aluminium-Dissolved	µg/L	50	40	<10	2,300	8,200
HM in water - dissolved						
Our Reference		298454-6	298454-7	298454-8	298454-9	298454-10
Your Reference	UNITS	F6	N2	W5D	N8	E11
Date Sampled		16/06/2022	16/06/2022	15/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Aluminium-Dissolved	µg/L	<10	1,100	<10	50	590
HM in water - dissolved						
Our Reference		298454-11	298454-12	298454-13	298454-14	298454-15
Your Reference	UNITS	E5D	W1D	W1S	PUMP	W7S
Date Sampled		15/06/2022	16/06/2022	16/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Aluminium-Dissolved	µg/L	<10	50	<10	600	2,900
HM in water - dissolved						
Our Reference		298454-16	298454-17	298454-18	298454-19	298454-20
Your Reference	UNITS	W2S	N9	W3S	A7	E5
Date Sampled		15/06/2022	15/06/2022	16/06/2022	16/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Aluminium-Dissolved	µg/L	24,000	7,600	260	180	90
HM in water - dissolved						
Our Reference		298454-21	298454-22	298454-23	298454-24	298454-25
Your Reference	UNITS	W7M	E4	W2D	D01_20220615	D02_20220616
Date Sampled		15/06/2022	16/06/2022	15/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Aluminium-Dissolved	µg/L	370	420	730	620	40

HM in water - dissolved		
Our Reference		298454-27
Your Reference	UNITS	R01_20220616
Date Sampled		16/06/2022
Type of sample		Water
Date prepared	-	23/06/2022
Date analysed	-	23/06/2022
Aluminium-Dissolved	μg/L	<10

HM in water - total						
Our Reference		298454-1	298454-2	298454-3	298454-4	298454-5
Your Reference	UNITS	W6D	G5	G2	F5	G6
Date Sampled		15/06/2022	16/06/2022	15/06/2022	16/06/2022	16/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Aluminium-Total	µg/L	2,400	250	310	3,100	8,700
HM in water - total				1		
Our Reference		298454-6	298454-7	298454-8	298454-9	298454-10
Your Reference	UNITS	F6	N2	W5D	N8	E11
Date Sampled		16/06/2022	16/06/2022	15/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Aluminium-Total	µg/L	30	1,900	420	290	1,800
HM in water - total			1		•	
Our Reference		298454-11	298454-12	298454-13	298454-14	298454-15
Your Reference	UNITS	E5D	W1D	W1S	PUMP	W7S
Date Sampled		15/06/2022	16/06/2022	16/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Aluminium-Total	µg/L	840	300	1,500	2,800	7,500
HM in water - total						
Our Reference		298454-16	298454-17	298454-18	298454-19	298454-20
Your Reference	UNITS	W2S	N9	W3S	A7	E5
Date Sampled		15/06/2022	15/06/2022	16/06/2022	16/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Aluminium-Total	µg/L	28,000	22,000	3,300	230	520
HM in water - total						
Our Reference		298454-21	298454-22	298454-23	298454-24	298454-25
Your Reference	UNITS	W7M	E4	W2D	D01_20220615	D02_20220616
Date Sampled		15/06/2022	16/06/2022	15/06/2022	15/06/2022	15/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Aluminium-Total	μg/L	3,600	820	450	3,000	310

HM in water - total		
Our Reference		298454-27
Your Reference	UNITS	R01_20220616
Date Sampled		16/06/2022
Type of sample		Water
Date prepared	-	24/06/2022
Date analysed	-	24/06/2022
Aluminium-Total	μg/L	<10

	Method ID	Methodology Summary
ſ	Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
		Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
		Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
	Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
	Metals-022	Determination of various metals by ICP-MS.

QUALITY COI		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298454-2
Date prepared	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Date analysed	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	<0.1	<0.1	0	103	85
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	107	98
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	95	90

QUALITY COI		Duj		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	298454-27
Date prepared	-			[NT]	11	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Date analysed	-			[NT]	11	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	9.1	9.3	2	110	111
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	1.2	1.2	0	103	93
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	106	94

QUALITY CO	NTROL: Mis	cellaneou	is Inorganics			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	23/06/2022	23/06/2022		[NT]	[NT]
Date analysed	-			[NT]	21	23/06/2022	23/06/2022		[NT]	[NT]
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	21	710	700	1	[NT]	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	21	99	[NT]		[NT]	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	21	0.029	[NT]		[NT]	[NT]

QUALITY COI	NTROL: Mis	cellaneou		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	25	23/06/2022	23/06/2022		[NT]	[NT]
Date analysed	-			[NT]	25	23/06/2022	23/06/2022		[NT]	[NT]
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	25	0.4	[NT]		[NT]	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	25	<0.004	<0.004	0	[NT]	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	25	<0.004	<0.004	0	[NT]	[NT]

QUALITY CC		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298454-2
Date prepared	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Date analysed	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	50	50	0	115	107
QUALITY CC	NTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	298454-22
Date prepared	-			[NT]	11	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Date analysed	-			[NT]	11	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Aluminium-Dissolved	µg/L	10	Metals-022	[NT]	11	<10	<10	0	104	#
QUALITY CC	NTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	23/06/2022	23/06/2022		[NT]	[NT]
Date analysed	-			[NT]	21	23/06/2022	23/06/2022		[NT]	[NT]

370

360

3

21

Metals-022

µg/L

10

Aluminium-Dissolved

QUALITY CONTROL: HM in water - total						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	298454-2
Date prepared	-			24/06/2022	1	24/06/2022	24/06/2022		24/06/2022	24/06/2022
Date analysed	-			24/06/2022	1	24/06/2022	24/06/2022		24/06/2022	24/06/2022
Aluminium-Total	µg/L	10	Metals-022	<10	1	2400	2300	4	111	#
QUALIT	Y CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	298454-22
Date prepared	-			[NT]	11	24/06/2022	24/06/2022		24/06/2022	24/06/2022
Date analysed	-			[NT]	11	24/06/2022	24/06/2022		24/06/2022	24/06/2022
Aluminium-Total	µg/L	10	Metals-022	[NT]	11	840	830	1	112	#
QUALIT	Y CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	24/06/2022	24/06/2022		[NT]	[NT]
Date analysed	-			[NT]	21	24/06/2022	24/06/2022		[NT]	[NT]

3600

21

3400

6

Metals-022

µg/L

10

Aluminium-Total

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

TRACE METALS: In theory the total metal content should be higher than the dissolved metal content. However, in some samples this is not the case. Sample #23 has been re-analysed for both Total and Dissolved metals and results have been confirmed.

				ENVIR	<u>IOLA</u>	BG	ROL	JP					2	98	454 KW	2.	/6					
ient: Rambol					Client Project Name / Number / Site etc (ie report title): Hydro Groundwater Plume Monitoring - 318001362									12 A	Envirolab Services 12 Ashley St, Chatswood, NSW 2067							
ontact person	n: Jake Bourke				PO No.:											Phone: 02 9910 6200 Fax :02 9910 6201						
oject Mgr: J					Envirolab Quote No. :										E-mail: ahie@envirolabservices.com.au							
mpler: Jake					Date results required:										tact: /							
ddress: Leve	2 Suite 18, 50 Glebe Road	,			4														t/a MPL			
he Junction					Or choose: standard / same day / 1 day / 2 day / 3 day								16-:	18 Ha	yden	Crt, N	lyare	e WA 6154				
					4										Pho	ne: 08	3 931	7 250	5	Fax :08 9317 4163		
hone:	(02) 49625444	Mob:	046	7580473	Note: Inf						ns requ	meu - 30	Charge	oppilos				npl.co				
ax:						mment	s: rigt	hly con	Laning	iccu								ua Lin				
nail: jkirsch@ramboll.com; jbourke@ramboll.com													<u> </u>	<u> </u>	0	<u>Lucci</u>				Comments		
		ple information									- <u></u>	ests Re	quire	<u> </u>			T		<u> </u>			
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium									_		Provide as much information about the sample as you can		
15			15/06/2022	WATER	x	x	<u>×</u>	×	x					_		_						
16			15/06/2022	WATER	X	x	×	<u>x</u>	X	<u> </u>							+ -		╉━─			
- <u>10</u> -	N9		15/06/2022	WATER	X	x	<u> </u>	x	<u>×</u>					- +-			+		+ -			
18			16/06/2022	WATER	×	×	×	×	<u>×</u>	<u> </u>								+ -				
19	A7		16/06/2022	WATER	X	×	<u>×</u>	<u>x</u>	<u>×</u>	┦—				- +-	-+							
20	E5	† — — — — — — — — — — — — — — — — — — —	15/06/2022	WATER	×	×	x	<u> </u>	X				_+						+ -			
2-1			15/06/2022	WATER	х	<u> </u>	×	<u> </u>	<u>×</u>		_ _			_ -		+-		- -				
2.2	<u>E4</u>	<u> -</u>	16/05/2022	WATER	x	X	X	×	×		-+-		_ _						+	<u> </u>		
23			15/06/2022	WATER	x	×	X	<u> </u>	x		_						-					
23	D01 20220615		15/06/2022	WATER	×	x	X	×	×				-+-				+	+	+	Please forward to AL		
TUR .	T01 20220615		15/06/2022	WATER	×	×	×	<u>×</u>	×	╄	_ -		-+				-		+-			
	D02 20220616	+	16/06/2022	2 WATER	x	×	×	<u> </u>	X	+	_ _	-+-	-	<u> </u>	_	+-			+	HOLD		
<u>25</u> 26	T02 20220616		16/06/2022	2 WATER	x	<u> </u>	×	<u> </u>	×	+-	_+_			— -			- -	- -	+ -			
27	R01_20220616		16/06/2022	2 WATER	X	<u>×</u>	×	<u> </u>	X	+-		_		- +	-+-		-		_			
				↓			+		+ -		-+-		- +	-+		-						
			<u> </u>	<u> </u>		jund b	_		Ē	5 3	5 YP	_ L		L		b use of			r.			
Relinquished by (company): Ramboll				Print Name: Katy Wayne							Samples Received: Cool or Ambient (circle one)											
Print Name: Jake Bourke						ie: 2		/22	/	101	5			Temperature Received at: $\int \int dr dr$ (if applicable)								
Date & Time: 20/06/2022					ature:			<u> </u>		<u> </u>				Transported by: Hand delivered / courier								

CHAIN OF CUSTODY - Client

i				4 0	~~~																	
Client; Ran		<u></u>		ENVI	-												b Se					
	rson: Jake Bourke					-		-	-		etc (ie I	•	-									
	r: Jordyn Kirsch				PO No		Groun	owate	r Plum	е мол	nitoring	- 318(01362	2	12 Ashley St, Chatswood, NSW 2067							
Sampler: Ja												-	-		Phone: 02 9910 6200 Fax :02 9910 6201							
· ·	evel 2 Suite 18, 50 Glebe Ro				Envirolab Quote No. : Date results required:										E-mail: ahie@envirolabservices.com.au Contact: Aileen Hie							
		Jau,			-		. cqui	cui											_			
The Junctio	n	<u> </u>																		A t/a MPL		
Phone:	(02) 49625444	Mob:	04	67580473							1aγ / 2 (ee WA 6154		
-	(02) 49023444			0/5804/5		_			ntami		l is require	eo - surc	narge ap	plies	-		8 931	-		Fax :08 9317 4163		
Fax: Email:						511111-01	109. Thy	Juny Co		lateu								-	om.au	ц		
cilian;			n. 	<u></u>	\mathbf{H}					-					Con	tact:	Josh	ua Lir	n	<u> </u>		
		Sample information			┣──		ŀ	ī	L E	I	Test	s Requ	ured .	1	1	<u> </u>			-	Comments		
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium						Provide as much information sample as you can				Provide as much information about the sample as you can			
1 -	W6D		15/06/2022	WATER	X	х	X	X	x				1		<u> </u>				+			
2	G5		16/06/2022	WATER	X	X	x	x	X					-	Fr	Junta	t Source					
3	⊢ G2		15/06/2022	WATER	х	x	x	x	x				T.	.GKB		12	Ashle	/ Si				
4	F5		16/06/2022	WATER	X	X	X	X	X					-'	Chats	Wood	NSW 2 9910 6	267				
5	G6		16/06/2022	WATER	х	x	X	x	X				<u>k</u> b	No:	22	84	5 4					
6	F6.		16/06/2022	WATER	X	_ X	x	x	X				<u>ь</u> ,		ι.							
2	N2		16/06/2022	WATER	х	X	X	X	X	-			Time	Recei	ed: 2	767:	1					
. 8	W5D		15/06/2022	WATER	X	X	x	X	X				Roce	Recen	ea: 70	15						
9	N8		15/06/2022	WATER	X	X	X	X	x				Recei Temp	Cool	Ambio	1						
10	E11		15/06/2022	WATER	х	x	X	X	x				0000	9: TCe/	Cenar	d)			1			
1	E5D		15/06/2022	WATER	x	X	x	X	x				Securi	Inta	BIO	OF AL	1					
12	W1D		16/06/2022	WATER	x	X	X	X	x							1						
13	W1S		16/06/2022	WATER	x	x	x	x	x													
14	PUMP		15/06/2022	WATER	X	X	x	x	x								1			<u> </u>		
Relinguishe	ed by (company):	Ramboli			Receiv	ved by	(comp	any):	Ει	<u>r 1</u>	γp			•	Lab u	se on	lv:					
Print Name	1	Jake Bourke							Jain						1		-	: 2001	or Am	bient (circle one)		
Date & Tim					Date 8							k			Temperature Received at: 15° C (if applicable)							
Signature:												_	Transported by: Hand delivered / courier									

.

-298454 KW 21/5

.

۰.

,

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001362
Envirolab Reference	298454
Date Sample Received	21/06/2022
Date Instructions Received	21/06/2022
Date Results Expected to be Reported	28/06/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	27 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total	On Hold
W6D	✓	✓	✓	\checkmark	✓	
G5	✓ ✓ ✓	✓	✓	 ✓ 	✓	
G2	✓	✓	√	\checkmark	\checkmark	
F5	✓	✓	\checkmark	\checkmark	\checkmark	
G6	✓ ✓ ✓ ✓ ✓	✓	✓	✓	√	
F6	✓	✓	✓	\checkmark	✓	
N2	✓	✓ ✓ ✓	✓	\checkmark	\checkmark	
W5D	✓	✓	✓	✓ ✓	✓ ✓	
N8	✓		\checkmark		✓	
E11	✓	✓	✓	✓	✓	
E5D	✓ ✓ ✓ ✓ ✓	✓	✓	✓	✓	
W1D	✓	✓	✓	✓	✓	
W1S	✓	✓	✓	✓	✓	
PUMP	✓	✓	✓	✓	✓ ✓	
W7S	✓	✓	✓	\checkmark	\checkmark	
W2S	✓	✓	✓	✓	✓	
N9	 ✓ ✓<	✓	✓	✓	✓	
W3S	✓	\checkmark	✓	\checkmark	✓	
A7	✓	✓ ✓	✓	✓ ✓	✓ ✓	
E5	✓	✓	✓	\checkmark	✓	
W7M	✓	✓	✓	✓	✓	
E4	✓	✓	✓	✓	✓	
W2D	✓	√	✓	\checkmark	\checkmark	
D01_20220615	✓	✓	✓	✓	✓	
D02_20220616	✓	✓	✓	\checkmark	\checkmark	
T02_20220616						✓
R01_20220616	✓	✓	✓	\checkmark	✓	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2221927			
Client Contact Address	 RAMBOLL AUSTRALIA PTY LTD JORDYN KIRSCH EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291 	Laboratory Contact Address	: Olivia Bart	voodpark Road Smithfield
E-mail Telephone Facsimile	: jkirsch@ramboll.com :	E-mail Telephone Facsimile	: olivia.barb : +61-2-878 : +61-2-878	
Project	HYDRO GROUNDWATER PLUME MONITORING - 318001362	Page	: 1 of 2	
Order number	:	Quote number	: EB2017EN	NVIAUS0001 (EN/222)
C-O-C number	:	QC Level	: NEPM 201	13 B3 & ALS QC Standard
Site	:			
Sampler	: JAKE BOURKE			
Dates				
Date Samples Receive	d : 22-Jun-2022 16:30	Issue Date		: 25-Jun-2022
Client Requested Due Date	: 30-Jun-2022	Scheduled Reporting	Date	30-Jun-2022
Delivery Details	3			
Mode of Delivery	: Undefined	Security Seal		: Intact.
No. of coolers/boxes	: 1	Temperature		: 12.6'C
Receipt Detail	: FOAM	No. of samples recei	ved / analysed	: 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

component			20F Is b	IC 21	25SF gme	026SF e by S	10-P
Matrix: WATER			EG020I Metals	EG0	- EK02 By Seç	EK02	EK0 ²
Laboratory sample ID	Sampling date / time	Sample ID	WATER - Dissolvec	WATER - Total Met	WATER - Free CN	WATER - Total Cya	WATER - Fluoride (
ES2221927-001	15-Jun-2022 00:00	T01_20220615	✓	1	1	1	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

ACCOUNTET ATABLE		
- A4 - AU Tax Invoice (INV)	Email	AsiaPac-Accounts@Ramboll.com
JAKE BOURKE		
 *AU Certificate of Analysis - NATA (COA) 	Email	JBOURKE@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	JBOURKE@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	JBOURKE@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	JBOURKE@ramboll.com
- Chain of Custody (CoC) (COC)	Email	JBOURKE@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	JBOURKE@ramboll.com
- EDI Format - XTab (XTAB)	Email	JBOURKE@ramboll.com
JORDYN KIRSCH		
 *AU Certificate of Analysis - NATA (COA) 	Email	jkirsch@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jkirsch@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jkirsch@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jkirsch@ramboll.com
- Chain of Custody (CoC) (COC)	Email	jkirsch@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	jkirsch@ramboll.com
- EDI Format - XTab (XTAB)	Email	jkirsch@ramboll.com

by ICP/MS (including digestion)

etals by ICP/MS

Segmented Flow Analyser

K025SF

le by Segmented Flow Analyser

<026SF</pre>

to Titrator

(040-P

AN. 22/6/22 (630)	AQ. 22	Å	lec - SO	i i	Re	910		1 - A			Signature:
· ~				2 /	Date & Time:			MOID	20/06/2022		Date & Time:
Temperature Received at: $\int \int c dt$ (if applicable)	\$	1010		Kar	Print Name:	_	-[.	dmistly	Jake Bourke		Print Name:
Law ase only.			-	ି ଜା	eived by	Reo		dress a	Ramboll	Relinquished by (company):	Relinquished
		147 2 47									
			-+	>	- >		WATER	16/06/2022		R01_20220616	27
			<	< ×	: ×	: ×	WATER	16/06/2022		T02 20220616	26
HOLD			╈	< ×	: ×		WATER	16/06/2022		D02 20220616	2.5
				(×	×	×	WATER	15/06/2022		H 6	Ŕ
				×	×	×	WATER	15/06/2022		D01 20220615	24
			×	×	×	×	WATER	15/06/2022		ACM	1 1 1
			×	×	×	×	WATER	16/06/2022		₩/1º1	1 - -
				×	×	×	WATER	15/06/2022		C I	2 4 0
				×	× ;		WATER	12/06/2022		A7	91
ES2221927	ES22		-+-	×	× >	< >	WATER	16/06/2022		SEM	8
sr Reference	Work Orde		<	<	<	< >	WATER	15/06/2022		6N	۲I ۲
Environmental Division			<	< ×	: ×		WATER	15/06/2022		W2S	16
	- - -		-	< ×	×	×	WATER	15/06/2022		W7S	(5
			-	•	;						
Provide as much information about the sample as you can			Lotal Aluminium Dissolved Aluminium	Free Cyanide	Total Cyanide	Soluble Fluoride	Type of sample	Sampled	Depth	Client Sample ID or information	Envirolab Sample ID
									Sample information	Samp	
A second s	Tests Required								ce@ramboll.com	jkirsch@ramboll.com; jbourke@ramboll.com	Email: ji
contact: Joshua Lim		Idrea	Lab comments: Highly containinged	s: Highly	mment	Lab co					
	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	naround is req	f urgent tun	n advance i	form lab ii	Note: In	0467580473	0463	Mob:	(02) 49625444	Phone:
16-18 Hayden Crt, Myaree WA 6154		/ 1 day / :	same day) hdard	ose: sta	Or cho					The Junction
Envirolab Services WA t/a MPL	E									Address: Level 2 Suite 18, 50 Glebe Road,	Address: Level
Contact: Aileen Hie				quired:	Date results require	Date results required:				Bourke	Sampler: Jake Bourke
E-mail: ahie@envirolabservices.com.au					Din	PO NO.				rdyn Kirsch	Project Mgr: Jordyn Kirsch
Phone: 02 9910 6200 Fax :02 9910 6201		e Monitori	Hydro Groundwater Plume Mu	roundwa	Hydro G	5				Jake Bourke	Contact person: Jake Bourke
Envirolab Services		Site etc (ie	Client Project Name / Number / Site	Name / N	roject l	Client					Client: Ramboll
12W 21/6 ENVIROLAB	17 4548 67			ROUP	BGI		ENVIROLAB GROUP				

CERTIFICATE OF ANALYSIS

Work Order	ES2221927	Page	: 1 of 2
Client	RAMBOLL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Olivia Barbato
Address	EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 22-Jun-2022 16:30
Order number	:	Date Analysis Commenced	: 27-Jun-2022
C-O-C number	:	Issue Date	: 30-Jun-2022 11:37
Sampler	: JAKE BOURKE		NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EK025: LOR raised for Frre CN sample 1 due to sample matrix.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	T01_20220615	 	
		Sampli	ng date / time	15-Jun-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2221927-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	10	µg/L	440	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	10	µg/L	2630	 	
EK025SF: Free CN by Segmented Flow A	nalyser					
Free Cyanide		0.004	mg/L	<0.200	 	
EK026SF: Total CN by Segmented Flow	Analyser					
Total Cyanide	57-12-5	0.004	mg/L	4.04	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	126	 	

QUALITY CONTROL REPORT

Work Order	: ES2221927	Page	: 1 of 3
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Olivia Barbato
Address	EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 22-Jun-2022
Order number	:	Date Analysis Commenced	: 27-Jun-2022
C-O-C number	:	Issue Date	30-Jun-2022
Sampler	: JAKE BOURKE		Iac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi

Senior Chemist - Inorganics

Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS (QC	C Lot: 4424928)							
ES2222086-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2222168-012	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lot	: 4424942)							
ES2221931-006	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.50	0.53	6.3	0% - 20%
ES2221703-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK025SF: Free CN	by Segmented Flow A	nalyser (QC Lot: 4421963)							
ES2221927-001	T01_20220615	EK025SF: Free Cyanide		0.004	mg/L	<0.200	<0.200	0.0	No Limit
ES2222399-001	Anonymous	EK025SF: Free Cyanide		0.004	mg/L	<0.004	<0.004	0.0	No Limit
EK026SF: Total CN	by Segmented Flow A	Analyser (QC Lot: 4421962)							
ES2222144-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit
ES2221927-001	T01_20220615	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	4.04	3.87	4.2	0% - 20%
EK040P: Fluoride b	y PC Titrator (QC Lot:	: 4427036)							
ES2221927-001	T01_20220615	EK040P: Fluoride	16984-48-8	0.1	mg/L	126	126	0.8	0% - 20%

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 442	24928)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	99.2	80.0	116	
EG020T: Total Metals by ICP-MS (QCLot: 4424942	:)								
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	86.8	82.0	120	
EK025SF: Free CN by Segmented Flow Analyser	(QCLot: 4421963)								
EK025SF: Free Cyanide		0.004	mg/L	<0.004	0.2 mg/L	112	88.0	128	
EK026SF: Total CN by Segmented Flow Analyser	(QCLot: 4421962)								
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	114	73.0	133	
EK040P: Fluoride by PC Titrator (QCLot: 4427036									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	109	82.0	116	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EK025SF: Free CN	by Segmented Flow Analyser (QCLot: 4421963)									
ES2221927-001	T01_20220615	EK025SF: Free Cyanide		20 mg/L	107	70.0	130			
EK026SF: Total C	N by Segmented Flow Analyser (QCLot: 4421962)									
ES2221927-001	T01_20220615	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	# Not	70.0	130			
					Determined					
EK040P: Fluoride I	by PC Titrator (QCLot: 4427036)									
ES2222144-001	Anonymous	EK040P: Fluoride	16984-48-8	250 mg/L	96.8	70.0	130			

QA/QC Compliance Assessment to assist with Quality Review							
Work Order	: ES2221927	Page	: 1 of 4				
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney				
Contact	: JORDYN KIRSCH	Telephone	: +61-2-8784 8555				
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 22-Jun-2022				
Site	:	Issue Date	: 30-Jun-2022				
Sampler	: JAKE BOURKE	No. of samples received	: 1				
Order number	:	No. of samples analysed	: 1				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK026SF: Total CN by Segmented Flow Analyser	ES2221927001	T01_20220615	Total Cyanide	57-12-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Matrix: WATER

Quality Control Sample Type	Count Rate (%) Quality Control Specification		Quality Control Specification		
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	3	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	4	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time.

Mathx: water				Evaluation	i. × = Holding time	breach ; 🗸 = with	n noiding tim
Method	Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) T01_20220615	15-Jun-2022				28-Jun-2022	12-Dec-2022	~
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) T01_20220615	15-Jun-2022	28-Jun-2022	12-Dec-2022	1	28-Jun-2022	12-Dec-2022	~
EK025SF: Free CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK025SF) T01_20220615	15-Jun-2022				27-Jun-2022	29-Jun-2022	~
EK026SF: Total CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK026SF) T01_20220615	15-Jun-2022				27-Jun-2022	29-Jun-2022	~
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P) T01_20220615	15-Jun-2022				28-Jun-2022	13-Jul-2022	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; 🖌 = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	3	66.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	4	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	3	33.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	3	33.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	3	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	3	33.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	0	4	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Free CN by Segmented Flow Analyser	EK025SF	WATER	In house: Referenced to ASTM D7237, APHA 4500-CN-C&O and ISO 14403: Using an automated segmented flow analyser, a sample at high pH (sodium hydroxide preserved) is buffered to pH 6.0. The hydrogen cyanide present passes across a gas dialysis membrane into an acceptor stream consisting of 0.01 M sodium hydroxide. The acceptor stream mixes with a buffer at pH 5.2 and reacts with chloramine-T to form cyanogen chloride reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour, measured at 600nm. This method is compliant with NEPM Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by Auto Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2221927			
Client Contact Address	 RAMBOLL AUSTRALIA PTY LTD JORDYN KIRSCH EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291 	Laboratory Contact Address	: Olivia Bart	voodpark Road Smithfield
E-mail Telephone Facsimile	: jkirsch@ramboll.com :	E-mail Telephone Facsimile	: olivia.barb : +61-2-878 : +61-2-878	
Project	HYDRO GROUNDWATER PLUME MONITORING - 318001362	Page	: 1 of 2	
Order number	:	Quote number	: EB2017EN	NVIAUS0001 (EN/222)
C-O-C number	:	QC Level	: NEPM 201	13 B3 & ALS QC Standard
Site	:			
Sampler	: JAKE BOURKE			
Dates				
Date Samples Receive	d : 22-Jun-2022 16:30	Issue Date		: 25-Jun-2022
Client Requested Due Date	: 30-Jun-2022	Scheduled Reporting	Date	30-Jun-2022
Delivery Details	3			
Mode of Delivery	: Undefined	Security Seal		: Intact.
No. of coolers/boxes	: 1	Temperature		: 12.6'C
Receipt Detail	: FOAM	No. of samples recei	ved / analysed	: 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

component			20F Is b	IC 21	25SF gme	026SF e by S	10-P
Matrix: WATER			EG020I Metals	EG0	- EK02 By Seç	EK02	EK0 ²
Laboratory sample ID	Sampling date / time	Sample ID	WATER - Dissolvec	WATER - Total Met	WATER - Free CN	WATER - Total Cya	WATER - Fluoride (
ES2221927-001	15-Jun-2022 00:00	T01_20220615	✓	1	1	1	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

ACCOUNTET ATABLE		
- A4 - AU Tax Invoice (INV)	Email	AsiaPac-Accounts@Ramboll.com
JAKE BOURKE		
 *AU Certificate of Analysis - NATA (COA) 	Email	JBOURKE@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	JBOURKE@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	JBOURKE@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	JBOURKE@ramboll.com
- Chain of Custody (CoC) (COC)	Email	JBOURKE@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	JBOURKE@ramboll.com
- EDI Format - XTab (XTAB)	Email	JBOURKE@ramboll.com
JORDYN KIRSCH		
 *AU Certificate of Analysis - NATA (COA) 	Email	jkirsch@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jkirsch@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jkirsch@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jkirsch@ramboll.com
- Chain of Custody (CoC) (COC)	Email	jkirsch@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	jkirsch@ramboll.com
- EDI Format - XTab (XTAB)	Email	jkirsch@ramboll.com

by ICP/MS (including digestion)

etals by ICP/MS

Segmented Flow Analyser

K025SF

le by Segmented Flow Analyser

<026SF</pre>

to Titrator

(040-P

AN. 22/6/22 (630)	AQ. 22	Å	lec - SO	i i	Re	910		1 - A			Signature:
· ~				2 /	Date & Time:			MOID	20/06/2022		Date & Time:
Temperature Received at: $\int \int c dt$ (if applicable)	\$	1010		Kar	Print Name:	_	-[.	dmistly	Jake Bourke		Print Name:
Law ase only.			-	ି ଜା	eived by	Reo		dress a	Ramboll	Relinquished by (company):	Relinquished
		147 2 47									
			-+	>	- >		WATER	16/06/2022		R01_20220616	27
			<	< ×	: ×		WATER	16/06/2022		T02 20220616	26
HOLD			╈	< ×	: ×		WATER	16/06/2022		D02 20220616	2.5
				(×	×	- ×	WATER	15/06/2022		H 6	%
				×	×	×	WATER	15/06/2022		D01 20220615	24
			×	×	×	×	WATER	15/06/2022		ACM	1 1 1
			×	×	×	×	WATER	16/06/2022		₩/1*I	1 L
				×	×	×	WATER	15/06/2022		C I	24
				×	× ;		WATER	12/06/2022		A7	91
ES2221927	ES22		-+-	×	× >	< >	WATER	16/06/2022		SEM	8
sr Reference	Work Orde		<	<	<	< >	WATER	15/06/2022		6N	۲J
Environmental Division			<	< ×	: ×		WATER	15/06/2022		W2S	47
	- - -		-	< ×	×	×	WATER	15/06/2022		W7S	(5
			-	•	;						
Provide as much information about the sample as you can			Lotal Aluminium Dissolved Aluminium	Free Cyanide	Total Cyanide	Soluble Fluoride	Type of sample	Sampled	Depth	Client Sample ID or information	Envirolab Sample ID
									Sample information	Samp	
A second s	Tests Required								ce@ramboll.com	jkirsch@ramboll.com; jbourke@ramboll.com	Email: ji
contact: Joshua Lim		Idrea	Lab comments: Highly containinged	s: Highly	mment	Lab co					
	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	naround is req	f urgent tun	n advance i	form lab ii	Note: In	0467580473	0463	Mob:	(02) 49625444	Phone:
16-18 Hayden Crt, Myaree WA 6154		/ 1 day / :	same day) hdard	ose: sta	Or cho					The Junction
Envirolab Services WA t/a MPL	E									Address: Level 2 Suite 18, 50 Glebe Road,	Address: Level
Contact: Aileen Hie				quired:	Date results require	Date results required:				Bourke	Sampler: Jake Bourke
E-mail: ahie@envirolabservices.com.au					0	PO NO.				rdyn Kirsch	Project Mgr: Jordyn Kirsch
Phone: 02 9910 6200 Fax :02 9910 6201		e Monitori	Hydro Groundwater Plume Mu	roundwa	Hydro G					Jake Bourke	Contact person: Jake Bourke
Envirolab Services		Site etc (ie	Client Project Name / Number / Site	Vame / N	roject l	Client					Client: Ramboll
12W 21/6 ENVIROLAB	17 4548 67			ROUP	BGI		ENVIROLAB GROUP				

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 306675

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Bourke
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	Hydro Groundwater Plume Monitoring - 318001362
Number of Samples	27 Water
Date samples received	27/09/2022
Date completed instructions received	27/09/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	05/10/2022
Date of Issue	05/10/2022
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Giovanni Agosti, Group Technical Manager Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 306675 Revision No: R00

Page | 1 of 14

Miscellaneous Inorganics						
Our Reference		306675-1	306675-2	306675-3	306675-4	306675-5
Your Reference	UNITS	W2S_20220920	W2D_20220920	PUMP_2022092	W7M_20220920	W7S_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/10/2022 04/10/2022		04/10/2022	04/10/2022	04/10/2022
Date analysed	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Fluoride, F	mg/L	29	840	150	480	18
Total Cyanide	mg/L	0.23	210	8.4	110	0.20
Free Cyanide in Water	mg/L	<0.004	0.22	0.012	0.12	<0.004
Miscellaneous Inorganics	·	·		• •	-	-
Our Reference		306675-6	306675-7	306675-8	306675-9	306675-10

Our Reference		306675-6	306675-7	306675-8	306675-9	306675-10	
Your Reference	UNITS	E5_20220920	E5D_20220920	G2_20220920	N8_20220920	N9_20220920	
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022	
Type of sample		Water	Water	Water	Water	Water	
Date prepared	-	04/10/2022	04/10/2022 04/10/2022		04/10/2022	04/10/2022	
Date analysed	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022	
Fluoride, F	mg/L	360	8.8	0.3	0.6	5.2	
Total Cyanide	mg/L	82	0.87	<0.004	0.52	0.061	
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004	

Miscellaneous Inorganics						
Our Reference		306675-11	306675-12	306675-13	306675-14	306675-15
Your Reference	UNITS	W6D_20220920	W6S_20220920	E11_20220920	W3S_20220920	W5D_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Date analysed	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Fluoride, F	mg/L	<0.1	110	7.9	240	0.4
Total Cyanide	mg/L	<0.004	1.8	0.21	25	0.007
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004

Miscellaneous Inorganics						
Our Reference		306675-16 306675-17		306675-18	306675-19	306675-20
Your Reference	UNITS	N2_20220920	F5_20220921	G5_20220921	F6_20220921	G6_20220921
Date Sampled		20/09/2022	21/09/2022	21/09/2022 21/09/2022		21/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Date analysed	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Fluoride, F	mg/L	4.3	0.2	0.2	0.4	0.6
Total Cyanide	mg/L	0.14	<0.004	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004

Miscellaneous Inorganics						
Our Reference		306675-21	306675-22	306675-23	306675-24	306675-25
Your Reference	UNITS	A7_20220921	E4_20220921	W1S_20220921	W1D_20220921	D01_20220920
Date Sampled		21/09/2022	21/09/2022	21/09/2022	21/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Date analysed	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Fluoride, F	mg/L	300	660	10	9.7	31
Total Cyanide	mg/L	60	220	1.0	1.0	0.18
Free Cyanide in Water	mg/L	0.014	0.20	<0.004	<0.004	<0.004

Miscellaneous Inorganics			
Our Reference		306675-26	306675-27
Your Reference	UNITS	D01_20220921	R01_20220921
Date Sampled		20/09/2022	21/09/2022
Type of sample		Water	Water
Date prepared	-	04/10/2022	04/10/2022
Date analysed	-	04/10/2022	04/10/2022
Fluoride, F	mg/L	0.2	<0.1
Total Cyanide	mg/L	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004

HM in water - dissolved						
Our Reference		306675-1	306675-2	306675-3	306675-4	306675-5
Your Reference	UNITS	W2S_20220920	W2D_20220920	PUMP_2022092	W7M_20220920	W7S_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared		28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Aluminium-Dissolved	μg/L	7,000	600	2,200	300	1,900
HM in water - dissolved	1	1	1			
Our Reference		306675-6	306675-7	306675-8	306675-9	306675-10
Your Reference	UNITS	E5_20220920	E5D_20220920	G2_20220920	N8_20220920	N9_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Aluminium-Dissolved	µg/L	90	20	10	30	3,900
HM in water - dissolved						
Our Reference		306675-11	306675-12	306675-13	306675-14	306675-15
Your Reference	UNITS	W6D_20220920	W6S_20220920	E11_20220920	W3S_20220920	W5D_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Aluminium-Dissolved	µg/L	20	280	1,000	260	<10
HM in water - dissolved						
Our Reference		306675-16	306675-17	306675-18	306675-19	306675-20
Your Reference	UNITS	N2_20220920	F5_20220921	G5_20220921	F6_20220921	G6_20220921
Date Sampled		20/09/2022	21/09/2022	21/09/2022	21/09/2022	21/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Aluminium-Dissolved	µg/L	1,100	1,900	480	<10	11,000
HM in water - dissolved						
Our Reference		306675-21	306675-22	306675-23	306675-24	306675-25
Your Reference	UNITS	A7_20220921	E4_20220921	W1S_20220921	W1D_20220921	D01_20220920
Date Sampled		21/09/2022	21/09/2022	21/09/2022	21/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Aluminium-Dissolved	µg/L	170	350	110	50	7,200

HM in water - dissolved			
Our Reference		306675-26	306675-27
Your Reference	UNITS	D01_20220921	R01_20220921
Date Sampled		20/09/2022	21/09/2022
Type of sample		Water	Water
Date prepared	-	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022
Aluminium-Dissolved	μg/L	590	<10

HM in water - total						
Our Reference		306675-1	306675-2	306675-3	306675-4	306675-5
Your Reference	UNITS	W2S_20220920	W2D_20220920	PUMP_2022092	W7M_20220920	W7S_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Date analysed	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Aluminium-Total	µg/L	7,600	1,100	11,000	2,400	3,600
HM in water - total	1	1				
Our Reference		306675-6	306675-7	306675-8	306675-9	306675-10
Your Reference	UNITS	E5_20220920	E5D_20220920	G2_20220920	N8_20220920	N9_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Date analysed	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Aluminium-Total	μg/L	150	1,300	120	390	9,700
HM in water - total						
Our Reference		306675-11	306675-12	306675-13	306675-14	306675-15
Your Reference	UNITS	W6D_20220920	W6S_20220920	E11_20220920	W3S_20220920	W5D_20220920
Date Sampled		20/09/2022	20/09/2022	20/09/2022	20/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Date analysed	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Aluminium-Total	µg/L	3,100	4,100	1,800	2,100	40
HM in water - total						
Our Reference		306675-16	306675-17	306675-18	306675-19	306675-20
Your Reference	UNITS	N2_20220920	F5_20220921	G5_20220921	F6_20220921	G6_20220921
Date Sampled		20/09/2022	21/09/2022	21/09/2022	21/09/2022	21/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Date analysed	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Aluminium-Total	µg/L	1,500	2,800	820	10	12,000
HM in water - total						
Our Reference		306675-21	306675-22	306675-23	306675-24	306675-25
Your Reference	UNITS	A7_20220921	E4_20220921	W1S_20220921	W1D_20220921	D01_20220920
Date Sampled		21/09/2022	21/09/2022	21/09/2022	21/09/2022	20/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Date analysed	-	29/09/2022	29/09/2022	29/09/2022	29/09/2022	29/09/2022
Aluminium-Total	µg/L	220	380	2,300	380	8,300

HM in water - total			
Our Reference		306675-26	306675-27
Your Reference	UNITS	D01_20220921	R01_20220921
Date Sampled		20/09/2022	21/09/2022
Type of sample		Water	Water
Date prepared	-	29/09/2022	29/09/2022
Date analysed	-	29/09/2022	29/09/2022
Aluminium-Total	μg/L	840	<10

	Method ID	Methodology Summary
ſ	Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
		Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
		Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
	Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
	Metals-022	Determination of various metals by ICP-MS.

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	306675-2
Date prepared	-			04/10/2022	1	04/10/2022	04/10/2022		04/10/2022	04/10/2022
Date analysed	-			04/10/2022	1	04/10/2022	04/10/2022		04/10/2022	04/10/2022
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	29	29	0	111	#
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	0.23	0.23	0	96	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	94	[NT]

QUALITY COI	NTROL: Mis	cellaneou		Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	306675-8
Date prepared	-				11	04/10/2022	04/10/2022		04/10/2022	04/10/2022
Date analysed	-				11	04/10/2022	04/10/2022		04/10/2022	04/10/2022
Fluoride, F	mg/L	0.1	Inorg-026		11	<0.1	[NT]		108	[NT]
Total Cyanide	mg/L	0.004	Inorg-014		11	<0.004	<0.004	0	94	82
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	97	93

QUALITY CO	NTROL: Mis	cellaneou	is Inorganics			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	306675-22
Date prepared	-			[NT]	26	04/10/2022	04/10/2022		[NT]	04/10/2022
Date analysed	-			[NT]	26	04/10/2022	04/10/2022		[NT]	04/10/2022
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	26	0.2	[NT]		[NT]	#
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	26	<0.004	<0.004	0	[NT]	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	26	<0.004	<0.004	0	[NT]	[NT]

QUALITY CO		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	306675-27
Date prepared	-			[NT]	[NT]		[NT]	[NT]		04/10/2022
Date analysed	-			[NT]	[NT]		[NT]	[NT]		04/10/2022
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	[NT]		[NT]	[NT]		88
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	[NT]		[NT]	[NT]		96

QUALITY CC	NTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	306675-2
Date prepared	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Date analysed	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	7000	7000	0	111	#
QUALITY CC		lipwatar	discolved			Du	plicate		Cnike De	
QUALITY CC	INTROL. HIV		- dissolved			Du	plicate		· ·	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	306675-11
Date prepared	-			[NT]	10	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Date analysed	-			[NT]	10	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Aluminium-Dissolved	µg/L	10	Metals-022	[NT]	10	3900	3800	3	99	85
QUALITY CC	NTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	20	28/09/2022	28/09/2022		[NT]	[NT]
Date analysed	-			[NT]	20	28/09/2022	28/09/2022		[NT]	[NT]

11000

20

11000

0

Metals-022

µg/L

10

Aluminium-Dissolved

QUALITY	CONTROL:	HM in wa		Du	plicate		Duplicate Spike Rec							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	306675-2				
Date prepared	-			29/09/2022	1	29/09/2022	29/09/2022		29/09/2022	29/09/2022				
Date analysed	-			29/09/2022	1	29/09/2022	29/09/2022		29/09/2022	29/09/2022				
Aluminium-Total	µg/L	10	Metals-022	<10	1	7600	7800	3	105	#				
QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	306675-22				
Date prepared	-			[NT]	11	29/09/2022	29/09/2022		29/09/2022	29/09/2022				
Date analysed	-			[NT]	11	29/09/2022	29/09/2022		29/09/2022	29/09/2022				
Aluminium-Total	µg/L	10	Metals-022	[NT]	11	3100	3000	3	115	#				
	CONTROL:	HM in wa	ter - total			Du	plicate		Snike Re	covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]				
Date prepared	-			[NT]	21	29/09/2022	29/09/2022		[NT]	[NT]				
Date analysed	-			[NT]	21	29/09/2022	29/09/2022		[NT]	[NT]				

21

220

210

5

Metals-022

µg/L

10

Aluminium-Total

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Fluoride

Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

26/9 9!22. COC

CHAIN OF CUSTODY - Client

			CHA	IN OF	CUS	бтс)D`	Y -	Cli	en	t											
				ENVI													-		_			
Client: Rambo					Client P										Envirolab Services							
	n: Jake Bourke													12 Ashley St, Chatswood, NSW 2067 Phone: 02 9910 6200 Fax :02 9910 6201								
Project Mgr: J					1PU NO.:														Fax :02 9910 6201			
	ler: Jake Bourke				Envirol		_						•						labse	ervices.com.au		
	ess: Level 2 Suite 18, 50 Glebe Road,				Date re	sults r	equire	:d:	-							act: A						
The Junction																				t/a MPL		
The Sufficient					Or cho	ose: st	andar	d / sar	ne day	/ 1 da	y / 2 d	ay / 3	day			-				e WA 6154 Fax :08 9317 4163		
Phone:	one: (02) 49625444 Mob: 0467580473				Note: Ini						is require	d - surch	harge app	olies	Phon					Fax :08 9317 4105		
Fax:					Lab co	mment	s: Higl	hly cor	ntamina	ted					E-ma		-	-				
	kirsch@ramboll.com; jbou	rke@ramboll.com											No. 1			act: J			2.2	Comments		
	Sam	ole information					<u> </u>			े रहे थे 	Test	s Requ	uired	dianet re			a		<u></u>			
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium									-		Provide as much information about the sample as you can		
	W2S 20220920		20/09/2022	WATER	X	X	_ X_	X	X		<u> </u>	ļ	<u> </u>	ļ	<u> </u>		<u> </u>					
2	W2D 20220920		20/09/2022	WATER	x	х	X	X	X			ļ		 	<u> </u>	┣—	╞───					
	PUMP 20220920		20/09/2022	WATER	x	x	x	X	X			ļ	<u> </u>		<u> </u>		\leftarrow	E	virolai	6 Services		
	W7M 20220920	¥	20/09/2022	WATER	X	X	x	X	X		∔	<u> </u>		╂			ROLAE			ISW 2067		
5	W7S 20220920		20/09/2022	WATER	X	X	X	×	X			<u> </u>	ŀ		┼──	\vdash	1007	Gilai		\$970 6200		
6	E5 20220920		20/09/2022	WATER	X	X	X	X	×							Job	No:		_	575		
	E5D 20220920	1	20/09/2022	WATER	X	X	X	X	×		<u> </u>		<u> </u>							1.22		
8	G2 20220920		20/09/2022	WATER	×	X	X	X	×		<u> </u>						Recei Rece		110			
9	N8_20220920		20/09/2022	WATER	×	×	x	×	X	<u> </u>			+		╂───			1 /		Ť		
10	N9_20220920		20/09/2022	WATER	X	X	· X	×	×			<u> </u>		_−		Tem		Ambi	<u>h</u>			
1	W6D 20220920		20/09/2022	WATER	X	X	×	×	X	_−	<u> </u>			╂──			ihg_ic					
17.	W6S_20220920		20/09/2022	WATER	×	×	X	X	×					╂—		Seci	urity: Ir	tact/B	oken			
(3	E11_20220920		20/09/2022	WATER	×	x	x	x	×	<u> </u>	\perp			<u> </u>	<u> </u>					· 		
14	W3S 20220920		20/09/2022	2 WATER	X	X	X	x	X			Ļ	<u> </u>			1	<u> </u>					
-	by (company):	Ramboli			Recei	ived by		pany):	0	S	<u> </u>	rd_				ise onl	•					
Print Name:		Jake Bourke			Print Name: 00							<u></u>	Samples Received: Cool or Ambient (circle one)									
Date & Time	·	26/09/2022			Date & filme: Critic C				Temperature Received at: (if applicable) Transported by: Hand delivered / courier													
Signature:					Signa	ature:			⊻—	-					Iran	sported	1 DY: 1		anvere			

											•						A۴) 2	7/9 ENVIROLAB
				ENVIR	OLA	B G	ROL	JP							(X)	302	56	73	
lient: Rambo Contact perso	ll n: Jake Bourke				IChent Protect Name / Number / Site etc (ic report actor)								12 A	Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Phone: 02 9910 6200 Fax :02 9910 6201					
roject Mgr: J	ordyn Kirsch																		rvices.com.au
ampler: Jake					Envirola Date re											Aileen			
ddress: Leve	l 2 Suite 18, 50 Glebe Road	·			Date ie	Juicon									_			WA	t/a MPL
he Junction					Or choo			4 / 62.00	o dav	/ 1 dav	/ 2 d	av / 3 d	av						WA 6154
				<u> </u>												8 9317			Fax :08 9317 4163
hone:	(02) 49625444	Mob:	046	7580473							require	d - surcha	rge applies	-					147 100 2017 1100
ax:						nment	s: Higł	nly cont	amina	tea						ab@m Joshu			
	jkirsch@ramboll.com; jbour	ke@ramboll.com								_					acti .	JUSIIU		, e	Comments
		ple information			_		· .	<u></u>			Tes	ts Requi	red		<u> </u>	— —	T		Commence
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fiuoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium	ОТОН									Provide as much information about the sample as you can
15	W5D_20220920		20/09/2022	WATER	x	x	x	x	x					_				<u> </u>	
16	N2_20220920		20/09/2022	WATER	х	х	х	X	_ X						┣━-			+	
(7	F5 20220921		21/09/2022	WATER	x	x	x	X	X					_+	╂—		+		
18	G5 20220921		21/09/2022	WATER	X	X	x	X	X		<u> </u>				_−		╂_─	┼──	
19	F6 20220921		21/09/2022	WATER	X	X	x	<u>×</u>	X					_+	-		╂──	+	
20	G6 20220921		21/09/2022	WATER	X	x	x	x	X	L	L					+		+	<u> </u>
21	A7 20220921		21/09/2022	WATER	x	x	X	×	x		L	<u> </u>	└ <u>─</u> ─┼─			<u></u>		+	
22	E4 20220921		21/09/2022	WATER	X	x	x	<u> </u>	x		<u> </u>		┝──┼─		╂_─		+		
23	W1S 20220921		21/09/2022	WATER	x	x	×	X	×		_	–	┞──┼─	_	+	+	+ -		
28	W1D_20220921		21/09/2022	WATER	×	<u>×</u>	X	X	X	_−	<u> </u>		┣──┼─		+			+	
25	D01_20220920		20/09/2022	WATER	x	x	X	x	X		<u> </u>	<u>+</u> —	┟──┼╌	_ _	+		+	+	Please forward to ALS
	T01_20220920		20/09/2022	WATER	×	×	X	X	<u> </u>		┣		├				+		I Case to Ward to AL
25	D01 20220921		21/09/2022		×	X	×	×	×	<u> </u>			╏──┤─		+		+	+	Please forward to AL
	T01 20220921		21/09/2022	2 WATER			1	╂		<u>×</u>	+	+	┢──┼╴	_+	+	+	+	+-	Thuse for ward to ALL
27	R01_20220921		21/09/2022	2 WATER	×	x	×	<u> </u>	×	_−	┣	+	┼─┼╴	_	+		+	+	+
				1	4—	L	_		<u> </u>	<u> </u>	L		J		use on				· · · · · · · · · · · · · · · · · · ·
Relinauishe	d by (company):	Ramboll			Received by (company):									-		or Amt	pient (circle one)		
Print Name		Jake Bourke			Print Name:						Samples Received Cool or Ambient (circle one)								
Date & Tim		26/09/2022									Temperature Received at: 6 (if applicable) Transported by: Hand delivered / courier								
Signature:					Signa	ature:									sporte	y			

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Bourke

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001362
Envirolab Reference	306675
Date Sample Received	27/09/2022
Date Instructions Received	27/09/2022
Date Results Expected to be Reported	05/10/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	27 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst							
Phone: 02 9910 6200	Phone: 02 9910 6200							
Fax: 02 9910 6201	Fax: 02 9910 6201							
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au							

Analysis Underway, details on the following page:

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total
W2S_20220920	✓	✓	✓	✓	\checkmark
W2D_20220920	✓	✓	✓	✓	✓
PUMP_20220920	✓	✓	✓	\checkmark	\checkmark
W7M_20220920	✓	✓	✓	\checkmark	\checkmark
W7S_20220920	\checkmark	✓	✓	\checkmark	\checkmark
E5_20220920	✓	✓	✓	✓	\checkmark
E5D_20220920	✓	\checkmark	✓	\checkmark	 <
G2_20220920	✓	✓	✓	\checkmark	\checkmark
N8_20220920	· ✓	\checkmark	✓	\checkmark	✓
N9_20220920	✓ ✓	✓	✓	\checkmark	✓
W6D_20220920	✓	✓	✓	✓	✓
W6S_20220920	✓	✓	✓	✓	✓
E11_20220920	✓	✓	✓	✓	✓
W3S_20220920	✓	✓	✓	✓	✓
W5D_20220920	✓	✓	✓	✓	✓
N2_20220920	✓	✓	✓	✓	✓
F5_20220921	\checkmark	✓	✓	✓	✓
G5_20220921	✓	✓	✓	✓	✓
F6_20220921	✓	✓	✓	✓	✓
G6_20220921	✓	✓	√	✓	✓
A7_20220921	✓	✓	✓	✓	✓
E4_20220921	✓	✓	✓	✓	✓
W1S_20220921	✓ ✓ ✓	✓	✓	✓ ✓	 <
W1D_20220921		✓	✓		✓
D01_20220920	✓	✓	✓	✓	✓
D01_20220921	✓	✓	✓	✓	✓
R01_20220921	✓	\checkmark	\checkmark	\checkmark	✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS

Work Order	ES2234720	Page	: 1 of 2
Client	RAMBOLL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Cez Bautista
Address	EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 28-Sep-2022 15:50
Order number	:	Date Analysis Commenced	: 01-Oct-2022
C-O-C number	:	Issue Date	: 06-Oct-2022 15:13
Sampler	:		IC-OCI-2022 15:13
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing

purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)				T01_20220920	T01_20220921	 	
		Sampli	ng date / time	21-Sep-2022 00:00	21-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2234720-001	ES2234720-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	10	µg/L	6620	290	 	
EG020T: Total Metals by ICP-MS							
Aluminium	7429-90-5	10	µg/L	7350	670	 	
EK025SF: Free CN by Segmented Flow	Analyser						
Free Cyanide		0.004	mg/L	<0.004	<0.004	 	
EK026SF: Total CN by Segmented Flow	Analyser						
Total Cyanide	57-12-5	0.004	mg/L	0.173	<0.004	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	33.6	0.6	 	

QUALITY CONTROL REPORT

Work Order	: ES2234720	Page	: 1 of 3
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Cez Bautista
Address	EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 28-Sep-2022
Order number	:	Date Analysis Commenced	01-Oct-2022
C-O-C number	:	Issue Date	: 06-Oct-2022
Sampler	:		Iac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi

Senior Chemist - Inorganics

Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER	ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EG020F: Dissolved	Metals by ICP-MS	(QC Lot: 4615924)									
WN2212140-002	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
ES2234679-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.0	No Limit		
EG020T: Total Meta	Is by ICP-MS (QC	Lot: 4616294)									
ES2234591-004	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<10 µg/L	<0.01	0.0	No Limit		
ES2234418-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
EK025SF: Free CN	by Segmented Flo	w Analyser (QC Lot: 4617332)									
ES2234543-006	Anonymous	EK025SF: Free Cyanide		0.004	mg/L	<0.004	<0.004	0.0	No Limit		
ES2235380-002	Anonymous	EK025SF: Free Cyanide		0.004	mg/L	0.034	0.037	6.6	No Limit		
EK026SF: Total CN	by Segmented Flo	ow Analyser (QC Lot: 4617334)									
ES2235380-002	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	0.540	0.601	10.7	No Limit		
ES2234577-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit		
EK040P: Fluoride by	y PC Titrator (QC	Lot: 4613031)									
ES2234730-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	0.3	94.7	No Limit		
ES2234730-003	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit		

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG020F: Dissolved Metals by ICP-MS (QCLot: 461	5924)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	90.5	80.0	116		
EG020T: Total Metals by ICP-MS (QCLot: 4616294)									
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	95.6	82.0	120		
EK025SF: Free CN by Segmented Flow Analyser	(QCLot: 4617332)									
EK025SF: Free Cyanide		0.004	mg/L	<0.004	0.2 mg/L	103	88.0	128		
EK026SF: Total CN by Segmented Flow Analyser	(QCLot: 4617334)									
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	104	73.0	133		
EK040P: Fluoride by PC Titrator (QCLot: 4613031										
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	105	82.0	116		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report					
				Spike	Spike SpikeRecovery(%) Acceptable Limit					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EK025SF: Free CN	by Segmented Flow Analyser (QCLot: 4617332)									
ES2234543-006	Anonymous	EK025SF: Free Cyanide		0.2 mg/L	103	70.0	130			
EK026SF: Total C	by Segmented Flow Analyser (QCLot: 4617334)									
ES2234577-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	104	70.0	130			
EK040P: Fluoride b	by PC Titrator (QCLot: 4613031)									
ES2234730-002	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	87.0	70.0	130			

QA/QC Compliance Assessment to assist with Quality Review : ES2234720 Work Order Page : 1 of 4 : Environmental Division Sydney Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : JORDYN KIRSCH Telephone : +61-2-8784 8555 Contact Project : HYDRO GROUNDWATER PLUME MONITORING - 318001362 **Date Samples Received** : 28-Sep-2022 **Issue Date** : 06-Oct-2022 : -----: 2 Sampler : -----No. of samples received Order number No. of samples analysed :2 · ____

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Site

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- NO Duplicate outliers occur. ٠
- <u>NO</u> Laboratory Control outliers occur.
- ٠ NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Matrix: WATER

Quality Control Sample Type	Count		Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	12	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	10	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

						i. •• – Holding time	bleach, • - With	in noluling time	
Method			Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) T01_20220920,	T01_20220921	21-Sep-2022				04-Oct-2022	20-Mar-2023	✓	
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) T01_20220920,	T01_20220921	21-Sep-2022	04-Oct-2022	20-Mar-2023	~	04-Oct-2022	20-Mar-2023	~	
EK025SF: Free CN by Segmented Flow Analyser									
Opaque plastic bottle - NaOH (EK025SF) T01_20220920,	T01_20220921	21-Sep-2022				05-Oct-2022	05-Oct-2022	~	
EK026SF: Total CN by Segmented Flow Analyser									
Opaque plastic bottle - NaOH (EK026SF) T01_20220920,	T01_20220921	21-Sep-2022				05-Oct-2022	05-Oct-2022	~	
EK040P: Fluoride by PC Titrator									
Clear Plastic Bottle - Natural (EK040P) T01_20220920,	T01_20220921	21-Sep-2022				01-Oct-2022	19-Oct-2022	~	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; 🗸 = Quality Control frequency within specificatio
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	16	6.25	5.00	~	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	16	6.25	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	12	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	0	10	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Free CN by Segmented Flow Analyser	EK025SF	WATER	In house: Referenced to ASTM D7237, APHA 4500-CN-C&O and ISO 14403: Using an automated segmented flow analyser, a sample at high pH (sodium hydroxide preserved) is buffered to pH 6.0. The hydrogen cyanide present passes across a gas dialysis membrane into an acceptor stream consisting of 0.01 M sodium hydroxide. The acceptor stream mixes with a buffer at pH 5.2 and reacts with chloramine-T to form cyanogen chloride reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour, measured at 600nm. This method is compliant with NEPM Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by Auto Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2234720		
Client Contact Address	: RAMBOLL AUSTRALIA PTY LTD : JORDYN KIRSCH : EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291	Contact: Cez BauAddress: 277-289	nental Division Sydney tista Woodpark Road Smithfield stralia 2164
E-mail Telephone Facsimile	: jkirsch@ramboll.com : :	E-mail : cez.baut Telephone : +61-2-87 Facsimile : +61-2-87	
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Page : 1 of 2	
Order number C-O-C number Site Sampler	: : :		ENVIAUS0001 (EN/222) 013 B3 & ALS QC Standard
Dates Date Samples Receive Client Requested Due Date	ed : 28-Sep-2022 15:50 : 06-Oct-2022	Issue Date Scheduled Reporting Date	30-Sep-2022 06-Oct-2022
Delivery Detail. Mode of Delivery No. of coolers/boxes Receipt Detail	S : Carrier : 1 :	Security Seal Temperature No. of samples received / analysed	: Intact. : 15.3°C - Ice Bricks present : 2 / 2

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The laboratory will process these samples unless instructions are received from
 you indicating you do not wish to proceed. The absence of this summary table indicates that all
 samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

Laboratory sample	Sampling date / time	Sample ID	WATER - E Dissolved N	WATER - E Total Metals	WATER - E Free CN By	WATER - E Total Cyanic	WATER - E Fluoride (Au
ES2234720-001	21-Sep-2022 00:00	T01_20220920	✓	1	1	1	✓
ES2234720-002	21-Sep-2022 00:00	T01_20220921	✓	✓	✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

ACCOUNTOTATABLE		
- A4 - AU Tax Invoice (INV)	Email	AsiaPac-Accounts@Ramboll.com
JAKE BOURKE		
 *AU Certificate of Analysis - NATA (COA) 	Email	JBOURKE@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	JBOURKE@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	JBOURKE@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	JBOURKE@ramboll.com
- Chain of Custody (CoC) (COC)	Email	JBOURKE@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	JBOURKE@ramboll.com
- EDI Format - XTab (XTAB)	Email	JBOURKE@ramboll.com
JORDYN KIRSCH		
 *AU Certificate of Analysis - NATA (COA) 	Email	jkirsch@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jkirsch@ramboll.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jkirsch@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jkirsch@ramboll.com
- Chain of Custody (CoC) (COC)	Email	jkirsch@ramboll.com
 EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON) 	Email	jkirsch@ramboll.com
- EDI Format - XTab (XTAB)	Email	jkirsch@ramboll.com

by ICP/MS (including digestion)

etals by ICP/MS

G020F

G020T

te by Segmented Flow Analyser

<026SF

to Titrator

<040-P

Segmented Flow Analyser

K025SF

Transported by: Hand delivered / courier						iture:	Signature:	Ŵ				Signature;
Temperature Received at: 6 (if applicable)	M CC >					Date & Time:	Date		28141	26/09/2022		Date & Time:
Ambien						Print Name:	Print	ULUNO	UN CIN	Jake Bourke	na na na na mana ing na	Print Name:
Lab use only:				ny):	Received by (company):	ved by	Recei		ELY SMO	Ramboll	Relinquished by (company):	Relinquished
			 									der Ster
			×	×	×	×	×	WATER	21/09/2022		- 1	- 11
Please forward to ALS		×						WATER	21/09/2022			
			×	×	×	×	×	WATER	21/09/2022			24
Please forward to ALS			×	×	×	×	×	WATER	20/09/2022		T01 20220920	and the state of the
			×	×	×	×	×	WATER	20/09/2022		D01_20220920	9 N
n+2-8784 8555	elephone: + 61-2-8784 8555	-	×	×	×	×	×	WATER	21/09/2022		W1D_20220921	24
			×	×	×	×	×	WATER	21/09/2022		W1S_20220921	23
		-	×	×	×	×	×	WATER	21/09/2022		E4_20220921	2
		-	×	×	×	×	×	WATER	21/09/2022		A7_20220921	- 4
			×	×	×	×	×	WATER	21/09/2022		G6_20220921	0 0
			×	×	×	×	×	WATER	21/09/2022			6)
ES22341 EV	H ESZ		×	×	×	×	×	WATER	21/09/2022			ñ
	Work Order		×	×	×	×	×	WATER	21/09/2022		F5_20220921	V)
			×	×	×	×	×	WATER	20/09/2022		N2_20220920	2
tal Division			×	×	×	×	×	WATER	20/09/2022		W5D_20220920	ŝ
Provide as much information about the sample as you can		HOLD	Dissolved Aluminium	Total Aluminium	Free Cyanide	Total Cyanide	Soluble Fluoride	Type of sample	Date sampled	Depth	Client Sample ID or information	Envirolab Sample ID
	Tests Required		1	_						Sample information	Sam	
										ke@ramboll.com	jkirsch@ramboll.com; jbourke@ramboll.com	Email: Jk
e-mail: lab@mpi.com.au Contact: Joshua Lim		¢	minate	/ conta	s: Highr	nments	Lab comments: Highly contanunated					Fax:
Phone: 08 9317 2505 Fax :08 9317 4163	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	ınd is requi	t turnarou	if urgen	n advance	orm lab li	Note: Infi	0467580473	046.	Mob:	(02) 49625444	Phone:
aree	day / 2 day / 3 day		day / 1	/ same	andard	ose: sta	Or choose: standard / same day / 1					
Envirolab Services WA t/a MPL												The Junction
Contact: Alleen nie	10				quired:	sults re	Date results required:				Address: Level 2 Suite 18, 50 Glebe Road,	Address; Level
E-mail: anle@enviroiabservices.com.au					e No. :	ab Quot	Envirolab Quote No. :				Bourke	Sampler: Jake Bourke
			,				PO No.:				rdyn Kirsch	Project Mgr: Jordyn Kirsch
juu,	Hydro Groundwater Plume Monitoring - 318001362	onitorinç	lume M	rater P	iroundv	Hydro G	-				: Jake Bourke	Contact person: Jake Bourke
Envirolab Services		etc (ie i	er / Site	Numbe	Name /	roject l	Client Project Name / Number / Site					Client: Ramboll
306675 FINIROLAB				o	ROU	BG	О Г	ENVIROLAB GROUP				
Mr ~ 111												

Rev: 26 28/04/12 1830

CERTIFICATE OF ANALYSIS 313871

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Bourke, J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	Hydro Groundwater Plume Monitoring - 318001362
Number of Samples	26 Water
Date samples received	23/12/2022
Date completed instructions received	23/12/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	09/01/2023
Date of Issue	09/01/2023
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Diego Bigolin, Inorganics Supervisor Loren Bardwell, Development Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 313871 Revision No: R00

Page | 1 of 13

Miscellaneous Inorganics						
Our Reference		313871-1	313871-2	313871-3	313871-4	313871-5
Your Reference	UNITS	W2S_20221220	W2D_20221220	PUMP_2022122	W7M_20221220	W3S_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/12/2022	30/12/2022	30/12/2022	30/12/2022	30/12/2022
Date analysed	-	30/12/2022	30/12/2022	30/12/2022	30/12/2022	30/12/2022
Fluoride, F	mg/L	53	1,100	360	850	180
Total Cyanide	mg/L	1.4	230	27	170	28
Free Cyanide in Water	mg/L	<0.004	0.004	<0.004	<0.004	0.006
Miscellaneous Inorganics						
Our Reference		313871-6	313871-7	313871-8	313871-9	313871-10
Your Reference	UNITS	E5_20221220	E5D_20221220	G2_20221220	N8_20221220	N9_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/12/2022	30/12/2022	30/12/2022	30/12/2022	30/12/2022
Date analysed	-	30/12/2022	30/12/2022	30/12/2022	30/12/2022	30/12/2022
Fluoride, F	mg/L	420	8.6	0.3	0.6	2.9
Total Cyanide	mg/L	86	0.94	<0.004	0.61	0.076
Free Cyanide in Water	mg/L	0.006	<0.004	<0.004	<0.004	<0.004
Miscellaneous Inorganics						
		313871-11	313871-12	313871-13	313871-14	313871-16
Miscellaneous Inorganics	UNITS					
Miscellaneous Inorganics Our Reference		313871-11 W6D_20221220 20/12/2022	313871-12	313871-13	313871-14	313871-16
Miscellaneous Inorganics Our Reference Your Reference		313871-11 W6D_20221220	313871-12 E11_20221220	313871-13 W5D_20221220	313871-14 N2_20221220	313871-16 D01_20221220
Miscellaneous Inorganics Our Reference Your Reference Date Sampled		313871-11 W6D_20221220 20/12/2022	313871-12 E11_20221220 20/12/2022	313871-13 W5D_20221220 20/12/2022	313871-14 N2_20221220 20/12/2022 Water 30/12/2022	313871-16 D01_20221220 20/12/2022
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample		313871-11 W6D_20221220 20/12/2022 Water	313871-12 E11_20221220 20/12/2022 Water	313871-13 W5D_20221220 20/12/2022 Water	313871-14 N2_20221220 20/12/2022 Water	313871-16 D01_20221220 20/12/2022 Water
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS - - mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022	313871-12 E11_20221220 20/12/2022 Water 30/12/2022	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022	313871-14 N2_20221220 20/12/2022 Water 30/12/2022	313871-16 D01_20221220 20/12/2022 Water 30/12/2022
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	UNITS - mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.004	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.006	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F	UNITS - - mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics	UNITS - mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.004 <0.004	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50 <0.004	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.006 <0.004	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220 0.005
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water	UNITS - mg/L mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.004	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.006	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference	UNITS - mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.004 <0.004 313871-17 W15_20221221	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50 <0.004	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 0.4 0.006 <0.004 313871-19 A7_20221221	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004 313871-20 G5_20221221	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220 0.005 313871-21 F5_20221221
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled	UNITS - mg/L mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.04 <0.004 <0.004 313871-17 W15_20221221 21/12/2022	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 23 0.12/2022 23 0.50 <0.004 313871-18 G6_20221221 21/12/2022	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.006 <0.004 313871-19 A7_20221221 21/12/2022	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004 313871-20 G5_20221221 21/12/2022	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220 0.005 313871-21 F5_20221221 21/12/2022
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference	UNITS - mg/L mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.004 <0.004 313871-17 W15_20221221 21/12/2022 Water	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 23 0.50 <0.004 313871-18 G6_20221221 21/12/2022 Water	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 0.4 0.4 0.006 <0.004 313871-19 A7_20221221 21/12/2022 Water	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004 313871-20 G5_20221221 21/12/2022 Water	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220 0.005 313871-21 F5_20221221 21/12/2022 Water
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Total Sampled Tipe of sample Date Sampled	UNITS - mg/L mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.004 <0.004 <0.004 313871-17 W15_20221221 21/12/2022 Water 30/12/2022	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50 <0.004 313871-18 G6_20221221 21/12/2022 Water 30/12/2022	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.4 0.006 <0.004 313871-19 A7_20221221 21/12/2022 Water 30/12/2022	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004 313871-20 G5_20221221 21/12/2022 Water 30/12/2022	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 30/12/2022 30/12/2022 313871-21 F5_20221221 21/12/2022 Water 30/12/2022
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date Sampled Type of sample Date prepared Date analysed	UNITS mg/L mg/L mg/L UNITS UNITS	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.1 <0.004 <0.004 <0.004 313871-17 W15_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50 <0.004 313871-18 G6_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.4 0.006 <0.004 313871-19 A7_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004 313871-20 G5_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220 220 0.005 313871-21 F5_20221221 21/12/2022 Water 30/12/2022
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date Sampled Type of sample Date prepared Date analysed Fluoride, F	UNITS mg/L mg/L UNITS mg/L mg/L	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.004 <0.004 <0.004 313871-17 W15_20221221 21/12/2022 Water 30/12/2022 30/12/2022 12	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50 <0.004 313871-18 G6_20221221 21/12/2022 Water 30/12/2022 30/12/2022 0.7	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.4 0.006 <0.004 313871-19 A7_20221221 21/12/2022 Water 30/12/2022 30/12/2022 30/12/2022	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004 313871-20 G5_20221221 21/12/2022 Water 30/12/2022 30/12/2022 0.2	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220 0.005 313871-21 F5_20221221 21/12/2022 Water 30/12/2022 30/12/2022 0.2
Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date Sampled Type of sample Date prepared Date analysed	UNITS mg/L mg/L mg/L UNITS UNITS	313871-11 W6D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 <0.1 <0.1 <0.004 <0.004 <0.004 313871-17 W15_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-12 E11_20221220 20/12/2022 Water 30/12/2022 30/12/2022 23 0.50 <0.004 313871-18 G6_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-13 W5D_20221220 20/12/2022 Water 30/12/2022 30/12/2022 0.4 0.4 0.006 <0.004 313871-19 A7_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-14 N2_20221220 20/12/2022 Water 30/12/2022 30/12/2022 3.0 0.027 <0.004 313871-20 G5_20221221 21/12/2022 Water 30/12/2022 30/12/2022	313871-16 D01_20221220 20/12/2022 Water 30/12/2022 30/12/2022 1,200 220 0.005 313871-21 F5_20221221 21/12/2022 Water 30/12/2022 30/12/2022

Miscellaneous Inorganics						
Our Reference		313871-22	313871-23	313871-24	313871-25	313871-26
Your Reference	UNITS	E4_20221221	F6_20221221	W1D_20221221	R01_20221221	D02_20221221
Date Sampled		21/12/2022	21/12/2022	21/12/2022	21/12/2022	21/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/12/2022	30/12/2022	30/12/2022	30/12/2022	30/12/2022
Date analysed	-	30/12/2022	30/12/2022	30/12/2022	30/12/2022	30/12/2022
Fluoride, F	mg/L	780	0.5	10	<0.1	810
Total Cyanide	mg/L	210	0.004	1.2	<0.004	210
Free Cyanide in Water	mg/L	0.004	<0.004	<0.004	<0.004	0.005

HM in water - dissolved						
Our Reference		313871-1	313871-2	313871-3	313871-4	313871-5
Your Reference	UNITS	W2S_20221220	W2D_20221220	PUMP_2022122 0	W7M_20221220	W3S_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Dissolved	μg/L	1,900	550	950	250	370
HM in water - dissolved		·	·			
Our Reference		313871-6	313871-7	313871-8	313871-9	313871-10
Your Reference	UNITS	E5_20221220	E5D_20221220	G2_20221220	N8_20221220	N9_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Dissolved	μg/L	80	<10	<10	20	1,100
HM in water - dissolved						
Our Reference		313871-11	313871-12	313871-13	313871-14	313871-16
Your Reference	UNITS	W6D_20221220	E11_20221220	W5D_20221220	N2_20221220	D01_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Dissolved	µg/L	30	470	<10	1,900	510
HM in water - dissolved						
Our Reference		313871-17	313871-18	313871-19	313871-20	313871-21
Your Reference	UNITS	W15_20221221	G6_20221221	A7_20221221	G5_20221221	F5_20221221
Date Sampled		21/12/2022	21/12/2022	21/12/2022	21/12/2022	21/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Dissolved	µg/L	80	16,000	140	80	2,100
HM in water - dissolved						
Our Reference		313871-22	313871-23	313871-24	313871-25	313871-26
Your Reference	UNITS	E4_20221221	F6_20221221	W1D_20221221	R01_20221221	D02_20221221
Date Sampled		21/12/2022	21/12/2022	21/12/2022	21/12/2022	21/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Dissolved	µg/L	380	<10	90	<10	370

HM in water - total						
Our Reference		313871-1	313871-2	313871-3	313871-4	313871-5
Your Reference	UNITS	W2S_20221220	W2D_20221220	PUMP_2022122 0	W7M_20221220	W3S_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Total	µg/L	63,000	450	8,500	3,400	3,700
HM in water - total			·			
Our Reference		313871-6	313871-7	313871-8	313871-9	313871-10
Your Reference	UNITS	E5_20221220	E5D_20221220	G2_20221220	N8_20221220	N9_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Total	µg/L	300	1,200	160	340	2,000
HM in water - total						
Our Reference		313871-11	313871-12	313871-13	313871-14	313871-16
Your Reference	UNITS	W6D_20221220	E11_20221220	W5D_20221220	N2_20221220	D01_20221220
Date Sampled		20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Total	μg/L	1,400	1,100	50	2,600	450
HM in water - total						
Our Reference		313871-17	313871-18	313871-19	313871-20	313871-21
Your Reference	UNITS	W15_20221221	G6_20221221	A7_20221221	G5_20221221	F5_20221221
Date Sampled		21/12/2022	21/12/2022	21/12/2022	21/12/2022	21/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Total	µg/L	280	17,000	150	450	2,500
HM in water - total						
Our Reference		313871-22	313871-23	313871-24	313871-25	313871-26
Your Reference	UNITS	E4_20221221	F6_20221221	W1D_20221221	R01_20221221	D02_20221221
Date Sampled		21/12/2022	21/12/2022	21/12/2022	21/12/2022	21/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Date analysed	-	03/01/2023	03/01/2023	03/01/2023	03/01/2023	03/01/2023
Aluminium-Total	µg/L	390	70	720	<10	370

	Method ID	Methodology Summary
ſ	Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
		Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
		Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
	Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
	Metals-022	Determination of various metals by ICP-MS.

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics						plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	313871-2
Date prepared	-			30/12/2022	1	30/12/2022	30/12/2022		30/12/2022	30/12/2022
Date analysed	-			30/12/2022	1	30/12/2022	30/12/2022		30/12/2022	30/12/2022
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	53	51	4	99	#
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	1.4	[NT]		104	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	[NT]		102	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	313871-13
Date prepared	-			[NT]	8	30/12/2022	30/12/2022		30/12/2022	30/12/2022
Date analysed	-			[NT]	8	30/12/2022	30/12/2022		30/12/2022	30/12/2022
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	8	0.3	[NT]		104	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	8	<0.004	<0.004	0	98	97
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	8	<0.004	<0.004	0	97	85

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	313871-21
Date prepared	-			[NT]	10	30/12/2022	30/12/2022			30/12/2022
Date analysed	-			[NT]	10	30/12/2022	30/12/2022			30/12/2022
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	10	2.9	2.9	0		[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	10	0.076	[NT]			90
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	10	<0.004	[NT]			87

QUALITY C	QUALITY CONTROL: Miscellaneous Inorganics							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	313871-22	
Date prepared	-			[NT]	11	30/12/2022	30/12/2022		[NT]	30/12/2022	
Date analysed	-			[NT]	11	30/12/2022	30/12/2022		[NT]	30/12/2022	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	<0.1	[NT]		[NT]	#	
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	[NT]	[NT]	
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	[NT]	[NT]	

QUALITY COI		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	20	30/12/2022	30/12/2022			[NT]
Date analysed	-			[NT]	20	30/12/2022	30/12/2022			[NT]
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	20	0.2	[NT]			[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	20	<0.004	<0.004	0		[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	20	<0.004	<0.004	0		[NT]

QUALITY COI		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	30/12/2022	30/12/2022			[NT]
Date analysed	-			[NT]	21	30/12/2022	30/12/2022			[NT]
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	21	0.2	0.3	40		[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	21	<0.004	[NT]			[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	21	<0.004	[NT]		[NT]	[NT]

QUALITY CONTROL: HM in water - dissolved						Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	313871-2
Date prepared	-			03/01/2023	1	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Date analysed	-			03/01/2023	1	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	1900	1900	0	104	#
QUALITY CC		lipwatar	dissolved			Du	plicate		Spiko Bo	covery %
				Disple				DDD	· ·	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	313871-23
Date prepared	-			[NT]	11	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Date analysed	-			[NT]	11	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Aluminium-Dissolved	µg/L	10	Metals-022	[NT]	11	30	30	0	95	93
			all a state of			D				0/
QUALITY CC	INTROL: HI	i in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	22	03/01/2023	03/01/2023		[NT]	[NT]
Date analysed	-			[NT]	22	03/01/2023	03/01/2023		[NT]	[NT]

22

380

380

0

Metals-022

µg/L

10

Aluminium-Dissolved

QUALITY		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	313871-3
Date prepared	-			03/01/2023	1	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Date analysed	-			03/01/2023	1	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Aluminium-Total	µg/L	10	Metals-022	<10	1	63000	67000	6	103	#
QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	313871-12
Date prepared	-			[NT]	11	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Date analysed	-			[NT]	11	03/01/2023	03/01/2023		03/01/2023	03/01/2023
Aluminium-Total	µg/L	10	Metals-022	[NT]	11	1400	1500	7	105	#
QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	03/01/2023	03/01/2023		[NT]	[NT]
Date analysed	-			[NT]	21	03/01/2023	03/01/2023		[NT]	[NT]

21

2500

2600

4

Metals-022

µg/L

10

Aluminium-Total

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

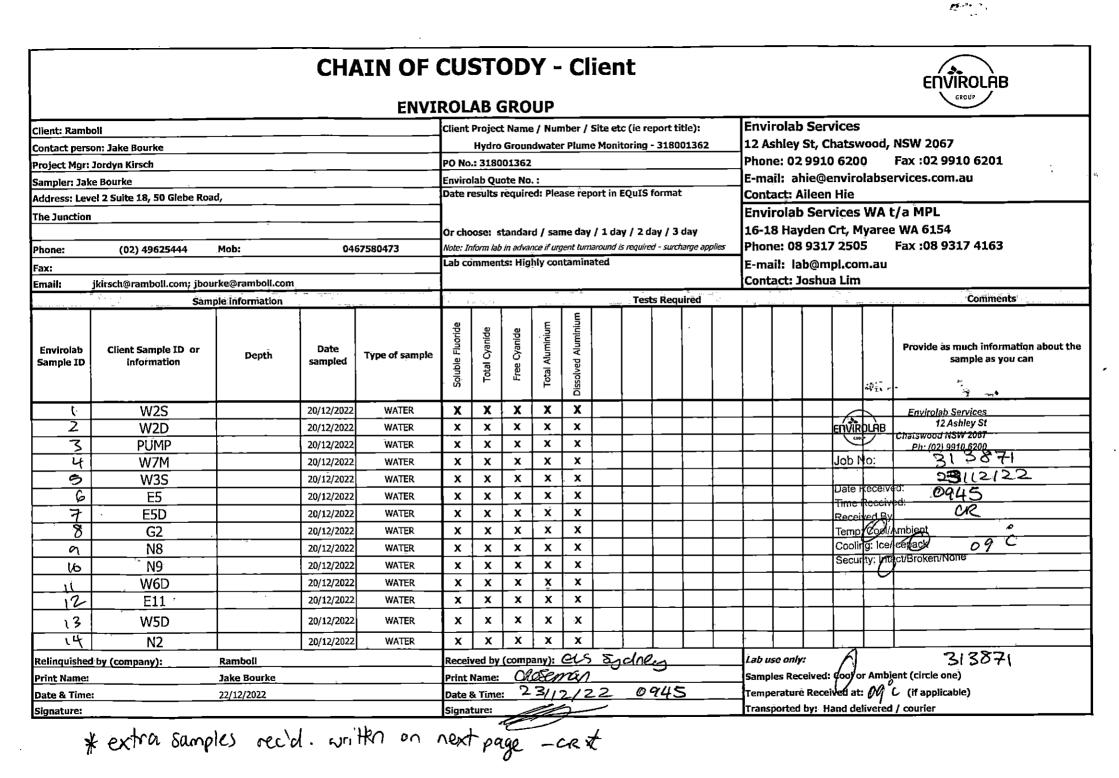
When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.


Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Flouride # Percent recovery is not applicable due to the high concentration of the analytes/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Ramboll 218001262 extras

· 573 128212

•

•

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Bourke, J Kirsch

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001362
Envirolab Reference	313871
Date Sample Received	23/12/2022
Date Instructions Received	23/12/2022
Date Results Expected to be Reported	09/01/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	26 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total	On Hold
W2S_20221220	✓	✓	✓	✓	✓	
W2D_20221220	✓	✓	✓	\checkmark	✓	
PUMP_20221220	✓	✓	✓	\checkmark	\checkmark	
W7M_20221220	✓	✓	✓	\checkmark	\checkmark	
W3S_20221220	✓ ✓	✓	✓	✓	✓	
E5_20221220	1	✓	✓	\checkmark	\checkmark	
E5D_20221220	• √	✓	✓	\checkmark	\checkmark	
G2_20221220	✓ ✓ ✓	✓	✓	✓	\checkmark	
N8_20221220	✓	✓	✓	✓	\checkmark	
N9_20221220	\checkmark	✓	✓	\checkmark	\checkmark	
W6D_20221220	✓	✓	✓	✓	\checkmark	
E11_20221220	• √	✓	✓	\checkmark	\checkmark	
W5D_20221220	✓ ✓	✓	✓	\checkmark	\checkmark	
N2_20221220	✓	✓	✓	\checkmark	\checkmark	
T01_20221220						\checkmark
D01_20221220	✓	✓	✓	\checkmark	\checkmark	
W1S_20221221	✓ ✓	✓	✓	\checkmark	✓	
G6_20221221	✓	\checkmark	✓	✓	\checkmark	
A7_20221221	✓	✓	✓	\checkmark	\checkmark	
G5_20221221	\checkmark	✓	✓	\checkmark	\checkmark	
F5_20221221	✓	\checkmark	✓	\checkmark	✓	
E4_20221221	✓	✓	✓	✓	✓	
F6_20221221	✓	✓	✓	✓	\checkmark	
W1D_20221221	✓ ✓ ✓ ✓	✓	✓	✓	✓	
R01_20221221	✓	✓	✓	\checkmark	✓	
D02_20221221	\checkmark	✓	\checkmark	✓	✓	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS

Work Order	ES2246862	Page	: 1 of 2
Client	RAMBOLL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Cez Bautista
Address	EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 30-Dec-2022 12:00
Order number	: 318001362	Date Analysis Commenced	: 03-Jan-2023
C-O-C number	:	Issue Date	: 10-Jan-2023 16:25
Sampler	: JAKE BOURKE		NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	T01_20221220	 	
		Samplii	ng date / time	20-Dec-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2246862-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.22	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	1.74	 	
EK025SF: Free CN by Segmented Flow	Analyser					
Free Cyanide		0.004	mg/L	0.621	 	
EK026SF: Total CN by Segmented Flow	Analyser					
Total Cyanide	57-12-5	0.004	mg/L	214	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	1050	 	

QUALITY CONTROL REPORT

Work Order	: ES2246862	Page	: 1 of 3
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: JORDYN KIRSCH	Contact	: Cez Bautista
Address	EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 30-Dec-2022
Order number	: 318001362	Date Analysis Commenced	: 03-Jan-2023
C-O-C number	:	Issue Date	: 10-Jan-2023
Sampler	; JAKE BOURKE		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Wisam Marassa

Inorganics Coordinator

Position

Accreditation Category

Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS((QC Lot: 4802976)							
ES2246808-003	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2300020-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.05	0.05	0.0	No Limit
EG020T: Total Meta	ls by ICP-MS(QC L	_ot: 4805121)							
ES2246866-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	1.48	1.53	3.4	0% - 20%
ES2246783-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	10.2	8.91	13.5	0% - 20%
EK025SF: Free CN	by Segmented Flow	v Analyser (QC Lot: 4800193)							
ES2246862-001	T01_20221220	EK025SF: Free Cyanide		0.004	mg/L	0.621	0.690	10.5	0% - 20%
EK026SF: Total CN	by Segmented Flow	w Analyser (QC Lot: 4800192)							
ES2246862-001	T01_20221220	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	214	217	1.5	0% - 20%
EK040P: Fluoride by	PC Titrator (QC L	ot: 4799192)							
ME2202316-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.4	0.4	0.0	No Limit
ES2246733-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.3	0.2	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 48	802976)							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	87.1	80.0	116
EG020T: Total Metals by ICP-MS (QCLot: 480512	1)							
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	92.1	82.0	120
EK025SF: Free CN by Segmented Flow Analyser	(QCLot: 4800193)							
EK025SF: Free Cyanide		0.004	mg/L	<0.004	0.2 mg/L	102	88.0	128
EK026SF: Total CN by Segmented Flow Analyse	r (QCLot: 4800192)							
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	120	73.0	133
EK040P: Fluoride by PC Titrator (QCLot: 479919)	2)							
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	103	82.0	116

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK025SF: Free CN	by Segmented Flow Analyser (QCLot: 4800193)						
ES2246862-001	T01_20221220	EK025SF: Free Cyanide		2 mg/L	93.4	70.0	130
EK026SF: Total C	by Segmented Flow Analyser (QCLot: 4800192)						
ES2246862-001	T01_20221220	EK026SF: Total Cyanide	57-12-5	200 mg/L	98.3	70.0	130
EK040P: Fluoride I	y PC Titrator (QCLot: 4799192)						
ES2246733-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	113	70.0	130

	QA/QC Compliance Assessment to assist with Quality Review							
Nork Order	: ES2246862	Page	: 1 of 5					
lient	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney					
Contact	: JORDYN KIRSCH	Telephone	: +61-2-8784 8555					
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Date Samples Received	: 30-Dec-2022					
Site	:	Issue Date	: 10-Jan-2023					
Sampler	: JAKE BOURKE	No. of samples received	: 1					
Order number	: 318001362	No. of samples analysed	: 1					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdu
EK025SF: Free CN by Segmented Flow Analyser						
Clear Plastic Bottle - NaOH						
T01_20221220				05-Jan-2023	03-Jan-2023	2
EK026SF: Total CN by Segmented Flow Analyser						
Clear Plastic Bottle - NaOH						
T01_20221220				05-Jan-2023	03-Jan-2023	2

Outliers : Frequency of Quality Control Samples

Quality Control Sample Type	Co	ount	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	17	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	14	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	e breach ; 🗸 = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) T01_20221220	20-Dec-2022				06-Jan-2023	18-Jun-2023	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) T01_20221220	20-Dec-2022	09-Jan-2023	18-Jun-2023	4	09-Jan-2023	18-Jun-2023	✓
EK025SF: Free CN by Segmented Flow Analyser							
Clear Plastic Bottle - NaOH (EK025SF) T01_20221220	20-Dec-2022				05-Jan-2023	03-Jan-2023	×
EK026SF: Total CN by Segmented Flow Analyser							
Clear Plastic Bottle - NaOH (EK026SF) T01_20221220	20-Dec-2022				05-Jan-2023	03-Jan-2023	×

Page	: 3 of 5
Work Order	: ES2246862
Client	: RAMBOLL AUSTRALIA PTY LTD
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362

							· · · · · · · · · · · · · · · · · · ·
Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Within	n holding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P)							
T01_20221220	20-Dec-2022				03-Jan-2023	17-Jan-2023	\checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Сс	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	6	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	~	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	17	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	0	14	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

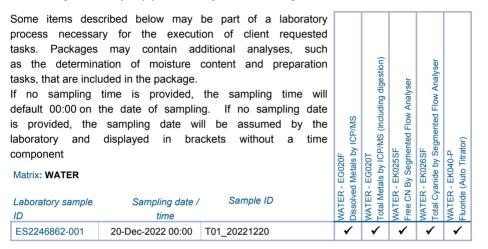
Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Free CN by Segmented Flow Analyser	EK025SF	WATER	In house: Referenced to ASTM D7237, APHA 4500-CN-C&O and ISO 14403: Using an automated segmented flow analyser, a sample at high pH (sodium hydroxide preserved) is buffered to pH 6.0. The hydrogen cyanide present passes across a gas dialysis membrane into an acceptor stream consisting of 0.01 M sodium hydroxide. The acceptor stream mixes with a buffer at pH 5.2 and reacts with chloramine-T to form cyanogen chloride reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour, measured at 600nm. This method is compliant with NEPM Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by Auto Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES2246862			
Client Contact Address	 RAMBOLL AUSTRALIA PTY LTD JORDYN KIRSCH EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD THE JUNCTION NSW 2291 	Laboratory Contact Address	: Cez Bautist	oodpark Road Smithfield
E-mail Telephone	: jkirsch@ramboll.com ·	E-mail Telephone	: cez.bautista : +61-2-8784	a@alsglobal.com
Facsimile	:	Facsimile	: +61-2-8784	
Project	: HYDRO GROUNDWATER PLUME MONITORING - 318001362	Page	: 1 of 2	
Order number	: 318001362	Quote number	: EB2017EN	VIAUS0001 (EN/222)
C-O-C number	:	QC Level		3 B3 & ALS QC Standard
Site	:			
Sampler	: JAKE BOURKE			
Dates				
Date Samples Receive	d : 30-Dec-2022 12:00	Issue Date		: 30-Dec-2022
Client Requested Due Date	: 10-Jan-2023	Scheduled Reporting I	Date	i 10-Jan-2023
Delivery Details	5			
Mode of Delivery	: Carrier	Security Seal		: Intact.
No. of coolers/boxes	: 1	Temperature		: 2.4'C - Ice Bricks present
Receipt Detail	:	No. of samples receive	ed / analysed	: 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Sample ID	Sample Container Received	Preferred Sample Container for Analysis
Free CN by Segmented Flow A	nalyser : EK025SF	
T01_20221220	- Clear Plastic Bottle - NaOH	- Opaque plastic bottle - NaOH - Pb Acetate
Total Cyanide by Segmented F	Flow Analyser : EK026SF	
T01_20221220	- Clear Plastic Bottle - NaOH	- Opaque plastic bottle - NaOH - Pb Acetate

Summary of Sample(s) and Requested Analysis

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE - A4 - AU Tax Invoice (INV) Email AsiaPac-Accounts@Ramboll.com JAKE BOURKE - *AU Certificate of Analysis - NATA (COA) Email JBOURKE@ramboll.com - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) Email JBOURKE@ramboll.com - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) Email JBOURKE@ramboll.com - A4 - AU Sample Receipt Notification - Environmental HT (SRN) Email JBOURKE@ramboll.com - Chain of Custody (CoC) (COC) Email JBOURKE@ramboll.com - EDI Format - EQUIS ENVIRON (EQUIS ENVIRON) Email JBOURKE@ramboll.com - EDI Format - XTab (XTAB) Email JBOURKE@ramboll.com JORDYN KIRSCH - *AU Certificate of Analysis - NATA (COA) Email jkirsch@ramboll.com - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) Email jkirsch@ramboll.com - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) Email jkirsch@ramboll.com - A4 - AU Sample Receipt Notification - Environmental HT (SRN) Email jkirsch@ramboll.com - Chain of Custody (CoC) (COC) Email jkirsch@ramboll.com - EDI Format - EQUIS ENVIRON (EQUIS ENVIRON) Email jkirsch@ramboll.com - EDI Format - XTab (XTAB) Email jkirsch@ramboll.com

								L'AND			
d / courier	Transported by: Hand delivered / courier			N N		Signature:					Signature:
(if applicable)	Temperature Received at:	200	2/22	300/	ē	Date & Time:	[200 Da	30/12/22	22/12/2022		Date & Time:
bient (circle one)	Samples Received: Cool or Ambient (circle one)		6	hardy	" La	Print Name:	Pri Pri	Closetro	Jake Bourke		Print Name:
	Lab use only:		ACS	any):	y (comp	Received by (company):	KAN Re	Elssane	Ramboll	Relinquished by (company):	Relinquished
			×	×	×	× ×	WATER	20/12/2022		N2_20221220	¥ 1.5.
Telephone : + 61-2-6764 6555	17		×	×	×	×	WATER)	20/12/2022		W5D_20221220	(jî
			×	×	×	X X	WATER)	20/12/2022		E11_20221220	2
			×	×	×	X X	WATER)	20/12/2022		W6D_20221220	1
			×	×	×	××	WATER	20/12/2022		N9_20221220	01
			X	Х	×	××	WATER	20/12/2022		N8_20221220	S
			×	×	×	××	WATER 3	20/12/2022		G2_20221220	3
ES2246862			×	×	×	××	WATER 1	20/12/2022		E5D_20221220	
Work Order Reference			×	×	×	××	WATER J	20/12/2022		E5_20221220	le de la constante de la consta Notas de la constante de la const
Sydney			×	×	×	××	WATER)	20/12/2022		W3S_20221220	Ş
Environmental Dista			×	×	×	××	WATER J	20/12/2022		W7M_20221220	
			x	×	×	××	WATER	20/12/2022		PUMP 20221220	0
			×	×	×	X X	WATER	20/12/2022		W2D 20221220	1-2
			X	Х	x	××	WATER	20/12/2022			-1462
Provide as much information about the sample as you can			Dissolved Aluminium	Total Aluminium	Free Cyanide	Soluble Fluoride Total Cyanide	Type of sample	Date sampled	Depth	Client Sample ID or information	Envirolab Sample ID
Comments		Tests Required			「気気」で発発				sample information	siues ~~~~	
	ICONTACT: JOSNUA LIM								ai ve@railiboii.	jvu serie, universitedine (universitedine)	-
	E-mail: lab@mpl.com.au		Lab comments: Highly contaminated	ghiy con	ents: Hi	o comm	La			ilizzation and all as us the	Fax:
Fax :08 9317 4163	Phone: 08 9317 2505	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	ent turnaroun	ance if urg	lab in adv	e: Inform	0467580473 Not	0467	Mob:	(02) 49625444	Phone:
3e WA 6154	16-18 Hayden Crt, Myaree WA 6154	Or choose: standard / same day / 1 day / 2 day / 3 day	ne day / 1	rd / san	standa	choose:					
t/a MPL	Envirolab Services WA t/a MPL					rormats	FOI				The Junction
	Contact: Aileen Hie	in excel, PDf and EQuIS	Date results required: Please report	red: Plea	ts requi	te resul	Da		ad,	Address: Level 2 Suite 18, 50 Glebe Road,	Address: Lev
ervices.com.au	E-mail: ahie@envirolabservices.com.au			o. ::	Quote N	Envirolab Quote No.	Es			ke Bourke	Sampler: Jake Bourke
Fax :02 9910 6201	Phone: 02 9910 6200			2	800136	PO No.: 318001362	PO			Project Mgr: Jordyn Kirsch	Project Mgr
, NSW 2067	12 Ashley St, Chatswood, NSW 2067	Hydro Groundwater Plume Monitoring - 318001362	Plume Mo	Idwater	o Groui	Hydi				Contact person: Jake Bourke	Contact per
	Envirolab Services	Client Project Name / Number / Site etc (ie report title):	nber / Site	he / Nun	ect Nan	ent Proj	0			boll	Client: Ramboll
				N	GRO)LAB	ENVIROLAB GROUP				
		1		Ř	O	S	CHAIN OF CUSTODY - Client	CHA			

The second se											Contraction of the local division of the loc								Į	
														1	-					
CHERL, NAMPON					Chairt Froject Natile / Natilber / Site etc (re report title):	Tojett	Maine	/ 1901	. / Ian				е).	ľ		iau			•	
Deviact Mar: Jordyn Virsch	Contact Person, Jake Bourse					19001363	210110	Water	June	пие моннония - этооттоот	niig - ,	10001	100			, la v	TE ASINEY St, CHAISWO	JAASTE	ο Γ	14 ASHEY 34, CHALSWOOD, INSVN 2007
Sampler: Jake Bourke	Bourke				Envirolab Ouote No. :	ab Ouc	te No.							<u>,</u>	-mail	ahi	e@en	virola	bser	E-mail: ahie@envirolabservices.com.au
Address: Level	Address: Level 2 Suite 18, 50 Glebe Road,	-			Date results required: Please	sults r	equire	d: Plea		report in excel, PDf and EQuIS	(cel, PI	of and	EQuIS	0	ontac	t: Ail	Contact: Aileen Hie	ie		
The Junction					formats	U ;								m	nvire	lab (èrvi	ces W	VA E/	Envirolab Services WA t/a MPL
					Or choose: standard / same	ose: st	andaro	d / san	e day ,	day / 1 day / 2 day / 3 day	/ 2 da	y / 3 d	ay	jan ja	6-18	Hayd	en Cr	t, My.	aree	16-18 Hayden Crt, Myaree WA 6154
Phone:	(02) 49625444 M	Mob:	046	0467580473	Note: Inform lab in advance if urgent	orm lab	in advan	ce if urg		turnaround is required - surcharge applies	equired	- surcha	.ge appli		hone	08 9	Phone: 08 9317 2505	2505	-71	Fax :08 9317 4163
Fax:					Lab comments: Highly contaminated	nment	s: High	ily con	amina	ted					-mail	lab	gund	E-mail: lab@mpl.com.au	a	
i:	jkirsch@ramboll.com; jbourke@ramboll.com	ke@ramboll.cor	п											C	ontac	t: Jo	Contact: Joshua Lim	Lim		
	Saml	Sample information									Tests	Tests Required	þe							Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date	Type of sample	le Fluoride	I Cyanide	e Cyanide	Aluminium	ed Aluminium											Provide as much information about the
					Solu	Tot	Fre	Tota	Dissolv											outine of the out
\geq	F5_20221221		21/12/2022	WATER	×	×	×	×	×											
32			21/12/2022	WATER	×	×	×	×	×			_								
~			21/12/2022	WATER	×	×	×	×	×								:			
Ś.			21/12/2022	WATER	×	×	×	×	×											
1980 - 1980 - 1980	К		21/12/2022	WATER	×	×	×	×	×							-	-			
22	1		2202/21/12	WATCK	>	>	>	>	: > 				_	-	_	-			_	
			21/12/2022	WATER	×	×	×	< ×				-		_	-	-		-		
 	1-		2202/21/17	WATED	<	< >	< >	< >	<		_				_	_				
	T01 20221220		20/12/2022	WATER	×	×	×	×	×	_									-	Please forward to ALS
26	1		21/12/2022	WATER	×	×	×	×	×											
2.5	R01_20221221		21/12/2022	WATER	×	×	×	×	×								-			a barra a tha bha a bha bha a bha a bha a na ann an a bha ann a bha bha bha a bha a bha bha bha bha b
																			ļ	n van de fan
										L		ļ	ļ							ale - mileta e e e e e e e e e e e e e e e e e e
Relinquished	Relinquished by (company):	Ramboll	witz 82	C	Received by (company):	ed by (compa	1	Acs					L.	Lab use only:	only:				
Print Name:		Jake Bourke	Classino	X	Print Name:	ame:		Thanh	6					5	amples	Recei	ved: C	ool or .	Ambie	Samples Received: Cool or Ambient (circle one)
Date & Time:		22/12/2022	20/10/22	1200	Date & Time:	Time:	3	12	22	12	200				empera	ature F	Temperature Received at:	ed at:		(if applicable)
Signature:			and the second	A CONTRACTOR OF	Signature:	ure:	Ŋ	N						T	ranspo	rted b	<u>y: Har</u>	ıd deliv	rered /	Transported by: Hand delivered / courier

APPENDIX 6 CALIBRATION CERTIFICATES

InstrumentInterface Meter (30M)Serial No.312530

Item	Test	Pass	Comments
Battery	Compartment	4	comments
	Capacity	4	
Probe	Cleaned/Decon.	1	
	Operation	✓	
Connectors	Condition	1	
		1	
Tape Check	Cleaned	V	
	Checked for cuts	1	Intrinsically safe
Instrument Test	At surface level	✓	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:

Darcy Keogh

Calibration date:

28/02/2022

Next calibration due:

29/04/2022

28/2/22

Multi-Parameter Water Quality Meter Calibration

Instrument:	Но
Control Unit Serial No:	Τŀ
Sensor Probe Unit Serial No:	4K

Horiba U-52G/10m TH06G239 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Parameter	Units	Temp. (°C)	Calibration Value	After Calibration	Comment
рН	рН	29.11	4.01	4.01	Pass
рН	рН	28.84	7.00	7.00	Pass
рН	рН	28.69	9.96	9.96	Pass
ORP	рН	-	240	240.00	Pass
Conductivity	mS/cm	-	0.00	0.00	Pass
Conductivity	mS/cm	30.71	0.800	0.800	Pass
Conductivity	mS/cm	29.42	7.18	7.18	Pass
Conductivity	mS/cm	29.47	63.10	63.10	Pass
Turbidity	NTU	-	0	0	Pass
Turbidity	NTU	-	8	8	Pass
Turbidity	NTU	-	80	80	Pass
Turbidity	NTU	-	400	400	Pass
D.O. Zero	mg/L	-	0.00	0.00	Pass
D.O. Span	mg/L	31.21	7.41	7.41	Pass

Calibrated by:

Jake Bourke

Calibration date:

31/01/2022

RAMBOLL

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table A: Change in pH with temperature (°C)

Table B: Change in Conductivity with temperature (°C)

T	Standard solution (0.718	Standard solution (6.67	Standard solution (58.6
Temperature (°C)	mS/cm)	mS/cm)	mS/cm)
10	0.512	4.76	41.80
11	0.526	4.88	42.90
12	0.540	5.01	44.10
13	0.533	0.51	45.20
14	0.567	5.27	46.30
15	0.581	5.39	47.40
16	0.595	5.52	48.50
17	0.608	5.65	49.60
18	0.622	5.87	50.80
19	0.636	5.90	51.90
20	0.649	6.03	53.00
21	0.663	6.16	54.10
22	0.677	6.29	55.20
23	0.691	6.41	56.40
24	0.704	6.54	57.50
25	0.718	6.67	58.60
26	0.732	6.79	59.70
27	0.745	6.92	60.80
28	0.759	7.05	62.00
29	0.773	7.18	63.10
30	0.787	7.30	64.20
31	0.800	7.43	65.30

Table C: Change in Dissolved Oxygen with Temperature at 100% Relative Humidity (Altitude:sea level)

Temperature	DO (100% R.H.)
(Celsius)	(ppm, mg/L)
0.00	14.60
1.00	14.19
2.00	13.81
3.00	13.44
4.00	13.09
5.00	12.75
6.00	12.43
7.00	12.12
8.00	11.83
9.00	11.55
10.00	11.27
11.00	11.01
12.00	10.76
13.00	10.52
14.00	10.29
15.00	10.07
16.00	9.85
17.00	9.65
18.00	9.45
19.00	9.26
20.00	9.07
21.00	8.90
22.00	8.72
23.00	8.56
24.00	8.40
25.00	8.24
26.00	8.09
27.00	7.95
28.00	7.81
29.00	7.67
30.00	7.54
31.00	7.41
32.00	7.28

Values are for pressure = 760 mm Hg for measurements at sea level.

For a given temperature, the concentration of dissolved oxygen concentration decreases by 0.3 mg/L with every 500 ft (152.4 m) increase in altitude.

Multi-Parameter Water Quality Meter Calibration

pH Manual Calibration

Instrument:Horiba U-52G/10mControl Unit Serial No:TH06G239Sensor Probe Unit Serial No:4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
	pH 4 standard solution phthalate	22.05	4.00	4.00
рН	pH 7 standard solution Neutral phosphate	21.77	7.02	7.02
	pH 10 standard solution Neutral phosphate	22.02	10.06	10.06

Calibrated by: Jake Bourke

Calibration date: 17/03/2022

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table A: Change in pH with temperature (°C)

Oil / Water Interface Meter

Instrument	Interface Meter (30M)
Serial No.	348884

Item	Test	Pass	Comments
Battery	Compartment	\checkmark	
	Capacity	\checkmark	
Probe	Cleaned/Decon.	1	
	Operation	1	
Connectors	Condition	✓	
		√	
Tape Check	Cleaned	√	
	Checked for cuts	✓	
Instrument Test	At surface level	1	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:Adam NikolicCalibration date:7/06/2022Next calibration due:6/08/2022

7/6/22

Multi-Parameter Water Quality Meter Calibration

Instrument:	Но
Control Unit Serial No:	TH
Sensor Probe Unit Serial No:	4K

Horiba U-52G/10m TH06G239 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Parameter	Units	Temp. (°C)	Calibration Value	After Calibration	Comment
рН	рН	24.17	4.00	4.00	Pass
рН	рН	23.91	7.02	7.02	Pass
рН	рН	23.6	10.06	10.06	Pass
ORP	рН	-	240	240	Pass
Conductivity	mS/cm	-	0.00	0.00	Pass
Conductivity	mS/cm	21.92	0.677	0.677	Pass
Conductivity	mS/cm	21.2	6.16	6.16	Pass
Conductivity	mS/cm	21.37	54.10	54.10	Pass
Turbidity	NTU	-	0	0	Pass
Turbidity	NTU	-	8	8	Pass
Turbidity	NTU	-	80	80	Pass
Turbidity	NTU	-	400	400	Pass
D.O. Zero	mg/L	-	0.00	0.00	Pass
D.O. Span	mg/L	22.27	8.72	8.72	Pass

Calibrated by:

Jake Bourke

Calibration date: 2

2/05/2022

RAMBOLL

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table A: Change in pH with temperature (°C)

Table B: Change in Conductivity with temperature (°C)

Temperature (°C)	Standard solution (0.718	Standard solution (6.67	Standard solution (58.6
	mS/cm)	mS/cm)	mS/cm)
10	0.512	4.76	41.80
11	0.526	4.88	42.90
12	0.540	5.01	44.10
13	0.533	0.51	45.20
14	0.567	5.27	46.30
15	0.581	5.39	47.40
16	0.595	5.52	48.50
17	0.608	5.65	49.60
18	0.622	5.87	50.80
19	0.636	5.90	51.90
20	0.649	6.03	53.00
21	0.663	6.16	54.10
22	0.677	6.29	55.20
23	0.691	6.41	56.40
24	0.704	6.54	57.50
25	0.718	6.67	58.60
26	0.732	6.79	59.70
27	0.745	6.92	60.80
28	0.759	7.05	62.00
29	0.773	7.18	63.10
30	0.787	7.30	64.20
31	0.800	7.43	65.30

Table C: Change in Dissolved Oxygen with Temperature at 100% Relative Humidity (Altitude:sea level)

Temperature	DO (100% R.H.)
(Celsius)	(ppm, mg/L)
0.00	14.60
1.00	14.19
2.00	13.81
3.00	13.44
4.00	13.09
5.00	12.75
6.00	12.43
7.00	12.12
8.00	11.83
9.00	11.55
10.00	11.27
11.00	11.01
12.00	10.76
13.00	10.52
14.00	10.29
15.00	10.07
16.00	9.85
17.00	9.65
18.00	9.45
19.00	9.26
20.00	9.07
21.00	8.90
22.00	8.72
23.00	8.56
24.00	8.40
25.00	8.24
26.00	8.09
27.00	7.95
28.00	7.81
29.00	7.67
30.00	7.54
31.00	7.41
32.00	7.28

Values are for pressure = 760 mm Hg for measurements at sea level.

For a given temperature, the concentration of dissolved oxygen concentration decreases by 0.3 mg/L with every 500 ft (152.4 m) increase in altitude.

pH Manual Calibration

Instrument:Horiba U-52G/10mControl Unit Serial No:TH06G239Sensor Probe Unit Serial No:4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
	pH 4 standard solution phthalate	9.73	4.00	4.00
рН	pH 7 standard solution Neutral phosphate	10.05	7.06	7.06
	pH 10 standard solution Neutral phosphate	9.57	10.19	10.19

Calibrated by: Jake Bourke

Calibration date: 15/06/2022

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table A: Change in pH with temperature (°C)

InstrumentInterface Meter (60M)Serial No.484842

Item	Test	Pass	Comments
Battery	Compartment	1	
,	Capacity	✓	
Probe	Cleaned/Decon.	\checkmark	
	Operation	✓	
Connectors	Condition	\checkmark	
Connectore		\checkmark	
Tape Check	Cleaned	1	
Tupo onoon	Checked for cuts	\checkmark	
Instrument Test	At surface level	\checkmark	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:

Lebelle Chee

Calibration date:

Next calibration due: 29/10/2022

30/08/2022

Instrument:	Н
Control Unit Serial No:	Τŀ
Sensor Probe Unit Serial No:	4ŀ

Horiba U-52G/10m TH06G239 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Parameter	Units	Temp. (°C)	Calibration Value	After Calibration	Comment
рН	рН	21.52	4.00	4.00	Pass
рН	рН	21.63	7.02	7.02	Pass
рН	рН	22.03	10.06	10.06	Pass
ORP	mV	-	240	240	Pass
Conductivity	mS/cm	-	0.00	0.00	Pass
Conductivity	mS/cm	19.16	0.636	0.636	Pass
Conductivity	mS/cm	18.91	5.90	5.90	Pass
Conductivity	mS/cm	18.76	51.90	51.90	Pass
Turbidity	NTU	-	0	0	Pass
Turbidity	NTU	-	8	8	Pass
Turbidity	NTU	-	80	80	Pass
Turbidity	NTU	-	400	400	Pass
D.O. Zero	mg/L	-	0.00	0.00	Pass
D.O. Span	mg/L	19.87	9.07	9.07	Pass

Calibrated by:

Jake Bourke

Calibration date:

28/07/2022

RAMBOLL

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table A: Change in pH with temperature (°C)

Table B: Change in Conductivity with temperature (°C)

T	Standard solution (0.718	Standard solution (6.67	Standard solution (58.6
Temperature (°C)	mS/cm)	mS/cm)	mS/cm)
10	0.512	4.76	41.80
11	0.526	4.88	42.90
12	0.540	5.01	44.10
13	0.533	0.51	45.20
14	0.567	5.27	46.30
15	0.581	5.39	47.40
16	0.595	5.52	48.50
17	0.608	5.65	49.60
18	0.622	5.87	50.80
19	0.636	5.90	51.90
20	0.649	6.03	53.00
21	0.663	6.16	54.10
22	0.677	6.29	55.20
23	0.691	6.41	56.40
24	0.704	6.54	57.50
25	0.718	6.67	58.60
26	0.732	6.79	59.70
27	0.745	6.92	60.80
28	0.759	7.05	62.00
29	0.773	7.18	63.10
30	0.787	7.30	64.20
31	0.800	7.43	65.30

Table C: Change in Dissolved Oxygen with Temperature at 100% Relative Humidity (Altitude:sea level)

Temperature	DO (100% R.H.)
(Celsius)	(ppm, mg/L)
0.00	14.60
1.00	14.19
2.00	13.81
3.00	13.44
4.00	13.09
5.00	12.75
6.00	12.43
7.00	12.12
8.00	11.83
9.00	11.55
10.00	11.27
11.00	11.01
12.00	10.76
13.00	10.52
14.00	10.29
15.00	10.07
16.00	9.85
17.00	9.65
18.00	9.45
19.00	9.26
20.00	9.07
21.00	8.90
22.00	8.72
23.00	8.56
24.00	8.40
25.00	8.24
26.00	8.09
27.00	7.95
28.00	7.81
29.00	7.67
30.00	7.54
31.00	7.41
32.00	7.28

Values are for pressure = 760 mm Hg for measurements at sea level.

For a given temperature, the concentration of dissolved oxygen concentration decreases by 0.3 mg/L with every 500 ft (152.4 m) increase in altitude.

pH Manual Calibration

Instrument:Horiba U-52G/10mControl Unit Serial No:TH06G239Sensor Probe Unit Serial No:4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
	pH 4 standard solution phthalate	14.68	4.00	4.00
рН	pH 7 standard solution Neutral phosphate	15.01	7.04	7.04
	pH 10 standard solution Neutral phosphate	15.12	10.12	10.12

Calibrated by: Jake Bourke

Calibration date: 19/09/2022

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table A: Change in pH with temperature (°C)

Oil / Water Interface Meter

InstrumentInterface Meter (30M)Serial No.484664

ltem	Test	Pass	Comments
Battery	Compartment	\checkmark	Comments
	Capacity	\checkmark	
Probe	Cleaned/Decon.	\checkmark	
	Operation	✓	
Connectors	Condition	4	
		\checkmark	
Tape Check	Cleaned	\checkmark	
	Checked for cuts	\checkmark	
Instrument Test	At surface level	\checkmark	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:Adam NikolicCalibration date:14/12/2022Next calibration due:12/02/2023

Instrument:	H
Control Unit Serial No:	Τŀ
Sensor Probe Unit Serial No:	4ł

Horiba U-52G/10m TH06G239 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Parameter	Units	Temp. (°C)	Calibration Value	After Calibration	Comment
рН	рН	19.70	4.00	4.00	Pass
рН	рН	19.76	7.02	7.02	Pass
рН	рН	20.06	10.06	10.06	Pass
ORP	mV	-	240	240	Pass
Conductivity	mS/cm	-	0.00	0.00	Pass
Conductivity	mS/cm	19.74	0.649	0.649	Pass
Conductivity	mS/cm	19.94	6.03	6.03	Pass
Conductivity	mS/cm	19.83	53.00	53.00	Pass
Turbidity	NTU	-	0	0	Pass
Turbidity	NTU	-	8	8	Pass
Turbidity	NTU	-	80	80	Pass
Turbidity	NTU	-	400	400	Pass
D.O. Zero	mg/L	-	0.00	0.00	Pass
D.O. Span	mg/L	18.38	9.45	9.45	Pass

Calibrated by:

Jake Bourke

Calibration date:

30/09/2022

RAMBOLL

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table A: Change in pH with temperature (°C)

Table B: Change in Conductivity with temperature (°C)

T (90)	Standard solution (0.718	Standard solution (6.67	Standard solution (58.6	
Temperature (°C)	mS/cm)	mS/cm)	mS/cm)	
10	0.512	4.76	41.80	
11	0.526	4.88	42.90	
12	0.540	5.01	44.10	
13	0.533	0.51	45.20	
14	0.567	5.27	46.30	
15	0.581	5.39	47.40	
16	0.595	5.52	48.50	
17	0.608	5.65	49.60	
18	0.622	5.87	50.80	
19	0.636	5.90	51.90	
20	0.649	6.03	53.00	
21	0.663	6.16	54.10	
22	0.677	6.29	55.20	
23	0.691	6.41	56.40	
24	0.704	6.54	57.50	
25	0.718	6.67	58.60	
26	0.732	6.79	59.70	
27	0.745	6.92	60.80	
28	0.759	7.05	62.00	
29	0.773	7.18	63.10	
30	0.787	7.30	64.20	
31	0.800	7.43	65.30	

Table C: Change in Dissolved Oxygen with Temperature at 100% Relative Humidity (Altitude:sea level)

Temperature	DO (100% R.H.)
(Celsius)	(ppm, mg/L)
0.00	14.60
1.00	14.19
2.00	13.81
3.00	13.44
4.00	13.09
5.00	12.75
6.00	12.43
7.00	12.12
8.00	11.83
9.00	11.55
10.00	11.27
11.00	11.01
12.00	10.76
13.00	10.52
14.00	10.29
15.00	10.07
16.00	9.85
17.00	9.65
18.00	9.45
19.00	9.26
20.00	9.07
21.00	8.90
22.00	8.72
23.00	8.56
24.00	8.40
25.00	8.24
26.00	8.09
27.00	7.95
28.00	7.81
29.00	7.67
30.00	7.54
31.00	7.41
32.00	7.28

Values are for pressure = 760 mm Hg for measurements at sea level.

For a given temperature, the concentration of dissolved oxygen concentration decreases by 0.3 mg/L with every 500 ft (152.4 m) increase in altitude.

pH Manual Calibration

Instrument:	Horiba U-52G/10m
Control Unit Serial No:	TH06G239
Sensor Probe Unit Serial No:	4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Solution Temperature		Measurement Value
	pH 4 standard solution phthalate	18.26	4.00	4.00
рН	pH 7 standard solution phthalate	17.89	7.02	7.02
	pH 10 standard solution phthalate	18.03	10.06	10.06

Calibrated by: Jake Bourke

Calibration date: 20/12/2022

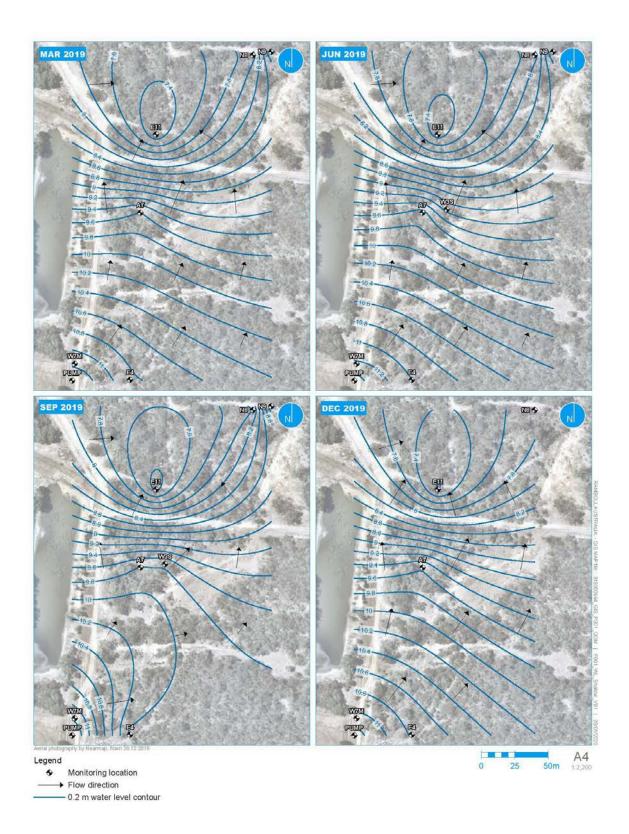
Temperature (°C)	pH 4 standard solution Phthalate	pH 7 standard solution Neutral phosphate	pH 9 standard solution Borate
0	4.01	6.98	9.46
5	4.01	6.95	9.39
10	4.00	6.92	9.33
15	4.00	6.90	9.27
20	4.00	6.88	9.22
25	4.01	6.86	9.18
30	4.01	6.85	9.14
35	4.02	6.84	9.10
40	4.03	6.84	9.07
45	4.04	6.84	9.04

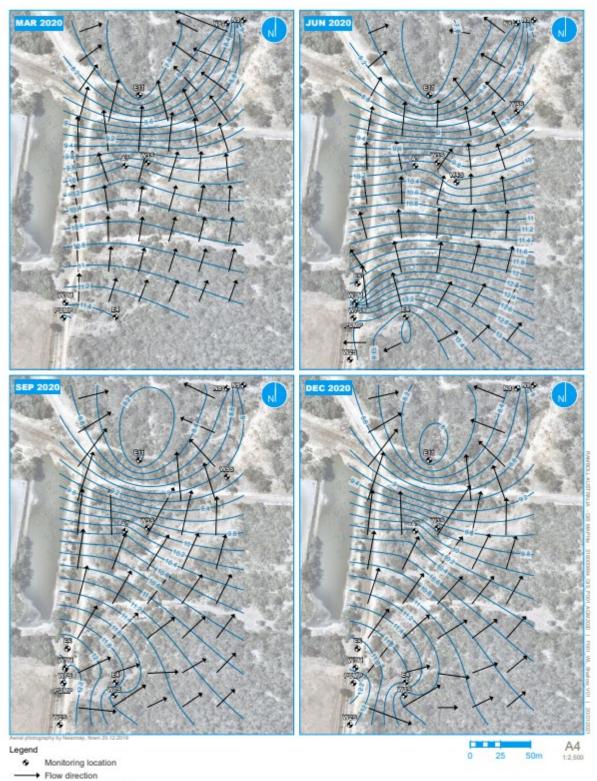
RAMBOLL

Table A: Change in pH with temperature (°C)

APPENDIX 7 HISTORICAL GROUNDWATER CONTOURS


Groundwater Contours - Shallow Aquifer 2013-2021

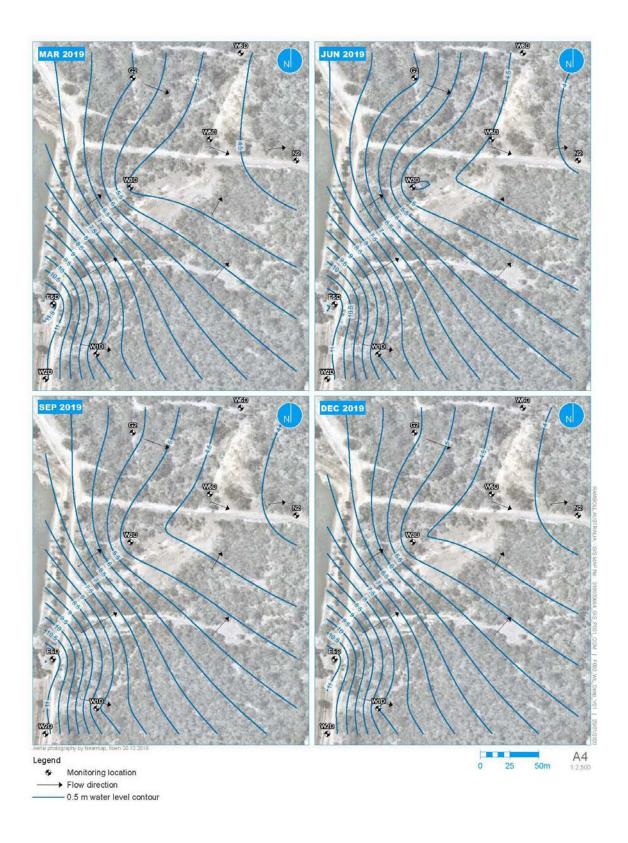


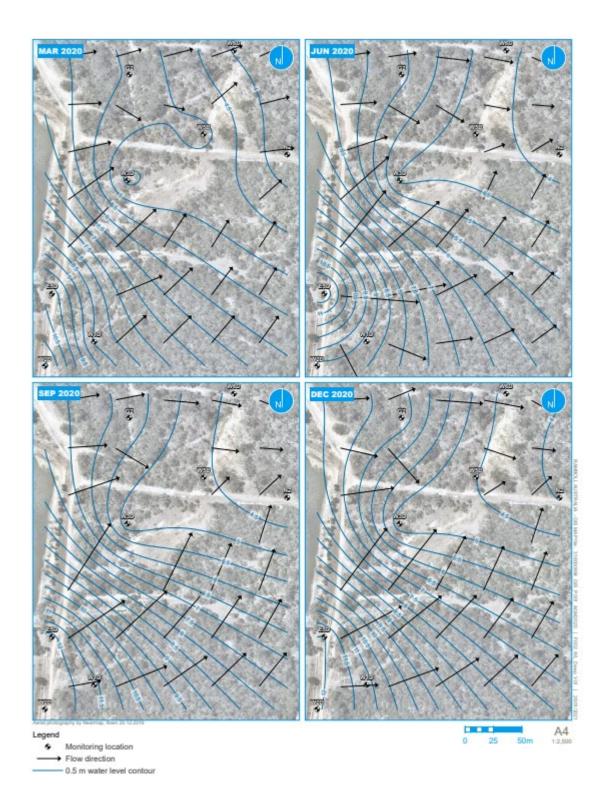


------ 0.2 m water level contour

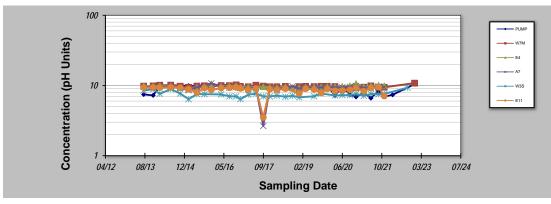
0.2 m water level contour

Groundwater Contours – Deep Aquifer 2013-2021







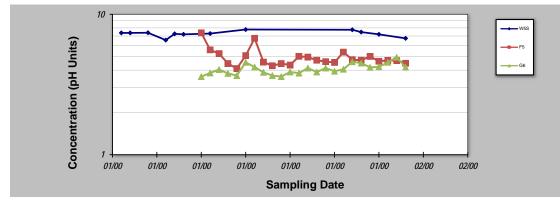


APPENDIX 8 MANN-KENDALL TREND ANALYSIS

valuation Date: 23-Jan-23			Job ID: 318001362					
acility Name	Hydro Kurr	i Kurri			Constituent:	рН		
onducted By	ducted By: Jordyn Kirsch		Concentration Units: pH Units					
· · · · · · · · · · · · · · · · · · ·		PUMP	W7M	E4	A7	W3S	E11	
Sampling	Sampling							
Event	Date			PH CO	NCENTRATION (pl	H Units)		
1	29-Jul-13	7.45	9.81	9.91	9.63	8.53	9.36	
2	26-Nov-13	7.24	9.87	9.79	9.47	8.82	9.36	
3	18-Feb-14	9.65	10.1	9.94	9.67	7.61	9.33	
4	7-Jul-14	10.14	10.12	9.84	9.66	8.89	9.41	
5	4-Nov-14	10.01	9.78	9.4	9.24	7.68	9.32	
6	17-Feb-15	9.95	9.44	8.84	8.56	6.38	8.86	
7	3-Jun-15	9.87	9.82	9.46	9.45	7.53	7.97	
8	7-Sep-15	10.22	9.91	9.62	9.8	7.53	9.23	
9	2-Dec-15	10.27	9.7	10.57	10.71		8.65	
10	5-Apr-16	10.13	9.99	9.73	9.75	7.46	9.2	
11	19-Jul-16	10.22	9.95	9.83	9.37	7.02	9.29	
12	12-Oct-16	9.98	10.17	9.94	9.57	7.01	9.41	
13	6-Dec-16	9.72	9.68	9.53	9.15	6.4	9.1	
14	15-Mar-17	9.56	9.61	9.53	9.12	7.4	8.7	
15	20-Jun-17	9.2	10.1	0.00	9.49	7.66	9.07	
16	20-501-17 21-Sep-17	9.9	9.8	9.59	2.65	7.00	3.51	
17	12-Dec-17	9.6	9.6	9.46	9.27	6.99	8.83	
18	12-Dec-17 13-Mar-18	9.73	9.61	9.40	8.96	7.19	8.62	
10	28-Jun-18	9.73	9.61	9.62	9.36	6.91	9.02	
20		9.17	9.7	9.62	9.36		9.02	
20	26-Sep-18	0.55	0.00			7.14		
21	19-Dec-18	9.55	9.63	9.27	9.06	6.8	7.7	
	11-Mar-19	9.42	9.68	9.47	9.38		8.99	
23	26-Jun-19	9.43	9.65	9.56	9.4	7.01	8.76	
24	24-Sep-19	9.89	9.73	9.58	9.39	7.7	7.87	
25	11-Dec-19	9.93	9.75	9.67	9.48		8.95	
26	17-Mar-20	7.2	9.67	9.65	9.46	7.21	8.41	
27	17-Jun-20	9.59	8.97	9.73	9.4	7.29	8.48	
28	22-Sep-20	7.4	9.1	9.87	9.6	7.28	8.69	
29	9-Dec-20	6.88	9.28	10.64	9.85	7.59	9.24	
30	17-Mar-21	7.9	9.47	9.56	9.26	7.14	8.3	
31	15-Jun-21	6.61	9.86	9.91	9.36	7.57	9.21	
32	20-Sep-21	8.32	9.42	10.1	9.73	7.53	9.48	
33	1-Dec-21	6.91	9.44	9.89	9.46	7.58	7.09	
34	17-Mar-22	7.37	9.29	9.82	9.5	8.21	6.88	
35	15-Jun-22	9.56	10.39	10.28	9.78	8.96	7.37	
36	20-Sep-22	9.78	10.16	10.45	9.98	9.3	6.91	
37	20-Dec-22	10.45	10.81	10.7	10.2	8.3	8.8	
38								
39								
40								
Coefficie	nt of Variation:	0.13	0.03	0.04	0.13	0.09	0.13	
Mann-Kenda	II Statistic (S):	-137	-85	177	120	66	-32	
Conf	idence Factor:	97.8%	90.3%	99.8%	96.8%	86.4%	69.1%	
Concer	ntration Trend:	Decreasing	Prob. Decreasing	Increasing	Increasing	No Trend	Stable	

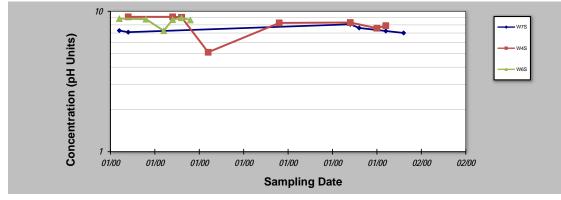
Notes:

Ground Water, 41(3):355-367, 2003.


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product: however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

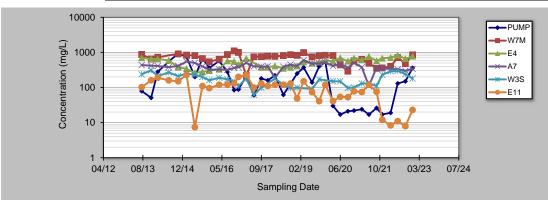
GSI Environmental Inc., www.gsi-net.com


GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

			GSI MANI for Cons		ALL TOOI end Analys			
Evaluation Date	23- Jan-23				lob ID	318001362		
	Hydro Kurr	i Kurri			Constituent	nH		
	Jordyn Kirs			(Concentration Units			
conducted by	oordyn rais			``	concentration onits	prionits	_	
Sam	pling Point ID:	N8	N9	W5S	F5	G6		
Sampling Event	Sampling Date			рн сс	ONCENTRATION (p	oH Units)		
1	29-Jul-13	6.36	9.16	7.37				
2	26-Nov-13	6.38	8.9	7.37				
3	18-Feb-14	6.48						
4	7-Jul-14	6.53	9.17	7.39				
5	4-Nov-14	6.39	8.91					
6	17-Feb-15	6.11	8.46	6.55				
7	3-Jun-15	6.49	7.22	7.26				
8	7-Sep-15	6.69	7.34	7.2				
9	2-Dec-15	6.74	7.7					1
10	5-Apr-16	6.59	6.61		7.38	3.6		
11	19-Jul-16	6.63	8.11	7.29	5.58	3.82		
12	12-Oct-16	6.92	8.54		5.25	4.04		
13	6-Dec-16	6.4			4.46	3.79		
14	15-Mar-17	6.54	8.61		4.11	3.66		
15	20-Jun-17	6.78	9.32	7.79	5.08	4.55		
16	21-Sep-17	6.76			6.75	4.21		
17	12-Dec-17	6.67	8.6		4.57	3.86		
18	13-Mar-18	6.45	8.65		4.3	3.66		
19	28-Jun-18	6.71	8.72		4.46	3.6		
20	26-Sep-18				4.35	3.88		
21	19-Dec-18	6.51	8.72		5.02	3.81		
22	11-Mar-19	6.81	8.33		4.96	4.14		
23	26-Jun-19	6.68	8.71		4.71	3.88		
24	24-Sep-19	6.6	8.5		4.6	4.14		
25	11-Dec-19	6.67	0.01		4.54	3.93		
26	17-Mar-20	6.76	8.64	7 70	5.38	4.06		+
27	17-Jun-20	6.77	8.53	7.76	4.75	4.59		
28	22-Sep-20	6.77	8.7	7.47	4.71	4.49		
29 30	9-Dec-20	6.95	8.69	7.0	5.01	4.19		
	17-Mar-21	6.54	8.21	7.2	4.63	4.22	+	
31 32	15-Jun-21	6.85	8.67		4.69	4.55	+	
32	20-Sep-21 1-Dec-21	7.19 6.63	8.68 8.27	6.74	4.68 4.48	4.94 4.2		
33 34	1-Dec-21 18-Mar-22		-	0.74	4.48	4.2		
34 35	18-Mar-22 16-Jun-22	6.91 7.11	8.26 8.86		5.45	4.37		
35 36	16-Jun-22 21-Sep-22	7.11 7.52	8.86		5.37	4.29 5.3		+
30	21-Sep-22 21-Dec-22	7.52	7.81		4.74	4.1		+
38	21-060-22	1.54	1.01		4.74	-+. I	1	
39	+ +				1	1		+
40	+ +						1	
-	nt of Variation:	0.03	0.07	0.05	0.15	0.09		
	Il Statistic (S):	365	99	-4	48	233		
	idence Factor:	>99.9%	97.4%	58.0%	87.7%	>99.9%		
Concer	ntration Trend:	Increasing	Increasing	Stable	No Trend	Increasing		

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,
- Ground Water, 41(3):355-367, 2003.

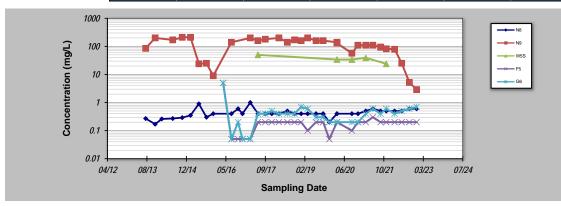
aluation Date	23-Jan-23			7	Job ID	318001362		
	Hydro Kurri			-	Constituent			
Conducted By	Jordyn Kirs	ch		Co	ncentration Units	pH Units		
Sam	pling Point ID:	W1S	W2S	 E5	W7S	W4S	W6S	
Sampling	Sampling			PH CON	CENTRATION (p	hH Inits)		
Event	Date							
1 2	29-Jul-13	7.22	7.33	9.54	7.29	0.42	8.87	
3	26-Nov-13 18-Feb-14	7.17 6.84	6.82	9.37 9.78	7.1	9.13		
4	7-Jul-14	<u>6.84</u> 6.9	+	9.78			8.79	
5	4-Nov-14	0.9	+	+ +		+	0.13	
6	17-Feb-15	6.66	1				7.27	
7	3-Jun-15	6.83		9.14		9.13	8.72	
8	7-Sep-15	6.86		9.42		9.07	8.98	
9	2-Dec-15	0.00		0.72		0.07	8.67	
10	5-Apr-16	7.21	1	9.48		1 1	0.01	
11	19-Jul-16	1.001	1	0.10		5.11		
12	12-Oct-16					0.11		
13	6-Dec-16							
14	15-Mar-17							
15	20-Jun-17							
16	21-Sep-17							
17	12-Dec-17							
18	13-Mar-18							
19	28-Jun-18					8.26		
20	26-Sep-18							
21	19-Dec-18		7.47					
22	11-Mar-19							
23	26-Jun-19							
24	24-Sep-19							
25	11-Dec-19							
26	17-Mar-20							
27	17-Jun-20			8.79	8.08	8.32		
28	22-Sep-20	7.89	6.73	9.11	7.61			
29	9-Dec-20	8.24	6.97	9.2				
30	17-Mar-21	7.55	7.19	8.89		7.58		
31	15-Jun-21	7.99	7.32	9.15	7.24	7.91		
32	20-Sep-21	8.11		9.36				
33	1-Dec-21	7.61	6.89	9.16	7.01			
34	17-Mar-22	7.48	6.51	9.27	6.95			
35	15-Jun-22	8.6	6.77	9.63	7.38			
36	20-Sep-22	8.1	7.02	9.84	7.13		8.56	
37	20-Dec-22	7.98	7.17	10.19				
38			L					
39	<u> </u>							
40								
	t of Variation:	0.07	0.04	0.03	0.05	0.16	0.07	
	Il Statistic (S):	97	36	28	14	-15	3	
Conf	idence Factor:	100.0%	100.0%	95.0%	99.6%	95.8%	64.0%	
Concer	tration Trend:	Increasing	Increasing	Prob. Increasing	Increasing	Decreasing	No Trend	



- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

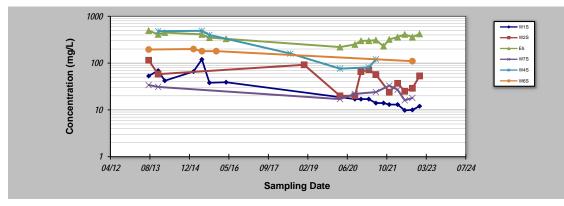
Ground Water, 41(3):355-367, 2003. DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without

limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., www.gsi-net.com

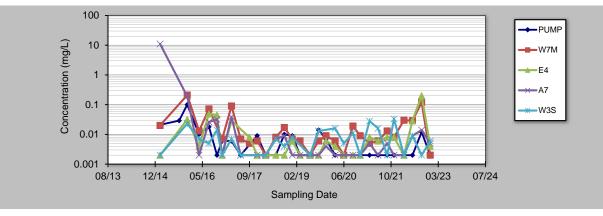

Facility Name	23-Jan-23 Hydro Kurr Jordyn Kirs			Job ID: 318001362 Constituent: Soluble Fluoride Concentration Units: mg/L				
Sam	pling Point ID:	PUMP	W7M	E4	A7	W3S	E11	
Sampling Event	Sampling Date			SOLUBLE FLU	ORIDE CONCENT	RATION (mg/L)		
1	29-Jul-13	79	878	699	436	237	102	
2	26-Nov-13	51	650	650	420	310	160	
3	18-Feb-14	280	730	650	410	210	190	
4	7-Jul-14	550		590	380	270	160	
5	4-Nov-14	930	910	380	410	210	150	
6	17-Feb-15	740	840	340	550	250	230	
7	3-Jun-15	200	810	260	500	230	7.4	
8	7-Sep-15	680	670	280	400	200	110	
9	2-Dec-15	360	540	300	320	160	96	
10	5-Apr-16	570	640	330	330	190	120	
11	19-Jul-16	280	870	570	320	170	120	
12	12-Oct-16	85	1100	550	360	150	130	
13	6-Dec-16	88	1000	450	380	110	200	
14	15-Mar-17	210	220	670	500	180	230	
15 16	20-Jun-17	60	750		400	62	99	
16	21-Sep-17	180	760	380	390	99	130	
17	12-Dec-17 13-Mar-18	160 220	780 770	380 410	400 190	180	110 120	
10	28-Jun-18	62	810	350	390	180	120	
20	26-Sep-18	02	860	380	450	96	130	
20	19-Dec-18	250	820	410	430	100	49	
22	11-Mar-19	370	990	530	600	100	150	
23	26-Jun-19	140	750	490	480	90	74	
24	24-Sep-19	400	800	530	480	170	41	
25	11-Dec-19	530	830	590	520		120	
26	17-Mar-20	30	810	560	410	150	41	
27	17-Jun-20	17	440	690	470	150	54	
28	22-Sep-20	21	290	560	370	97	53	
29	8-Dec-20	22	580	680	500	100	78	·
30	17-Mar-21	24	630	610	380	130	74	
31	15-Jun-21	17	490	760	110	130	120	
32	20-Sep-21	26	350	570	370	110	76	
33	1-Dec-21	17	360	680	360	230	12	
34	17-Mar-22	19	400	710	330	290	8.3	
35	15-Jun-22	130	710	820	330	300	11	
36	20-Sep-22	150	480	660	300	240	7.9	
37	20-Dec-22	360	850	780	340	180	23	
38								
39 40								
-	t of Verietic	4.00	0.30	0.29	0.23	0.38	0.04	
	t of Variation:	1.02 -217	-160	0.29	-127	0.38	0.61 -310	
	dence Factor:	99.9%	98.5%	>99.9%	95.1%	96.5%	>99.9%	
COUL	UCTICE PACION	33.9%	90.3%	>99.9%	95.1%	90.3%	>99.9%	

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.


					ALL TOOL			
aluation Date:	23-Jan-23				Job ID:	318001362		
Facility Name	Hydro Kurri	Kurri			Constituent:	Soluble Fluorid	е	
Conducted By:	Jordyn Kirs	ch			Concentration Units:	ng/L		
Same	pling Point ID:	N8	N9	W5S		G6		
	• • –	NO	ING	W55	гэ	60		
Sampling Event	Sampling Date			SOLUBLE FI	LUORIDE CONCENTR	ATION (mg/L)		
1	29-Jul-13	0.27	85		T T		T	
2	26-Nov-13	0.17	200					
3	18-Feb-14	0.26	200					
4	7-Jul-14	0.27	170					-
5	4-Nov-14	0.29	210					
6	17-Feb-15	0.35	210					1
7	3-Jun-15	0.9	24					
8	7-Sep-15	0.3	25					
9	2-Dec-15	0.4	9					
10	5-Apr-16				5	5		
11	19-Jul-16	0.4	140		0.05	0.05		
12	12-Oct-16	0.6			0.05	0.2		
13	6-Dec-16	0.4			0.05	0.05		
14	15-Mar-17	1	200		0.05	0.05		
15	20-Jun-17	0.4	160	50	0.2	0.4		_
16	21-Sep-17	0.4	180		0.2	0.4		_
17	12-Dec-17	0.4			0.2	0.5		_
18	13-Mar-18	0.4	200		0.2	0.4		
19	28-Jun-18	0.5	140		0.2	0.4		
20	26-Sep-18	0.4	170		0.2	0.4		
21	19-Dec-18	0.4	160		0.2	0.7		
22 23	11-Mar-19	0.4	200		0.1	0.6		
23	26-Jun-19 24-Sep-19	0.4	160 160		0.2	0.3		
24	11-Dec-19	0.4	100		0.05	0.3		
26	17-Mar-20	0.2	140		0.05	0.2		-
27	17-Mar-20	0.4	130	34	0.2	0.2		-
28	22-Sep-20	0.4	57	34	0.2	0.2		-
29	8-Dec-20	0.4	110		0.2	0.2	1	+
30	17-Mar-21	0.5	110	39	0.2	0.4		1
31	15-Jun-21	0.6	110		0.3	0.6		1
32	20-Sep-21	0.5	95		0.2	0.4		1
33	1-Dec-21	0.5	82	24	0.2	0.6		1
34	17-Mar-22	0.5	79		0.2	0.4		
35	15-Jun-22	0.5	25		0.2	0.5		
36	20-Sep-22	0.6	5.2		0.2	0.6		
37	20-Dec-22	0.6	2.9		0.2	0.7		
38								
39	1 1							
40								
	nt of Variation:	0.37	0.55	0.26	2.68	1.68		
	Il Statistic (S):	274	-204	-5	74	87		
	idence Factor:	>99.9%	>99.9%	82.1%	92.5%	95.5%		
Concen	tration Trend:	Increasing	Decreasing	Stable	Prob. Increasing	Increasing		

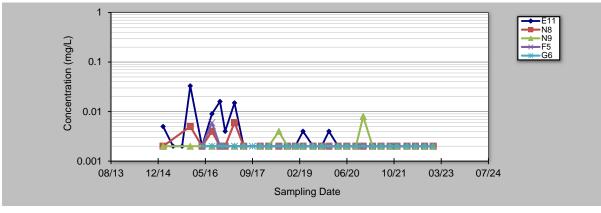
Ground Water, 41(3):355-367, 2003.


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

		(N-KENDA stituent Tre				
			for Con	stituent ire		5		
valuation Date	23-Jan-23			1	Ioh ID:	318001362		
	Hydro Kurri	i Kurri				Soluble Fluorio	de la	
	Jordyn Kirs			C	oncentration Units:			
	pling Point ID:	W1S	W2S	E5	W7S	W4S	W6S	
Sampling Event	Sampling Date			SOLUBLE FLU	ORIDE CONCENTI	RATION (mg/L)		
1	29-Jul-13	53	115	495	34		195	
2	26-Nov-13	69	58	410	31	480		
3	18-Feb-14	42		450				
4	7-Jul-14							
5	4-Nov-14							
6	17-Feb-15	66					200	
7	3-Jun-15	120		410		490	180	
8	7-Sep-15	38		350		400		
9	2-Dec-15						180	
10	5-Apr-16	39		330				
11	19-Jul-16							
12	12-Oct-16							
13	6-Dec-16							
14	15-Mar-17							
15	20-Jun-17							
16	21-Sep-17							
17	12-Dec-17							
18	13-Mar-18							
19	28-Jun-18					160		
20	26-Sep-18							
21	19-Dec-18		92					
22	11-Mar-19							
23	26-Jun-19							
24	24-Sep-19							
25	11-Dec-19							
26	17-Mar-20							
27	17-Mar-20		20	220	17	76		
28	22-Sep-20	17	20	250	22			
29	8-Dec-20	17	66	300				
30	17-Mar-21	17	72	300		81		
31	15-Jun-21	14	57	310	24	120		
32	20-Sep-21	14		230				
33	1-Dec-21	13	24	320	33			
34	17-Mar-22	13	37	360	27			
35	15-Jun-22	9.8	25	410	16			
36	20-Sep-22	10	29	360	18		110	
37	20-Dec-22	12	53	420				
38								
39								
40								
	nt of Variation:	0.90	0.58	0.22	0.28	0.74	0.21	
	II Statistic (S):	-109	-21	-13	-12	-13	-7	
Conf	idence Factor:	>99.9%	88.6%	68.7%	87.0%	96.5%	92.1%	
Concer	tration Trend:	Decreasing	Stable	Stable	Stable	Decreasing	Prob. Decreasing	

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

acility Name:	23-Jan-23 Hydro Kurri Jordyn Kirs			C		318001362 Free Cyanide mg/L	
Sam	oling Point ID:	PUMP	W7M	E4	A7	W3S	
Sampling Event	Sampling Date			FREE CYAN	IDE CONCENTRA	TION (mg/L)	
1	17-Feb-15	0.021	0.02	0.002	11	0.002	
2	3-Jun-15						
3	7-Sep-15	0.029					
4	2-Dec-15	0.1	0.21	0.032	0.19	0.023	
5	5-Apr-16	0.01	0.013	0.004	0.002	0.007	
6	19-Jul-16	0.018	0.072	0.049	0.026	0.005	
7	12-Oct-16	0.002		0.045	0.032	0.014	
8	6-Dec-16	0.006	0.007	0.002	0.002	0.002	
9	15-Mar-17	0.006	0.09	0.029	0.039	0.007	
10	20-Jun-17	0.002	0.007		0.002	0.002	
11	21-Sep-17		0.005	0.008			
12	12-Dec-17	0.009	0.006	0.002	0.002		
13	13-Mar-18	0.002	0.002	0.002	0.002	0.002	
14	28-Jun-18	0.002	0.008	0.002	0.007	0.007	
15	26-Sep-18	0.01	0.017	0.002	0.009	0.004	
16	19-Dec-18	0.009	0.007	0.006	0.002	0.008	
17	11-Mar-19	0.002	0.006	0.002	0.002		
18	26-Jun-19	0.002	0.002	0.002	0.002	0.002	
19	24-Sep-19	0.014	0.006	0.002	0.002	0.013	
20	11-Dec-19	0.007	0.009	0.006	0.004		
21	17-Mar-20	0.002	0.006	0.004	0.002	0.016	
22	17-Jun-20	0.002	0.002	0.002	0.002	0.005	
23	22-Sep-20	0.002	0.019	0.002	0.002	0.011	
24	8-Dec-20	0.002	0.009	0.002	0.002	0.002	
25	17-Mar-21	0.002	0.005	0.008	0.005	0.028	
26	15-Jun-21	0.002	0.006	0.006	0.002	0.016	
27	20-Sep-21	0.002	0.013	0.008	0.005	0.002	
28	1-Dec-21	0.002	0.008	0.008	0.002	0.033	
29	17-Mar-22	0.002	0.03	0.002	0.002	0.002	
30	15-Jun-22	0.002	0.029	0.029	0.009	0.009	
31	20-Sep-22	0.012	0.12	0.2	0.014	0.002	
32	20-Dec-22	0.002	0.002	0.004	0.005	0.006	
33							
34							
35							
Coefficien	t of Variation:	1.93	1.78	2.32	5.20	0.96	
Mann-Kenda		-164	-33	17	-52	18	
	dence Factor:	99.9%	72.4%	61.7%	82.9%	64.5%	
	tration Trend:	Decreasing	No Trend	No Trend	No Trend	No Trend	

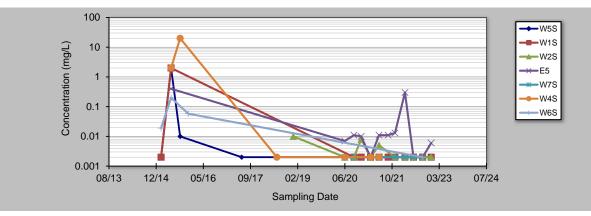

Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

acility Name	23-Jan-23 Hydro Kurr Jordyn Kirs			C	Job ID: 318001362 Constituent: Free Cyanide Concentration Units: mg/L				
Sam	pling Point ID:	E11	N8	N9	F5	G6			
Sampling Event	Sampling Date			FREE CYAN	IDE CONCENTRA	ATION (mg/L)			
1	17-Feb-15	0.005	0.002	0.002		<u>г</u>			
2	3-Jun-15	0.002							
3	7-Sep-15	0.002							
4	2-Dec-15	0.033	0.005	0.002					
5	5-Apr-16	0.002	0.002		0.002	0.002			
6	19-Jul-16	0.009	0.004	0.002	0.006	0.002			
7	12-Oct-16	0.016	0.002		0.002	0.002			
8	6-Dec-16	0.004	0.002		0.002	0.002			
9	15-Mar-17	0.015	0.006	0.002	0.002	0.002			
10	20-Jun-17	0.002	0.002	0.002	0.002	0.002			
11	21-Sep-17				0.002	0.002			
12	12-Dec-17	0.002	0.002	0.002	0.002	0.002			
13	13-Mar-18	0.002	0.002	0.002	0.002	0.002			
14	28-Jun-18	0.002	0.002	0.004	0.002	0.002			
15	26-Sep-18	0.002	0.002	0.002	0.002	0.002			
16	19-Dec-18	0.002	0.002	0.002	0.002	0.002			
17	11-Mar-19	0.004	0.002	0.002	0.002	0.002			
18	26-Jun-19	0.002	0.002	0.002	0.002	0.002			
19	24-Sep-19	0.002	0.002	0.002	0.002	0.002			
20	11-Dec-19	0.004	0.002		0.002	0.002			
21	17-Mar-20	0.002	0.002	0.002	0.002	0.002			
22	17-Jun-20	0.002	0.002	0.002	0.002	0.002			
23	22-Sep-20	0.002	0.002	0.002	0.002	0.002			
24	8-Dec-20	0.002	0.002	0.008	0.002	0.002			
25	17-Mar-21	0.002	0.002	0.002	0.002	0.002			
26	15-Jun-21	0.002	0.002	0.002	0.002	0.002			
27	20-Sep-21	0.002	0.002	0.002	0.002	0.002			
28	1-Dec-21	0.002	0.002	0.002	0.002	0.002			
29	17-Mar-22	0.002	0.002	0.002	0.002	0.002			
30	15-Jun-22	0.002	0.002	0.002	0.002	0.002			
31	20-Sep-22	0.002	0.002	0.002	0.002	0.002			
32	20-Dec-22	0.002	0.002	0.002	0.002	0.002			
33	+								
34						<u>├</u> ───			
35		4.45	0.40	0.54	0.05	0.00			
	nt of Variation:	1.45	0.42	0.54	0.35	0.00			
	all Statistic (S):	-127	-63	-1	-25	0			
Conf	idence Factor:	98.4%	87.6%	50.0%	68.1%	49.2%			
Concer	ntration Trend:	Decreasing	Stable	Stable	Stable	Stable			

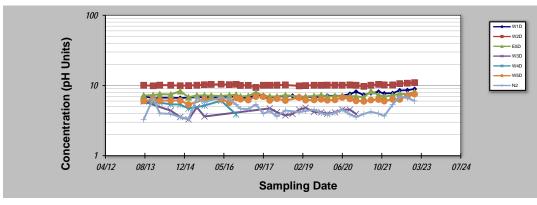

Notes:

At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. 1.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, 3.

Ground Water, 41(3):355-367, 2003.

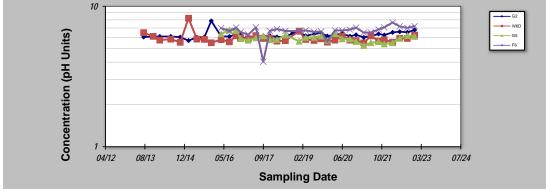
Facility Name	23-Jan-23 Hydro Kurri Jordyn Kirs			(318001362 Free Cyanide mg/L		
Sam	pling Point ID:	W5S	W1S	W2S	E5	W7S	W4S	W6S
Sampling Event	Sampling Date			FREE CYAI	NIDE CONCENTRA	ΓΙΟΝ (mg/L)		
1	17-Feb-15	0.002	0.002					0.019
2	3-Jun-15	2	2		0.4		2	0.2
3	7-Sep-15	0.01					20	
4	2-Dec-15							0.058
5	5-Apr-16							
6	19-Jul-16							
7	12-Oct-16							
8	6-Dec-16							
9	15-Mar-17							
10	20-Jun-17	0.002						
11	21-Sep-17							
12	12-Dec-17							
13	13-Mar-18							
14	28-Jun-18						0.002	
15	26-Sep-18							
16	19-Dec-18			0.01				
17	11-Mar-19							
18	26-Jun-19							
19	24-Sep-19							
20	11-Dec-19							
21	17-Mar-20							
22	17-Jun-20	0.002		0.002	0.007	0.002	0.002	
23	22-Sep-20	0.002	0.002	0.002	0.011	0.002		
24 25	8-Dec-20	0.000	0.002	0.008	0.01		0.000	
25	17-Mar-21	0.002	0.002	0.002	0.002	0.002	0.002	
26	15-Jun-21 20-Sep-21		0.002	0.005	0.011 0.011	0.002	0.002	
27	20-Sep-21 1-Dec-21	0.002	0.002	0.002	0.011	0.002		
28	17-Mar-22	0.002	0.002	0.002	0.013	0.002		
30	17-iviar-22 15-Jun-22		0.002	0.002	0.002	0.002		
31	20-Sep-22		0.002	0.002	0.002	0.002		0.002
32	20-Sep-22 20-Dec-22		0.002	0.002	0.002	0.002		0.002
33	20-000-22		0.002	0.002	0.000			
34	+ +							
35	+ +							
	nt of Variation:	2.79	3.42	0.81	2.09	0.00	2.19	1.29
	Il Statistic (S):	-9	-9	-17	-12	0	-7	-2
	idence Factor:	83.2%	70.4%	89.1%	77.0%	37.9%	86.4%	62.5%
	tration Trend:	No Trend	No Trend	Stable	No Trend	Stable	No Trend	No Trend


Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

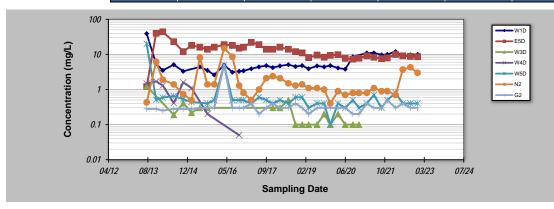
Ground Water, 41(3):355-367, 2003.


	23-Jan-23 Hydro Kurri Jordyn Kirs			C	Job ID Constituent oncentration Units	-		
Sam	pling Point ID:	W1D	W2D	E5D	W3D	W4D	W5D	N2
Sampling Event	Sampling Date			PH CO	ICENTRATION (oH Units)		
1	29-Jul-13	6.98	10.09	7.22	5.91	6.02	6.02	3.26
2	26-Nov-13	6.62	9.9	7.29		5.7	6.32	6.54
3	18-Feb-14	6.7	10.13	7.53		5.7	6.1	4.01
4	7-Jul-14	6.71	10.1	7.44	4.38	5.4	6.11	3.94
5	4-Nov-14	6.63	9.94	8.32	3.56	5.36	6.11	3.54
6	17-Feb-15		9.99	6.8	3.29	4.69	5.34	3.34
7	3-Jun-15	6.82	10.11	7.23	4.89		1	6.61
8	7-Sep-15	6.79	10.27	7.23	3.62	5.18	6.32	5.81
9	2-Dec-15		10.34	7.18			1	
10	5-Apr-16	6.73	10.42	7.1		6.08	6.4	6.75
11	19-Jul-16	6.82	10.29	7.27			5.7	6.37
12	12-Oct-16	7.02	10.4	7.39		3.87	6.7	5.35
13	6-Dec-16	6.78	10.02	7			6.37	4.67
14	15-Mar-17	6.67	10.07	7.08			6.21	4.59
15	20-Jun-17	7.3	9.37	7.97			6.94	5.37
16	21-Sep-17	6.95	10.08	7.16			6.93	3.98
17	12-Dec-17	6.78	10.1	7	4.72		6.13	4.31
18	13-Mar-18	6.91	10.14	6.97	4.16		6.5	3.63
19	28-Jun-18	7.07	10.18	7.29	3.75		6.1	4.41
20	26-Sep-18	7.12			3.94			
21	19-Dec-18	6.76	9.87	6.95	4.53		6.72	4.18
22	11-Mar-19	6.92	9.99	6.96	4.81		6.18	4.34
23	26-Jun-19	6.83	10.1	7.1	4.21		6.23	4.51
24	24-Sep-19	6.91	10.08	7.3	4.15		6.35	4.05
25	11-Dec-19	7.16	10.14	6.95	3.96		6.16	3.85
26	17-Mar-20	7.12	10.12	7.05	4.14		6.24	4.09
27	17-Jun-20	7.17	10.11	7.1	4.54		6.76	4.54
28	22-Sep-20	7.57	10.18	7.04	4.53		6.46	3.88
29	9-Dec-20	8.14	10.09	7.02	3.93		6.05	3.55
30	17-Mar-21	7.34	9.72	6.77			5.95	3.94
31	15-Jun-21	7.78	10.11	8.32			6.21	4.22
32	20-Sep-21	8.13	10.37	7.31			6.31	3.98
33	1-Dec-21	7.71	10.19	6.95		1	6	3.68
34	17-Mar-22	7.77	10.17	7.24			6.36	5.35
35	15-Jun-22	8.51	10.65	7.62			6.34	6.97
36	20-Sep-22	8.57	10.79	7.51			7.08	6.68
37	20-Dec-22	8.92	10.99	8.1		1	7.54	6.03
38								
39								
40								
Coefficien	t of Variation:	0.08	0.03	0.05	0.14	0.13	0.06	0.24
	Il Statistic (S):	411	167	-44	-2	-19	111	-4
	dence Factor:	>99.9%	98.9%	72.0%		97.0%	94.8%	51.7%
- 51111	tration Trend:	Increasing	Increasing	Stable	Stable	Decreasing	Prob. Increasing	Stable

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

aluation Date	23-Jan-23			7	Job ID.	318001362		
	Hydro Kurri	Kurri		-	Constituent			
	: Jordyn Kirs			c	oncentration Units			
San	pling Point ID:	G2	W6D		F6			
Sampling	Sampling			PH CO	NCENTRATION (p	oH Units)	<u>.</u>	
Event 1	Date 29-Jul-13	6.04	6.49	1		1		1
2	29-Jul-13 26-Nov-13	6.09	6.11					
3	18-Feb-14	6.09	5.75					
4	7-Jul-14	6.1	5.83					
5	4-Nov-14	6.03	5.54					
6	17-Feb-15	5.7	8.22				1	
7	3-Jun-15	6.01	5.84			1	1	
8	7-Sep-15	6.04	5.81					
9	2-Dec-15	7.87	5.5					
10	5-Apr-16	6.11	5.79	6.36	6.99			
11	19-Jul-16	6.09	5.58	6.77	6.67			
12	12-Oct-16	6.33	6.17	6.72	7.05			
13	6-Dec-16	6.22	5.96	5.88	6.54			
14	15-Mar-17	5.71	5.88	5.73	6.29			
15	20-Jun-17	6.08	6.19	5.96	7.08			
16 17	21-Sep-17	6.16	5.9	6.15	4.03			
17	12-Dec-17 13-Mar-18	6.19 6.05	5.9 5.65	<u>5.77</u> 5.8	6.68 6.88		-	
19	28-Jun-18	6.05	5.05	6.23	6.67		+	-
20	26-Sep-18	6.42	5.7	0.23	0.07			
20	19-Dec-18	6.53	6.65	5.64	6.66			
22	11-Mar-19	6.16	5.81	5.99	6.73			
23	26-Jun-19	6.35	5.71	6	6.57			
24	24-Sep-19	6.46	5.87	6.13	6.62			
25	11-Dec-19	6.13	5.56	5.7	5.61			
26	17-Mar-20	6.26	5.75	6.38	6.75			
27	17-Jun-20	6.37	6.12	5.86	6.72			
28	22-Sep-20	6.12	5.75	5.85	6.83			
29	9-Dec-20	6.26	5.69	5.61	7.05			
30	17-Mar-21	6	5.49	5.26	6.49			
31	15-Jun-21	6.12	6.16	5.5	6.51		+	+
32	20-Sep-21	6.36	5.65	5.59	6.84	1	+	+
33 34	1-Dec-21 17-Mar-22	6.24 6.52	5.78 5.55	5.39 5.49	7.08 7.67			
34	17-Mar-22 15-Jun-22	6.52	5.55	5.49	7.67			+
36	20-Sep-22	6.53	5.92	6.19	7.01		1	+
37	20-Dec-22	6.78	6.24	6.1	7.01		1	+
38	20 000 22	0.10	0.24	0.1	1.66		1	1
39	+			1		1	1	1
40	1 1						1	
Coefficie	nt of Variation:	0.06	0.08	0.06	0.10			
	all Statistic (S):	283	-54	-113	94			
	fidence Factor:	>99.9%	76.3%	99.1%	97.4%			

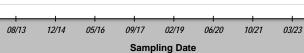

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without
Indicate CSI Factoremental Inc., and the second seco

limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

	23-Jan-23 Hydro Kurri Jordyn Kirs			C		318001362 Soluble Fluoride mg/L	3	
	pling Point ID:	W1D	E5D	W3D	W4D	W5D	N2	G2
Sampling Event	Sampling Date			SOLUBLE FLU	ORIDE CONCENT	RATION (mg/L)		
1	29-Jul-13	39	1.21	1.23	1.48	20	0.43	0.28
2	26-Nov-13	5.4	40	1120	1.7	0.51	6.2	0.28
3	18-Feb-14	3.5	44		1.3	0.59	1.9	0.25
4	7-Jul-14	5.1	23	0.19	0.41	0.65	1.4	0.28
5	4-Nov-14	3.3	12	0.41	1.6	0.53	0.74	0.28
6	17-Feb-15		18	0.22	1.1	0.44	0.49	0.28
7	3-Jun-15	4.4	16	0.3		-	8.1	0.3
8	7-Sep-15	3.5	14	0.3	0.2	0.4	1.4	0.3
9	2-Dec-15	2.6	16			0.5	1.4	0.3
10	5-Apr-16	5	19			5	15	5
11	19-Jul-16	3.1	18			0.5	8.6	0.3
12	12-Oct-16	3.3	15		0.05	0.5	1.3	0.3
13	6-Dec-16	3.4	16			0.5	0.8	0.3
14	15-Mar-17	3.9	22			0.4	0.5	0.4
15	20-Jun-17	4.4	19			0.6	1	0.2
16	21-Sep-17	4.8	14			0.5	2.1	0.3
17	12-Dec-17	4.2	14	0.3		0.4	2.4	0.4
18	13-Mar-18	4.7	16	0.3		0.5	2.1	0.3
19	28-Jun-18	5.1	14	0.5		0.4	1.5	0.3
20	26-Sep-18	4.5	12	0.1		0.6	1.3	0.4
21	19-Dec-18	4.8	11	0.1		0.6	1.4	0.3
22	11-Mar-19	3.9	8.1	0.1		0.3	1.1	0.2
23	26-Jun-19	4.7	9.6	0.1		0.4	1.1	0.3
24	24-Sep-19	4.4	8.3	0.2		0.4	1	0.3
25	11-Dec-19	4.8	9.4	0.1		0.1	0.4	0.3
26	17-Mar-20	4.1	9.8	0.2		0.4	0.9	0.3
27	17-Jun-20	3.8	7.7	0.1		0.3	0.7	0.3
28	22-Sep-20	8.5	7.3	0.1		0.5	0.8	0.2
29	8-Dec-20		7.8	0.1		0.3	0.8	0.2
30	17-Mar-21	11	9.1			0.4	0.8	0.4
31	15-Jun-21	11	8.3			0.7	1.1	0.3
32	20-Sep-21	9.7	7.6			0.3	0.9	0.3
33	1-Dec-21	10	7.9			0.5	0.9	0.5
34	17-Mar-22	12	10			0.8	0.7	0.3
35	15-Jun-22	8.8	9.1			0.4	3.7	0.4
36	20-Sep-22	9.7	8.8			0.4	4.3	0.3
37	20-Dec-22	10	8.6			0.4	3	0.3
38								
39								
40								
	nt of Variation:	0.93	0.60	1.01	0.68	2.94	1.31	1.80
	II Statistic (S):	223	-367	-80	-18	-194	-86	134
Confi	idence Factor:	99.9%	>99.9%	99.8%	98.4%	99.6%	86.6%	95.9%
	idence Factor:	99.9% Increasing	>99.9% Decreasing	99.8% Decreasing	98.4% Decreasing	99.6% Decreasing	86.6% No Trend	95 Incre

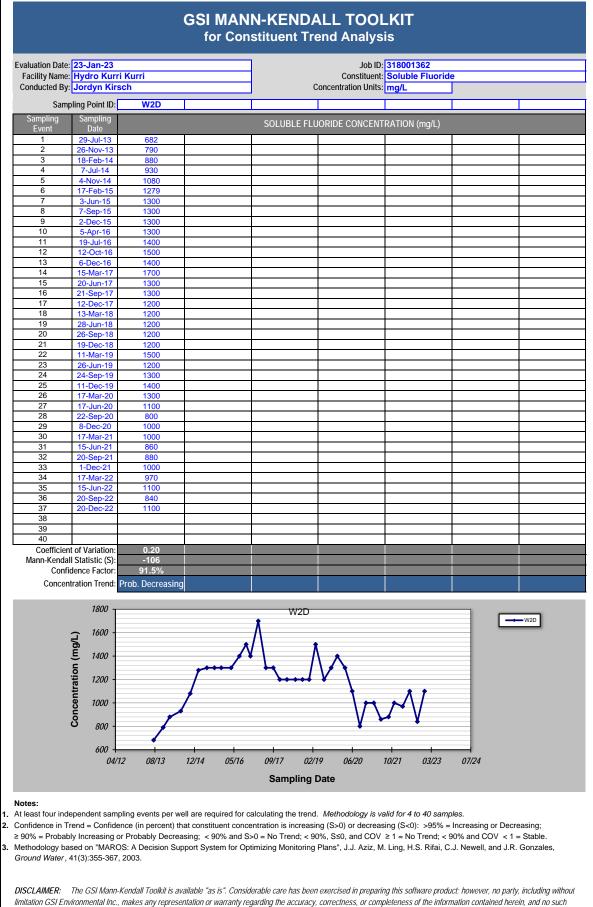

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

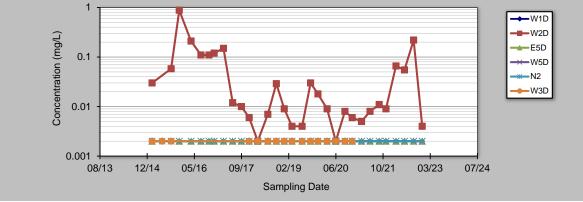
				N-KENDA stituent Tre				
Evaluation Date:	23-Jan-23				Job ID:	318001362		
Facility Name:	Hydro Kurr	i Kurri			Constituent:	Soluble Fluorid	e	
Conducted By:	Jordyn Kirs	sch		C	oncentration Units:	mg/L	J	
Samp	ling Point ID:	W6D	G5	F6				
Sampling Event	Sampling Date			SOLUBLE FLU	ORIDE CONCENT	RATION (mg/L)		
1	29-Jul-13	1.19						
2	26-Nov-13	0.25						
3 4	18-Feb-14 7-Jul-14	0.21 0.4					-	-
5	4-Nov-14	0.19						
6	17-Feb-15	0.3						
7	3-Jun-15	0.1						
8	7-Sep-15 2-Dec-15	0.1						
10	5-Apr-16	5	5	5				
11	19-Jul-16	0.2	0.4	0.6				
12	12-Oct-16	0.1	0.05	0.5				
13 14	6-Dec-16	0.1	0.3	0.5				-
14	15-Mar-17 20-Jun-17	1.4 0.3	0.6	0.5				
16	21-Sep-17	0.3	0.3	0.5				
17	12-Dec-17	0.2	0.3	0.6				
18	13-Mar-18	0.3	0.2	0.9				
19	28-Jun-18	0.05	0.4	0.5				
20 21	26-Sep-18 19-Dec-18	0.2	1.3 0.2	1 0.6				
22	11-Mar-19	0.05	0.05	0.0				
23	26-Jun-19	0.05	0.2	0.5				
24	24-Sep-19	0.05	0.2	0.5				
25	11-Dec-19	0.05	0.1	0.4				
26 27	17-Mar-20	0.05	0.2	0.6 0.5				
27	17-Jun-20 22-Sep-20	0.05	0.05	0.5				
29	8-Dec-20	0.05	0.05	0.6				
30	17-Mar-21	0.1	0.05	0.5				
31	15-Jun-21	0.05	0.2	0.6				
32 33	20-Sep-21 1-Dec-21	0.05	0.05	0.4				
34	17-Mar-22	0.05	0.3	0.5				
35	15-Jun-22	0.05	0.3	0.4		1	1	1
36	20-Sep-22	0.05	0.2	0.4				
37	20-Dec-22	0.05	0.2	0.5				
38 39								
40								
Coefficient	of Variation:	2.60	2.24	1.23				
Mann-Kendall	Statistic (S):	-325	-124	-90				
	lence Factor:	>99.9%	99.3%	96.1%				
Concent	ration Trend:	Decreasing	Decreasing	Decreasing				
	Concentration (mg/L)	\checkmark						- W6D - G5 - F6
	0.1 -	~	*\/ \			K		


07/24

Notes:

0.01

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,


Ground Water, 41(3):355-367, 2003.

limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

raluation Date: 23-Jan-23 Facility Name: Hydro Kurri Kurri Conducted By: Jordyn Kirsch				Job ID: 318001362 Constituent: Free Cyanide Concentration Units: mg/L					
	oling Point ID:	W1D	W2D	E5D	W5D	N2	W3D		
Sampling Event	Sampling Date FREE CYANIDE CONCENTRATION (mg/L)								
1	17-Feb-15		0.03	0.002	0.002	0.002	0.002		
2	3-Jun-15					0.002	0.002		
3	7-Sep-15		0.058		0.002	0.002	0.002		
4	2-Dec-15		0.88	0.002	0.002	0.002			
5	5-Apr-16	0.002	0.21	0.002	0.002	0.002			
6	19-Jul-16	0.002	0.11	0.002	0.002	0.002			
7	12-Oct-16	0.002	0.11	0.002	0.002	0.002			
8	6-Dec-16	0.002	0.12	0.002	0.002	0.002			
9	15-Mar-17	0.002	0.15	0.002	0.002	0.002			
10	20-Jun-17	0.002	0.012	0.002	0.002	0.002			
11	21-Sep-17		0.01	0.002	0.002	0.002			
12	12-Dec-17	0.002	0.006	0.002	0.002	0.002	0.002		
13	13-Mar-18	0.002	0.002	0.002	0.002	0.002	0.002		
14	28-Jun-18	0.002	0.007	0.002	0.002	0.002	0.002		
15	26-Sep-18	0.002	0.029	0.002	0.002	0.002	0.002		
16	19-Dec-18	0.002	0.009	0.002	0.002	0.002	0.002		
17	11-Mar-19	0.002	0.004	0.002	0.002	0.002	0.002		
18	26-Jun-19	0.002	0.004	0.002	0.002	0.002	0.002		
19	24-Sep-19	0.002	0.03	0.002	0.002	0.002	0.002		
20	11-Dec-19	0.002	0.018	0.002	0.002	0.002	0.002		
21	17-Mar-20	0.002	0.009	0.002	0.002	0.002	0.002		
22	17-Jun-20	0.002	0.002	0.002	0.002	0.002	0.002		
23	22-Sep-20	0.002	0.008	0.002	0.002	0.002	0.002		
24	8-Dec-20	0.002	0.006	0.002	0.002	0.002	0.002		
25	17-Mar-21	0.002	0.005	0.002	0.002	0.002	\vdash		
26	15-Jun-21	0.002	0.008	0.002	0.002	0.002	┝────┝─		
27	20-Sep-21	0.002	0.011	0.002	0.002	0.002	┥────┤──		
28	1-Dec-21	0.002	0.009	0.002	0.002	0.002	┟─────┤──		
29	17-Mar-22	0.002	0.066	0.002	0.002	0.002	┟─────┤──		
30	15-Jun-22	0.002	0.055	0.002	0.002	0.002	┟────┟──		
31 32	20-Sep-22	0.002	0.22	0.002	0.002	0.002	┟────┟──		
	20-Dec-22	0.002	0.004	0.002	0.002	0.002	┟────┟──		
33 34							┼───┼─		
34 35	<u>├</u>						<u>├</u> ───		
	t of Variation:	0.00	2.28	0.00	0.00	0.00	0.00		
	I Statistic (S):	0.00	-118	0.00	0.00	0.00	0.00		
	dence Factor:	49.2%	97.7%	49.3%	49.4%	49.4%	48.2%		
Concen	tration Trend:	Stable	Decreasing	Stable	Stable	Stable	Stable		

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

Facility Name	23-Jan-23 Hydro Kurri Jordyn Kirsc			Job ID: <mark>318001362 Constituent: Free Cyanide Concentration Units: mg/L</mark>				
	pling Point ID:	G2	W6D	G5	F6	W4D		
Sampling Event	Sampling Date			FREE CYAN	IIDE CONCENTR	RATION (mg/L)		
1	17-Feb-15	0.002	0.002			0.002		
2 3	3-Jun-15 7-Sep-15	0.002	0.002			-		
4	2-Dec-15	0.002	0.002					
5	5-Apr-16	0.002	0.002	0.002	0.002			
6	19-Jul-16	0.002	0.002	0.006	0.002			
7 8	12-Oct-16 6-Dec-16	0.002	0.002	0.002	0.002			
9	15-Mar-17	0.002	0.002	0.002	0.002			
10	20-Jun-17	0.002	0.002	0.002	0.002			
11	21-Sep-17	0.002	0.002	0.002	0.002			
12	12-Dec-17	0.002	0.002	0.002	0.002			
13 14	13-Mar-18 28-Jun-18	0.002	0.002	0.002	0.002			
15	26-Sep-18	0.002	0.002	0.002	0.002			
16	19-Dec-18	0.002	0.002	0.002	0.002			
17	11-Mar-19	0.002	0.002	0.002	0.002			
18 19	26-Jun-19 24-Sep-19	0.002	0.002	0.002	0.002			
20	11-Dec-19	0.002	0.002	0.002	0.002			
21	17-Mar-20	0.002	0.002	0.002	0.002			
22	17-Jun-20	0.002	0.002	0.002	0.002			
23 24	22-Sep-20	0.002	0.002	0.002	0.002	-		
24	8-Dec-20 17-Mar-21	0.002	0.002	0.002	0.002			
26	15-Jun-21	0.002	0.002	0.002	0.002			
27	20-Sep-21	0.002	0.002	0.002	0.002			
28	1-Dec-21	0.002	0.002	0.002	0.002			
29 30	17-Mar-22 15-Jun-22	0.002	0.002	0.002	0.002			
31	20-Sep-22	0.002	0.002	0.002	0.002			
32	20-Dec-22	0.002	0.002	0.002	0.002			
33								
	nt of Variation:	0.00	0.00	0.35	0.00			
Mann-Kendall Statistic (S):		0	0	-25	0			
Conf	idence Factor:	49.4%	49.4%	68.1%	49.2%	_		
Concer	tration Trend:	Stable	Stable	Stable	Stable			
34 35 Coefficier Mann-Kenda Confi	idence Factor:	0 49.4%	0 49.4%	-25 68.1%	0 49.2%			

At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. 1.

09/17

05/16

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, 3.

02/19

Sampling Date

06/20

10/21

03/23

07/24

Ground Water, 41(3):355-367, 2003.

08/13

12/14