Intended for

Hydro Aluminium Kurri Kurri Pty Ltd

Document type

Report

Date

February 2022

HYDRO ALUMINIUM SMELTER CAPPED WASTE STOCKPILE, 2021 ANNUAL GROUNDWATER MONITORING REPORT

HYDRO ALUMINIUM SMELTER 2021 ANNUAL GROUNDWATER MONITORING REPORT

Revision Final

Reference **318001103**Date **3 February 2022**

Made by Jake Bourke

Checked by Jordyn Kirsch / Kirsty Greenfield (CEnvP Site Contamination

Specialist No. SC40104)

Approved by Fiona Robinson (CEnvP Site Contamination Specialist No. SC40100)

Description 2021 Annual Groundwater Monitoring Report for the leachate plume

associated with the Capped Waste Stockpile at the former Hydro

Aluminium Kurri Kurri Smelter, Loxford, NSW.

Ramboll

Level 2, Suite 18 Eastpoint

50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

CONTENTS

ABBREV	IATIONS	VI
EXECUTI	IVE SUMMARY	VII
1.	INTRODUCTION	1
1.1	Objective and Scope of Work	1
1.2	Limitations	2
1.3	User Reliance	2
2.	BACKGROUND	3
2.1	Site Background	3
2.2	Characterisation of the Leachate Plume	3
2.3	Aquifer Characterisation	6
2.4	Leachate Interception Trenches	6
2.5	Fate and transport modelling	7
2.6	Conceptual Site Model	7
2.6.1	Contaminant Sources	7
2.6.2	Contaminants of Concern	7
2.6.3	Potential Human and Ecological Receptors	7
2.6.4	Potential Transport Mechanisms	8
2.6.5	Exposure Pathways	8
3.	SAMPLING AND ANALYSIS QUALITY PLAN	10
3.1	Objective	10
3.2	Scope of Works	10
3.3	Fieldwork Methodology	10
3.4	Groundwater Well Maintenance	11
3.5	Data Quality Objectives	11
3.6	Data Quality Indicators	11
4.	QUALITY ASSURANCE / QUALITY CONTROL	13
5.	ASSESSMENT CRITERIA	16
5.1	Groundwater Assessment Criteria	16
5.2	Potential Beneficial Uses	16
5.3	Appropriate Criteria for Groundwater	16
6.	RESULTS AND TREND ANALYSIS	18
6.1	Shallow Aquifer	18
6.1.1	Groundwater Elevation and Flow Direction	18
6.1.2	Groundwater pH	21
6.1.2.1	Time Series Trends	23
6.1.2.2	Mann-Kendall Trend Analysis	24
6.1.3	Soluble Fluoride	25
6.1.3.1	Time Series Trends	28
6.1.3.2	Mann-Kendall Trend Analysis	29
6.1.4	Free Cyanide Shallow Wells	30
6.1.4.1	Time Series Trends	31
6.1.4.2	Mann-Kendall Trend Analysis	32
6.2	Deep Aquifer	33
6.2.1	Groundwater Elevation and Flow Direction	33
6.2.2	Groundwater pH	36
6.2.2.1	Time Series Trends	38
6.2.2.2	Mann-Kendall Trend Analysis	39
6.2.3	Soluble Fluoride	40
6.2.3.1	Time Series Trends	42
6.2.3.2	Mann-Kendall Trend Analysis	44

6.2.4	Free Cyanide	45
6.2.4.1	Time Series Trends	45
6.2.4.2	Mann-Kendall Trend Analysis	45
7.	HYDRO DATA	47
8.	CONCLUSIONS AND RECOMMENDATIONS	49
9.	REFERENCES	50
FIGURES	S	
	Historical Fluoride Concentrations Along the Plume 1992 - 2014	5
•	Groundwater Elevation – Shallow Aquifer, 2013 to 2021	
-	Interpolated Groundwater Elevation and Flow Direction – Shallov	
-	Interpolated Field pH – Shallow Aquifer 2021	•
-	Field pH Values – Shallow Aquifer, Section 1 & 2 Wells	
_	Field pH Values – Shallow Aquifer, Section 3 & 4 Wells	
Figure 6-6.	Field pH Values – Shallow Aquifer, Section 5 & Sentinel Wells	24
Figure 6-7.	Interpolated Soluble Fluoride - Shallow Aquifer 2021	27
Figure 6-8.	Soluble Fluoride Concentrations – Shallow Aquifer, Section 1 & 2	? <i>Wells</i> 28
Figure 6-9.	Soluble Fluoride Concentrations – Shallow Aquifer, Section 3 & 4	<i>Wells</i> 28
Figure 6-10	0: Soluble Fluoride Concentrations – Shallow Aquifer, Section 5 &	Sentinel Wells 29
Figure 6-1	1: Free Cyanide Concentrations – Shallow Aquifer, Section 1 & 2 \	<i>Nells</i> 31
Figure 6-12	2: Free Cyanide Concentrations – Shallow Aquifer, Section 3 & 4 S	Shallow Wells 32
U	3: Free Cyanide Concentrations - Shallow Aquifer, Section 5 & Sei	
-	4: Groundwater Elevation – Deep Aquifer, 2013 to 2021	
-	5: Interpolated Groundwater Elevation and Flow Direction – Deep	•
•	6: Interpolated Field pH – Deep Aquifer 2021	
-	7: Field pH Values – Deep Aquifer, Section 1 & 2 Wells	
-	8: Field pH Values – Deep Aquifer, Section 3 & 4 Wells	
	9: Field pH Values, Section 5 & Sentinel Deep Wells (pH Units)	
	0: Interpolated Soluble Fluoride - Deep Aquifer 2021	
•	1: Soluble Fluoride Concentrations – Deep Aquifer, W2D	
-	2: Soluble Fluoride Concentrations – Deep Aquifer, Section 1 & 2 '3: Soluble Fluoride Concentrations – Deep Aquifer, Section 3 & 4 '	
_	4: Soluble Fluoride Concentrations – Deep Aquifer, Section 5 & S	
Ü	5: Free Cyanide Concentration – Deep Aquifer, W2D	
•	Fluoride Concentrations in Wells Sampled by Hydro	
rigure 7 1.	Tracriae concentrations in wells Samplea by Fryaro	
TABLES		
	Aquifer Characteristics	
	Source-Pathway-Receptor Linkages	
	Field Methodology for Quarterly Groundwater Monitoring	
	Data Quality Objectives	
	Data Quality Indicators	
	QA/QC Sampling and Analysis Methodology Assessment	
	QA/Q Assessment	
	Field pH Values - Shallow Aquifer	
	Mann-Kendall pH Trends - Shallow Aquifer	
	Soluble Fluoride Concentrations - Shallow Aquifer	
	Mann-Kendall Trend Analysis of Soluble Fluoride – Shallow Aquife	
	Free Cyanide Concentrations - Shallow Aquifer	
	Mann-Kendall Trend Analysis of Free Cyanide Trends - Shallow Ad	
	,	

Table 6-7: Field pH Values – Deep Aquifer	36
Table 6-8: Mann-Kendall pH Trends - Deep Aquifer	
Table 6-9: Soluble Fluoride Concentrations – Deep Aquifer	40
Table 6-10: Mann-Kendall Soluble Fluoride Trends - Deep Aquifer	44
Table 6-11: Free Cyanide Concentrations – Deep Aquifer	45
Table 6-12: Mann-Kendall Trend Analysis of Free Cyanide – Deep Aquifer	46
Table 7-1: Fluoride Concentrations in Wells Sampled by Hydro (mg/L)	47

APPENDICES

Appendix 1

Figures

Appendix 2

Attachments

Appendix 3

2013-2020 GME Historical Data

Appendix 4

Field Parameter Forms

Appendix 5

Laboratory Reports

Appendix 6

Calibration Certificates

Appendix 7

Historical Groundwater Contours

Appendix 8

Mann-Kendall Trend analysis

ABBREVIATIONS

Abbreviation	Description
AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
ANZG	Australian and New Zealand Guidelines (Water Quality)
CoC	Chain of Custody
DQI	Data Quality Indicator
DQO	Data Quality Objective
EPA	Environmental Protection Authority
GME	Groundwater Monitoring Event
ha	hectare
km	kilometre
L	litre
LOR	Limit of Reporting
m	metre
μg/L	micrograms per litre
mg/L	milligrams per litre
NATA	National Association of Testing Authorities
NC	Not calculated
ND	Not detected
n	Number of samples
рН	Measure of acidity, hydrogen ion activity
PQL	Practical Quantitation Limit
RPD	Relative Percentage Difference
QA/QC	quality assurance/quality control

EXECUTIVE SUMMARY

Thirty-three groundwater monitoring events have been completed between July 2013 and December 2021 to monitor a leachate impacted groundwater plume associated with the Capped Waste Stockpile (CWS) at the former Hydro Aluminium Kurri Kurri Smelter, located off Hart Road, Loxford, NSW. Monitoring of the groundwater down gradient of the CWS was initiated to assess the impacts to groundwater from leachate and to provide a temporal and spatial evaluation of the plume behaviour. Leachate from the CWS has high pH and elevated dissolved fluoride characteristics.

Each GME included the sampling and analysis of groundwater from a network of 25 shallow and deep wells located on five sections along the length of the leachate plume down-gradient of the CWS. In 2016, an additional two pairs of shallow and deep wells were added to the network. These wells are located adjacent to Swamp Creek, the nearest surface water receptor. Physicochemical parameters were recorded, and groundwater samples analysed for soluble fluoride, total and free cyanide as well as total and dissolved aluminium.

Groundwater downgradient of the CWS is shallow and within a former sand filled river channel. Geological constraints limit the movement of groundwater and cause groundwater discharge to the surface following rainfall events. Groundwater wells target the upper phreatic surface, or shallow part of the aquifer, and a deeper part of the aquifer. The monitoring depth of the deeper well is variable and depending on geological stratum.

Evaluation of 2021 GME data has identified the following:

- The leachate plume in shallow groundwater is delineated to the north, with a decreasing trend in soluble fluoride concentrations in well N9 at the leading edge of the plume
- There are no changes in trend analysis for pH or soluble fluoride in the shallow aquifer compared to 2020 results that are indicative of the plume expanding. An increasing trend in soluble fluoride concentrations has been reported at well E4 on the eastern boundary of the leachate plume, which is constrained from further eastern migration at this location due to the geological constraints. In addition, soluble fluoride concentrations in leachate at this location on the eastern edge of the leachate plume have not increased significantly since monitoring commenced in 2013
- Consistent with previous monitoring, the leachate plume has impacted the deeper sand aquifer in a localised area close to the plume source, the CWS, as shown by elevated soluble fluoride concentrations and a high pH in well W2D. Concentrations at this well have been elevated over the monitoring period and there is no increasing trend observed, however there may be some expansion of impact to the east, towards W1D, with dark yellow to brown coloured groundwater observed and an increasing trend identified for both pH and soluble fluoride concentrations, although pH still remains below levels indicative of leachate impact.
- Consistent with previous monitoring, the leachate plume is not reaching the nearest surface water receptor of Swamp Creek, as indicated by continued low pH and low soluble fluoride concentrations in sentinel wells
- Leachate is currently only generated in limited quantities following heavy rainfall and removal of leachate from the northern interception trench is completed as required. Pumping of leachate from the active interception trench has not been required since 2016 due to the lack of leachate generation. Monitoring of groundwater and occasional pump out of passive leachate interception trenches is proposed to continue until remediation of the Capped Waste Stockpile is completed in 2023.

1. INTRODUCTION

Ramboll Australia Pty Ltd (Ramboll) was commissioned by Hydro Aluminium Kurri Kurri Pty Ltd (Hydro) to undertake quarterly Groundwater Monitoring Events (GMEs) on a portion of the Hydro Aluminium Kurri Kurri Smelter, located off Hart Road, Loxford, New South Wales (NSW), Australia.

The portion of the Smelter subject to the quarterly groundwater monitoring comprises the former smelter waste storage area known as the 'Capped Waste Stockpile' (CWS) and an associated area of leachate impacted groundwater (the leachate plume). The CWS and associated leachate impacted groundwater were identified as Area of Concern 1 (AEC 1) in the Phase 2 Environmental Site Assessment completed by Ramboll in 2012. The location of AEC 1 is shown in **Figure 1**, **Appendix 1**.

Results of previous GMEs completed between July 2013 and December 2020 have been reported in the following reports:

- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 12 Month Groundwater Monitoring Report', by Environ (now Ramboll), dated February 2015
- 'Hydro Aluminium Smelter, Capped Waste Stockpile, 2015 Annual Groundwater Monitoring Report' by Ramboll Environ (now Ramboll), dated April 2016
- 'Hydro Aluminium Smelter, Capped Waste Stockpile, 2016-2017 Annual Groundwater Monitoring Report', by Ramboll, dated February 2018
- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 2018 Annual Groundwater Monitoring Report', by Ramboll, dated February 2019
- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 2019 Annual Groundwater Monitoring Report', by Ramboll, dated February 2020
- 'Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 2020 Annual Groundwater Monitoring Report', by Ramboll, dated February 2021

This report presents the results of four quarterly GMEs, completed in March, June, September, and December of 2021, as well as a trend analysis of the results from the 33 monitoring events completed between 2013 and 2021.

1.1 Objective and Scope of Work

The objective of each quarterly GME was to:

- Assess the current status of leachate impacts to groundwater occurring from the CWS
- Compare the current status of leachate impacts to historical data to assess changes in groundwater quality.

The objective of this 2021 Groundwater Monitoring Report is to:

- Tabulate results for depth to groundwater, physico-chemical parameters and analytical data collected in 2021
- Complete trend analysis of monitored parameters in key wells incorporating data collected since July 2013
- Complete trend analysis with rainfall data
- Contour contaminant concentrations in the shallow and deep aquifers
- Assess the impact of the leachate interception trench on groundwater quality
- Assess plume migration
- Provide conclusions and recommendations

The scope of work for each quarterly GME included:

 Gauging, purging and sampling of 29 groundwater monitoring wells on five sections through the plume, including two shallow wells and two deep wells located adjacent to Swamp Creek

- Measurement of groundwater physico-chemical properties during purging, including pH, temperature, electrical conductivity (EC), redox (mV), total dissolved solids (TDS) and dissolved oxygen
- Laboratory analysis of groundwater samples for soluble fluoride, total and dissolved aluminium and total and free cyanide

1.2 Limitations

Ramboll Australia Pty Ltd (Ramboll) prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated 4 December 2020 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous. Site conditions may change over time. This report is based on conditions encountered at the Site at the time of the report and Ramboll disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment.

Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this investigation. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

1.3 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without Ramboll's express written permission.

2. BACKGROUND

2.1 Site Background

The Hydro Aluminium Kurri Kurri Smelter is located approximately 30 kilometres (km) west of the city of Newcastle and 150 km north of Sydney, in NSW, Australia. The smelter includes a 60-hectare (ha) plant area and a 2,000-ha buffer zone.

The CWS is a repository of waste arising during the operations of the aluminium smelter and includes spent pot lining, anodes, scrubber bags, concrete, brick, bulky waste, fines and other smelter wastes. The CWS is located near the eastern boundary of the smelter footprint and adjacent to the surrounding Hydro owned buffer land.

The CWS was maintained as an uncapped bunded waste repository prior to being capped with clay under development consent in the mid-1990s. At this time, impacts to vegetation in the buffer zone downgradient of the CWS were observed. Leachate from the CWS, caused by rainwater and groundwater coming in to contact with the CWS contents, was also known to have impacted on groundwater and investigations commenced to explore the extent of groundwater impact. These investigations identified that leachate impacted groundwater likely originated from the north east corner of the CWS and extended approximately 250 meters (m) north east. The CWS and associated leachate impacted groundwater were identified as AEC 1 in the Phase 2 Environmental Site Assessment completed by Environ (now Ramboll) in 2012. The location of AEC 1 is shown in **Figure 1**, **Appendix 1**. Ramboll assessed AEC 1 as part of the following investigations:

- 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter', dated 1 November 2012
- 'Environmental Site Assessment, Capped Waste Stockpile, Kurri Kurri Aluminium Smelter', dated 13 December 2012
- 'Plume Delineation Report, Capped Waste Stockpile', dated 6 November 2013.

Following these investigations, a Groundwater Monitoring Programme was developed that included monitoring 25 wells on five cross sections along the length of the plume. A summary of the Plume Delineation Report was included in Section 2.2 of the 12 Month Groundwater Monitoring Report (ENVIRON June 2016) and further information regarding the development of the Program is presented in Section 2.4 of that report.

Interim mitigation measures were taken in 2013, 2016 and 2017 to intercept the shallow movement and daylighting of leachate impacted groundwater. Measures involved the installation of passive or active shallow trenches, extending approximately 2 m below the ground surface perpendicular to the plume migration and providing pipe conveyance of the leachate impacted groundwater to the surface.

Planning approval has been sought for the remediation of the CWS. The proposal for remediation is the consolidation of all contaminated materials within one centralised containment cell located approximately 1 km west of the current CWS site and within residual clay soils. It is anticipated that remediation will be completed in 2023. Remediation of the CWS will result in the removal of the source of leachate to the groundwater system. Remediation involves some removal of leachate impacted groundwater with the remaining groundwater remediation occurring through natural processes following subsequent rainfall.

2.2 Characterisation of the Leachate Plume

A conceptual site model was developed following Stage 1 and Stage 2 of the investigations and was included in 12 Month Groundwater Summary Report, 2014 (Environ 2015).

The Hydro aluminium smelter and surrounding land generally comprises flat, low lying swampy ground that is at an elevation of between 12 m AHD and 15 m AHD. The CWS is located within the smelter portion of the site and is approximately 170 m in length by 130 m in width and is up to 11 m high and currently comprises a grassed clay cap. The eastern portion of the site within

the buffer zone retains natural bushland vegetation with minor surface filling using refractory bricks along the buffer zone fence line. Two areas of vegetation impact, known as the northern and southern vegetation impact areas are located in the north eastern portion of the site.

The CWS comprises stockpiled spent pot lining wastes and other wastes including cryolite, alumina, floor sweepings, shot blast dust, cement and pot lining mix. The waste is not leachate generating of itself (i.e., not putrescible) however, the uncapped storage of waste and subsequent infiltration of rainwater through the waste stockpile led to the generation of leachate over a period of approximately 25 years. Prior to capping, the leachate was collected behind bund walls surrounding the spent pot lining stockpile. During capping, leachate was suspected to have been entrapped within the fill in the north eastern corner of the CWS.

The CWS was capped in 1995 to prevent further infiltration. The suspected burial of leachate during capping and the ongoing contact between waste material and shallow groundwater beneath the CWS is considered to result in the ongoing leachate generation.

Major contaminants in the leachate are sodium (4,800 mg/L to 15,300 mg/L), fluoride (1,100 mg/L to 3,420 mg/L), sulphate (4,000 mg/L to 6,740 mg/L) and cyanide (70 mg/L to 200 mg/L) based on data obtained from leachate ponded within the bunded area of the CWS prior to capping (Reference: Dames & Moore (1992) 'Environmental Impact Statement, Upgrades to Waste Storage Facilities at the Alcan Australia Limited Kurri Kurri Smelter'). Leachate impacted groundwater is observed to be brown in colour.

The leachate plume originates from beneath the eastern side of the CWS where seepage into shallow groundwater within a semi-continuous sand aquifer has occurred. The shallow sand aquifer has been delineated as an elongate and sinuous sand lens approximately 50 m wide and 250 m in length extending to the north east of the CWS. The shallow sand aquifer is surrounded vertically and horizontally by a discontinuous clay aquitard that has been less impacted by leachate in close proximity to the plume and not been impacted by leachate at a distance from the plume. The configuration of the aquifer is a result of the nature of the deposition of sediments within a former estuary during periods of sea level rise and fall. A schematic cross section of the site is included as **Attachment 1**, **Appendix 2**.

The location of the plume within the semi-continuous shallow sand aquifer constrained by the surrounding discontinuous clay aquitard suggests that the movement of the leachate groundwater plume is limited by the geology. The complex interbedded Quaternary sediments comprise estuarine muds (high plasticity clay), fluvial channel sands (fine grained and coarse-grained sands), sandy levee deposits (clayey sand/sandy clay) and high energy flood deposits (coarse grained quartz sand).

Delineation investigations show that the groundwater plume remains confined within one main sand filled channel which directs flow to the north east. This finding is consistent with observations of a heavily vegetated area evident in the 1961 historical aerial photograph (Attachment 2, Appendix 2). The heavy vegetation is a reflection of surface and subsurface drainage lines and likely represents the shallow groundwater table present in the sand filled channel. The 1961 aerial photograph depicts the vegetation extending further to the north east and connecting with Swamp Creek. Given the correlation between the plume extent and the vegetation, it is reasonable to conclude that the groundwater flow path will continue along the vegetation alignment toward Swamp Creek and that, should the plume migration reach the surface water receptor, the discharge point will occur approximately 750 m to 1,000 m north-east of the plume, as shown in Attachment 2, Appendix 2. Fate and transport modelling to predict the migration of the plume along this channel has been undertaken, as summarised in Section 2.5.

The shallow nature of the semi-continuous sand aquifer results in the exfiltration of leachate impacted groundwater within topographically low areas of the site and following high rainfall events. The impacts of exfiltration are observed on the eastern edge of the plume where dieback

of vegetation has occurred (southern and northern vegetation impact areas). Brown coloured seepage is observed and evaporation of exfiltrated groundwater has left a white salt crust on surface soils in this area. The high electrical conductivity of the exfiltrated groundwater (up to $15,000~\mu s/cm$) exceeds the limit ($12,200~\mu s/cm$) at which conditions are generally too saline for plant growth (ANZECC, 2000).

The semi-continuous shallow sand aquifer that is impacted with leachate is characterised by high pH (pH >9), electrical conductivity (>5,000 μ S/cm), fluoride (>200 mg/L) and total cyanide (>6 mg/L) concentrations and is brown in colour. Historical data indicates fluoride concentrations within the leachate plume decreased after the CWS was capped in 1995. Fluoride concentrations near the CWS, the source of the plume, peaked in 1997. Mid-way along the plume, fluoride concentrations peaked around 2000 and at the leading edge, fluoride concentrations peaked between 2004 and 2006, as shown in **Figure 2-1**.

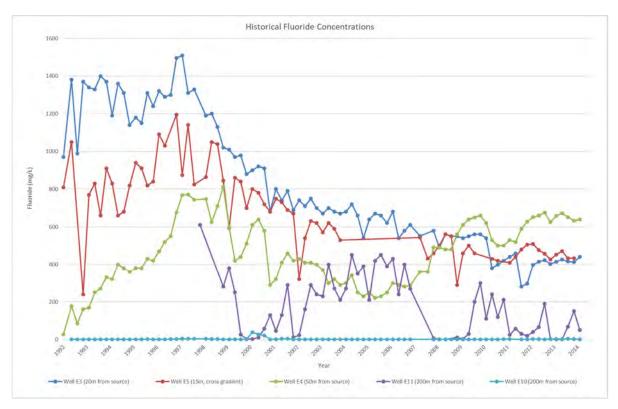


Figure 2-1: Historical Fluoride Concentrations Along the Plume 1992 - 2014

Ex-filtrated leachate impacted groundwater is observed to become overland flow discharging along a surface water flow path to a small dam. During periods of high rainfall, surface water within this dam is able to flow through a culvert structure to a larger dam which discharges to Swamp Creek. The overland flow path is shown in **Attachment 3**, **Appendix 2**.

Fluoride concentrations at the semi-permanent dam, located between the leachate impacted groundwater plume and Swamp Creek, typically vary between 15 mg/L and 25 mg/L. It is considered that the elevated fluoride concentrations in the semi-permanent dam are due to overland flow of exfiltrated groundwater from their source at the southern and northern vegetation impact areas. Sampling found the fluoride concentrations in Swamp Creek vary between 0.49 mg/L upstream of the smelter and 1.2 mg/L downstream. Adjacent to the semi-permanent dam discharge to Swamp Creek, fluoride concentrations were 1.6 mg/L. The Stage 2 Aquatic Assessment - Ecological Risk Assessment completed by ENVIRON in June 2013 indicated there is no discernible impact to the aquatic ecology within the semi-permanent dam as a result of elevated concentrations of fluoride in surface water and sediment.

2.3 Aquifer Characterisation

A sand aquifer within the buffer zone of the Hydro Aluminium Smelter has been impacted by leachate from the CWS. An underlying deep aquifer has also been impacted in close proximity to the contamination source. The characteristics of this sand aquifer and the underlying deep aquifer are critical to the understanding of the site CSM. Aquifer characteristics have been identified as outlined in **Table 2-1**.

Table 2-1: Aquifer Characteristics

Characteristic	Comment
Aquifer Type Unconsolidated sediment (estuarine)	
Aguifer Depth	Shallow: Approximately 0.3 m bgs to 2.5 m bgs
Aquilet Deptil	Deep: Approximately 3.5 m bgs to 7 m bgs
Confined/Unconfined	Shallow: Unconfined
Commed/oncommed	Deep: Confined by high plasticity clays in some areas
Groundwater Flow Direction	Shallow: North to north east
Gloundwater Flow Direction	Deep: North east
Dochargo Mochanism	Shallow: Infiltration
Recharge Mechanism	Deep: Infiltration
Porosity	Shallow: Variable due to variable nature of the sediments. High porosity quartz gravels identified at northeast corner of the Capped Waste Stockpile. Mid to low porosity tightly packed sands identified along plume length.
	Deep: Mid to low porosity poorly sorted, tightly packed fine-grained sand.

The most important characteristic for the movement of leachate through the shallow aquifer is the nature of the materials, in particular the complex and variable nature of the unconsolidated sediments. The nature of the sediments impacts the porosity, with high porosity quartz gravels, mid to low porosity tightly packed sands and high plasticity clays with very low porosity, all identified within the unconsolidated estuarine sediments. The leachate from the CWS moves through the sediments with mid to high porosity but is retarded by high plasticity clays. Where these barriers to flow coincide with changes in topography, discharge of groundwater to the surface can occur.

2.4 Leachate Interception Trenches

The following leachate interception trenches were installed down gradient of the source of the leachate plume to capture leachate prior to daylighting to surface near the two vegetation impact areas:

- A passive interception trench was installed in early 2013 to the north of Section 2 to intercept leachate flowing into the southern vegetation impact area
- An active interception trench was installed at the toe of the CWS immediately upgradient of the wells on Section 1 in April 2014
- A second passive interception trench was installed north of Section 4 in October 2017 to capture leachate daylighting along the western edge of the northern vegetation impact area

The location of these interception trenches are shown in **Attachment 4**, **Appendix 2**. A conceptual cross section of the active interception trench on Section 1 is included in **Attachment 5**, **Appendix 2**.

These trenches were installed as an interim remedial measure to reduce daylighting and overland flow of leachate downgradient of the CWS. The active trench was in operation from May 2014 to March 2016 when the discharge rate dropped to 0 L/ minute. Operation of the active trench since

March 2016 has not been required as leachate is no longer collecting in the trench. The passive trenches are occasionally pumped out following heavy rainfall. The trenches have been effective as an interim remedial measure, with water quality improvements and regeneration of vegetation observed in the two vegetation impact areas.

2.5 Fate and transport modelling

ENVIRON (February 2015) conducted a hydrogeological review and analytical groundwater contaminant transport modelling to assess the fate and transport of the leachate plume within the shallow aquifer. The assessment and modelling included a review of site investigation data and the construction of a conceptual hydrogeological model of AEC 1 and its surrounds.

A one-dimensional model (UK EA Remedial Targets Worksheet) was used to simulate the groundwater flow and contaminant transport conditions to predict contaminant (fluoride) concentrations from the source to the nearest down-gradient receptor (Swamp Creek).

The model was calibrated against observed fluoride concentrations from the existing groundwater monitoring well network to the east and north-east of the capped waste stockpile. The groundwater fluoride concentration at the receptor impact point was then evaluated under the simulated model and compared with the guideline criteria.

The following conclusions were drawn from the results of the modelling:

- Based on the existing hydrogeological conditions and the presence of an ongoing source from the CWS, the model estimated a fluoride concentration of 4.3 mg/L at the receptor distance (1,000 m), compared to the guideline criteria of 1.5 mg/L
- This value is considered a conservative estimate given the model assumes a continuous source, however, historical, more recent and proposed works are considered to have mitigated the source contribution. Future remedial works are proposed to ultimately remove the source (spent Pot Liner, anodes, scrubber bags, concrete, brick, bulky waste, fines and other smelter wastes stockpiled within the CWS)
- The model demonstrates sensitivity to a number of input parameters including the soil partition coefficient, (Kd). Future studies may include site specific determination of the soil partition coefficient in order to improve model calibration.

2.6 Conceptual Site Model

A Conceptual Site Model (CSM) is a site-specific qualitative description of the source(s) of contamination, the pathway(s) by which a contaminant may migrate through environmental media and the populations (human and/or ecological) that may potentially be exposed. This relationship is commonly known as a Source-Pathway-Receptor (SPR) linkage. Where one or more elements of the SPR linkage are missing, the exposure pathway is considered to be incomplete, and no further assessment is required.

A CSM was developed for the CWS leachate plume based on details provided in the sections above. The CSM has been updated based on field observations and data to 2021.

2.6.1 Contaminant Sources

The contaminant sources at the CWS leachate plume is the aluminium smelter wastes disposed in the CWS, primarily spent pot lining and cryolite.

2.6.2 Contaminants of Concern

Contaminants of Concern associated with spent pot lining and cryolite include fluoride, cyanide, aluminium, sodium, sulphate and a high pH.

2.6.3 Potential Human and Ecological Receptors

Identified potential receptors of contaminants of concern, should a complete exposure pathway be present, include:

- Maintenance personnel (brush cutting is completed in this area)
- Hydro employees who access the buffer zone

- Vegetation growing in the area of the leachate plume
- Transitory fauna that traverse through the area of the leachate plume
- The ecology of the semi-permanent dam located adjacent to Swamp Creek, the nearest down gradient receptor
- The ecology of Swamp Creek

Limited human receptors were identified as the site is located in a portion of the buffer zone that is fenced and not accessible to the general public or Hydro employees aside from those who work in the buffer zone.

2.6.4 Potential Transport Mechanisms

Identified potential transport mechanisms by which contaminants of concern may migrate from the source include:

- Migration through groundwater
- Daylighting of groundwater and overland surface water flow

Infiltration as a transport mechanism was stopped by the capping of the CWS with low permeability clay in the mid-1990s.

2.6.5 Exposure Pathways

For a receptor to be exposed to a chemical contaminant derived from a site, there must be an exposure pathway linking the source of contamination and the exposed receptor. An exposure pathway described the course a chemical or physical agent takes from the source to the exposed receptor and generally includes the following elements (US EPA 1989):

- A source and mechanism of chemical release
- A retention or transport medium (or media where chemicals are transferred between media)
- A point of potential human contact with the contaminated media
- An exposure route (e.g., ingestion, inhalation) at the point of exposure

An evaluation of exposure pathways at the site is outlined in **Table 2-2**.

Table 2-2: Source-Pathway-Receptor Linkages

	Source-Pathw	ay-Receptor Lin	k? (Yes/No/Po	tential (P), Not R	elevant (NR))		
	Maintenance Personnel	Hydro Employees	Vegetation	Transitory fauna	Ecology of dam down gradient	Ecology of Swamp Creek	Justification
Soil							
Dermal contact with impacted soil	No	No	NR	No	NR	NR	The contents of the CWS and underlying 0.5 m of soil are impacted by elevated concentrations of fluoride, asbestos, PAHs and
Incidental ingestion of impacted soil	No	No	NR	No	NR	NR	petroleum hydrocarbons (Ramboll 2016). Natural soils more than 0.5 m below the waste
Outdoor dust inhalation	No	No	NR	No	NR	NR	are not impacted. The contamination is no longer accessible following capping of the CSW with low plasticity clay in the mid-1990s.
Surface Water							
Dermal contact with impacted surface water	No	No	NR	No	No	No	Groundwater within the leachate plume can daylight and flow across overland flow paths, providing a pathway between contaminated
Incidental ingestion of impacted surface water	No	No	NR	No	No	No	groundwater and human and ecological receptors. Following the installation of the interception trenches, the daylighting of
Uptake of impacted surface water	NR	NR	No	NR	NR	NR	groundwater has reduced in frequency and impacted surface water has been observed on few occasions during heavy rainfall since 2014.
Groundwater							
Dermal contact with impacted groundwater	No	No	No	No	No	No	Groundwater within the leachate plume is not accessible aside from uptake of impacted water by vegetation, as evidenced by the two
Incidental Ingestion of impacted groundwater	No	No	No	No	No	No	vegetation impact areas in the down gradient portion of the plume. High plasticity clays located east of the leachate plume prevent
Uptake of impacted groundwater	NR	NR	Yes	NR	NR	NR	groundwater migration east towards Swamp Creek.

3. SAMPLING AND ANALYSIS QUALITY PLAN

3.1 Objective

The objective of each quarterly GME is to collect water quality data from the groundwater monitoring network to inform the behaviour of the leachate plume over time and provide data for annual reporting.

The groundwater monitoring network comprises groundwater wells located on five sections along the length of the leachate plume, as follows:

- Section 1: Wells E5, E5D, W7S, W7M, PUMP, W2S, W2D
- Section 2: Wells E5, E5D, E4, W1S, W1D
- Section 3: Wells A7, W3S, W3D², W3SA², W4S, W4D³
- Section 4: Wells E11, W5S, W5D, N2
- Section 5: Wells G2, N8, N9, W6S, W6D

Two pairs of shallow and deep wells adjacent to Swamp Creek (F5/G5 and F6/G6) were added to the groundwater monitoring network in 2016. These are sentinel wells that are unimpacted by leachate. The presence of leachate in these wells would indicate potential impact to Swamp Creek, the nearest surface water receptor. The groundwater monitoring network is shown in **Figure 2**, **Appendix 1**.

3.2 Scope of Works

The scope of works included the following:

- The collection of groundwater samples and measurement of water levels and physicochemical parameters (including pH temperature, EC, redox, TDS and dissolved oxygen) from 29 groundwater wells in the groundwater monitoring network
- Laboratory analysis of groundwater samples for soluble fluoride, total and dissolved aluminium, and total and free cyanide. Dissolved aluminium was included as part of laboratory analysis from June 2018.

3.3 Fieldwork Methodology

The fieldwork methodology for the collection of groundwater samples is outlined in **Table 3-1**.

Table 3-1: Field Methodology for Quarterly Groundwater Monitoring

Activity	Details
Well Gauging	Monitoring wells were gauged using a water interface probe.
Well Purging	Monitoring wells were purged prior to sampling by pumping water from the wells until the physico-chemical parameters stabilised.
Decontamination	The majority of the sampling equipment used during low flow sampling was dedicated and disposable, such as the dedicated and disposable sampling tube.
	Non-disposable sampling equipment, including the interface probe, water quality meter and flexible pump tubing was decontaminated by washing in a Decon®90 solution and rinsing with potable water between sampling locations.
Sample Collection and Storage	Groundwater samples were collected into laboratory-supplied bottles with the appropriate preservative for the analysis undertaken. The bottles were stored in an ice-filled cooler in the field and in transit to the laboratory.
Chain of Custody	Groundwater samples were dispatched to the laboratory under chain of custody conditions.

¹ This well has been unable to be sampled since December 2020 due to an obstruction in the well casing and is suspected to be damaged, it has not been replaced.

² This well was damaged in the April 2015 storm. As this well was dry for the majority of the 2013 and 2014 sampling events, it has not been replaced

³ This well was damaged in the April 2015 storm. It was able to be sampled until October 2016 but is now damaged beyond repair and has not been replaced.

3.4 Groundwater Well Maintenance

During the December 2021 GME, the well monument at G6 was replaced as the existing monument was heavily corroded. The well casing remains at the same depth within the new monument.

3.5 Data Quality Objectives

Data quality objectives (DQOs) are outlined in Table 3-2.

Table 3-2: Data Quality Objectives

DQO	Outcome
State the Purpose	To collect on-going monitoring data from a network of wells to understand the temporal and spatial behaviour of the aquifer in the area of leachate impacted groundwater.
Identify the Decision	 Is the data collected from the monitoring well network of sufficient quality to meet the project objectives? Is the data collected from the monitoring well network of sufficient quality to be comparable between events?
Identify Inputs to the Decision	 Record physico-chemical parameters and collect samples from the groundwater monitoring well network (see Figure 2, Appendix 1) over four quarterly GMEs. Complete analysis of collected groundwater samples for soluble fluoride, total and free cyanide, total and dissolved aluminium; and Analyse the data and compare with historical results.
Define the Study Boundaries	AEC 1 identified in Figure 1 , Appendix 1 plus the surface water receptors identified down gradient of AEC 1, including a semi-permanent dam and Swamp Creek. The investigation relates to groundwater.
	The statistical parameters of interest are the concentrations of fluoride, cyanide, aluminium, pH and EC identified historically and in the current investigations. The Assessment Criteria outlined in Section 5 and the historical groundwater concentrations where available for the monitoring wells.
Develop a Decision	The Decision Rules for groundwater are:
Rule	 Groundwater concentrations were assessed against the acceptance criteria outlined in Section 5 in combination with a comparison against background criteria where applicable. An evaluation of significance was also undertaken; and Recommendations were made for further evaluation for concentrations above criteria or background concentrations.
Specify Limits on Decision Errors	As this investigation involves a series of GMEs to monitor the state of a groundwater leachate plume, decision errors relate to the comparability of data between monitoring events. During the 2021 GMEs, 29 wells will be sampled unless found to be dry. This number takes into consideration three damaged wells (W3SA, W4D and W3D). Standard operating procedures, including consistent use of low flow techniques, should be implemented to ensure comparability of data between events. The same primary and secondary laboratories should be used for analysis and laboratory QA/QC should be assessed to ensure comparability between events.
Optimise the Design for Obtaining Data	Low flow sampling techniques will be used to collect groundwater samples to optimise the quality of the samples. Field samples for each round will be collected using the same sampling procedures to ensure comparability between GMEs.

3.6 Data Quality Indicators

Project data quality indicators (DQI) have been established to set acceptance limits on field and laboratory data collected as part of the quarterly groundwater monitoring program. The data quality indicators are outlined in **Table 3-3**.

Table 3-3: Data Quality Indicators

DQI	Field	Laboratory
Completeness – a measure of the amount of useable data from a data collection activity	All critical locations sampled. All samples collected, aside from dry wells. Experienced sampler. Documentation correct.	All critical samples analysed. All analysis completed according to standard operating procedures. Appropriate methods Appropriate Practical Quantitation Limits (PQLs).
Comparability – the confidence that data may be considered to be equivalent for each sampling and analytical event	Experienced sampler. Climatic conditions appropriate for the type of analyte. Climatic conditions noted during sampling. Same types of samples collected using same sampling methods.	Same analytical methods used. Same sample PQLs. Same NATA accredited laboratories used. Same units.
Representativeness – the confidence that data are representative of each medium present on site.	Appropriate media sampled. Groundwater sampled following stabilisation of physico-chemical parameters	All samples analysed according to standard operating procedures.
Precision – a quantitative measure of the variability of the data.	Collection of intra-laboratory duplicates at a rate of 1 in 10 primary samples. Collection of inter-laboratory duplicate samples at a rate of 1 in 20 primary samples.	Analysis of field duplicate samples, relative percent difference (RPDs) to be less than 30%. Laboratory duplicates analysed, RPDs to be less than 30%.
Accuracy – a quantitative measure of the closeness of the reported data to the "true" value.	Sampling methodologies appropriate and complied with. Collection of rinsate samples from non-disposable sampling equipment.	Analysis of: Rinsate blanks Method blanks Matrix spikes Surrogate spikes Laboratory control samples Reagent blanks. Results for blank samples to be non-detect. Results for spike samples to be between 70% and 130%.

4. QUALITY ASSURANCE / QUALITY CONTROL

Four quarterly GMEs were completed in March 2021, June 2021, September 2021, and December 2021. A quality assurance/quality control assessment is provided in **Table 4-1** and **Table 4-2**.

Table 4-1: QA/QC Sampling and Analysis Methodology Assessment

Sampling Methodology	Ramboll Assessment
	Prior to the commencement of the GMEs, the leachate plume originating from the CWS was delineated through staged fieldwork and reporting in ENVIRON (2013) 'Plume Delineation Report, Alcan Mound'. From the delineation work, 19 new groundwater wells were installed along the length of the plume to assist with groundwater monitoring. The five sections are approximately 60 m apart and extend from the toe of the CWS to the leading edge of the leachate plume. Groundwater wells target both the shallow and deep aquifer. Groundwater wells located on five sections were selected for the 2021 GMEs. Each section
Sampling Pattern and Locations	provides a cross section at different lengths along the known location of the leachate plume. One of the wells, W3SA, was destroyed in the April 2015 storm and has not been replaced. Another well, W4D, was also damaged in this storm but was able to be sampled until the October 2016 GME. This well can no longer be sampled and has not been replaced. A third well, W3D, has been unable to be sampled since December 2020 due to an obstruction within the well casing and is suspected to be damaged. This well has also not been replaced. In 2016, an additional two shallow and deep pairs of wells (F5/G5 and G6/F6) were added to the monitoring network. These wells are sentinel wells located adjacent to Swamp Creek, the nearest surface water receptor.
Sampling Density	Twenty-nine groundwater wells were selected for sampling for the 2021 quarterly GMEs on five sections along the length of the leachate plume and adjacent to the nearest surface water receptor. As the leachate plume is approximately 300 m in length, there is one section per 60 m. One primary groundwater sample was collected from each well (unless dry or damaged).
Sample Depths	Both shallow groundwater (the leachate plume) and the deep aquifer were sampled as part of the 2021 quarterly GMEs.
Sample Collection Method	For the 2021 quarterly GMEs, groundwater samples were collected using low flow methods (peristaltic pump and dedicated LDPE tubing). Groundwater samples were collected directly into laboratory-supplied bottles with field filtration for dissolved aluminium (0.45 μ m). Disposable gloves were worn during sample collection.
Decontamination Procedures	Dedicated disposable tubing was used to collect the groundwater samples. A short piece of silicone tubing was retained in the peristaltic pump and used for all wells. This tubing along with all non-disposable sampling equipment (i.e., interface probe, water quality meter) was decontaminated between sampling locations by washing with a solution of Decon®90 and potable water.
Sample Handling and Containers	Samples were placed into laboratory supplied sampling containers, dosed with the correct preservative (where relevant) and immediately placed into a cooler chilled with ice and/or ice bricks while in the field and during transportation to the laboratory.
Detailed Description of Field Screening Protocols	A water quality meter was used to collect field data, including temperature, pH, electrical conductivity, reduction/oxidation potential, total dissolved solids, dissolved oxygen, and turbidity. These parameters were recorded during purging until they stabilised.

Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of
	custody forms were signed by the laboratory on receipt of the samples.

Table 4-2: QA/Q Assessment

Data Quality Indicator	Ramboll Comments
	In general, intra-laboratory duplicate samples were collected at a rate of approximately 10% and inter-laboratory duplicate samples were analysed at a rate of approximately 5% during the 2021 GMEs. At least one rinsate sample was collected per GME.
	Inter-laboratory duplicates collected during the March and June 2021 GME's were inadvertently analysed by the primary laboratory, making them intra-laboratory duplicates.
	A summary of the field quality control samples collected during the 2021 GMEs is outlined below:
Field Quality Control Samples	 March 2021: three intra-laboratory duplicates (D01_20210317, T01_20210317, D02_20210325) and one rinsate (R01_20210325) June 2021: three intra-laboratory duplicates (D01_20210615, T01_20210615, D02_20210616) and one rinsate (R01_20210616) September 2021: two intra-laboratory duplicates (D01_20210920, D02_20210921), one inter-laboratory duplicate (T01_20210920) and one rinsate (R01_20210921) December 2021: two intra-laboratory duplicates (D01_20211201, D02_20211202), one inter-laboratory duplicate (T01_20211201) and one rinsate (R01_20211202).
	Intra-laboratory and inter-laboratory duplicate results for each GME are presented in Table M , Appendix 3 . Relative percentage differences (RPDs) were calculated for intra-laboratory and inter-laboratory duplicate pairs of samples. RPDs for most analytes were below the criterion (30%) except for:
	 March 2021: intra-laboratory duplicate pair W2D/T01_20210317 RPD for total aluminium 37%
	 June 2021: intra-laboratory duplicate pair G2/D01_20210615 RPD for total aluminium 89%, intra-laboratory duplicate pair F6/D02_20210616 RPD for fluoride 67% and total aluminium 199%, and intra-laboratory duplicate pair G2/T01_20210615 RPD for total aluminium 56%
Field Quality Control Results	 September 2021: intra-laboratory duplicate pair E5D/D01_20210920 RPD for dissolved aluminium 67%, intra-laboratory duplicate pair W5D/D02_20210921 RPD for total aluminium 39% and intra-laboratory duplicate pair E5D/T01_20210920 RPD for total cyanide 197%, dissolved aluminium 67%, total aluminium 47% December 2021: intra-laboratory duplicate pair G5/D02_20211202 RPD for total aluminium 40% and inter-laboratory duplicate pair W5D/T01_20211201 RPD for fluoride 50%, total aluminium 117%
	Higher RPDs were generally the result of low-level detections close to the laboratory limit of reporting (LOR) with the exception of total aluminium in intra-/inter-laboratory duplicate pairs. There is no criterion for total aluminium. Therefore, these higher RPDs are not considered to affect the outcomes of this report.
	Rinsate sample results were all reported at less than the limit of reporting (<lor) 2021="" for="" four="" gmes.<="" td="" the=""></lor)>
Equipment Calibration	The water quality meter was calibrated prior to use. Standard practice is to rely on pre-calibration for short sampling periods. Calibration certificates are included in Appendix 6 .
NATA registered laboratory and NATA endorsed methods	Envirolab was the primary analytical laboratory and ALS was used as the secondary laboratory. The laboratory certificates are NATA stamped.
Analytical methods	Summary analytical methods were included in the laboratory test certificates.
Holding times	Review of the CoCs and laboratory certificates indicate that holding times were met for all analytes for all samples during the 2021 GME's.
Practical Quantitation Limits (PQLs)	PQLs for all groundwater analytes were below the assessment criteria.
Laboratory quality control samples	Laboratory quality control samples were undertaken by the laboratories at appropriate frequencies.
Laboratory quality control results	The results for laboratory duplicates and laboratory control samples were within the limit of reporting.

The results for laboratory duplicates, laboratory control samples, matrix spikes and surrogates were acceptable, noting that reporting of percentage recovery was not possible in some samples over the four quarters due to high concentrations of elements in the samples however, an acceptable recovery was obtained for the Laboratory Control Sample (LCS).

Ramboll makes the following conclusions regarding the DQIs:

- Completeness: The data for the 2021 GMEs is complete as the selected 29 groundwater wells were located and dipped for depth to groundwater during each GME and groundwater samples were collected from wells containing sufficient water to sample.
- Comparability: The groundwater data collected during the four 2021 GMEs is comparable to
 previous results as the sampling protocols, analysis methods, quality control methods and
 monitoring well locations are generally consistent between sampling events and with prior
 events. The four 2021 GMEs were completed by a single sampler, Jake Bourke, a Ramboll
 environmental scientist.
- Representativeness: The selection of shallow and deep wells on sections along the length of
 the leachate plume is considered to provide data that is representative of the leachate plume
 in shallow groundwater and representative of the underlying deep aquifer. Groundwater was
 sampled following purging to ensure groundwater samples are representative of the aquifer
 sampled.
- Precision: In the field, Ramboll achieved precision by using standard operating procedures for the collection of groundwater samples and by collecting duplicate and triplicate samples for analysis. Relative Percent Difference (RPD) results for duplicate samples were acceptable. Laboratory quality control results indicate precision was achieved at the primary and secondary laboratories.
- Accuracy: In the field, Ramboll achieved accuracy by using Ramboll's standard operating
 procedures for the collection of groundwater samples. Laboratory quality control results
 indicate accuracy was achieved at the primary and secondary laboratories.

In general, the DQIs outlined above have been met and Ramboll considers that the data is of suitable quality to meet the project objectives.

5. ASSESSMENT CRITERIA

5.1 Groundwater Assessment Criteria

The assessment criteria adopted for the assessment of groundwater contamination were sourced from the following references:

- NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination
- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality
- ANZG (2018) Guidelines for Fresh and Marine Water Quality
- ENVIRON (March 2013) Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter

5.2 Potential Beneficial Uses

NSW DEC (2007) indicates that for assessing groundwater quality, it is first necessary to assess the beneficial uses of groundwater and surface water down gradient of the site.

The closest surface water receptor to the site is a dam and then Swamp Creek located approximately 1.5 km to the north-east of the site within an area of the buffer zone used for farming. This drainage area discharges into Wentworth Swamp, which in turn discharges to the Hunter River approximately 15 km north-east of the site near Maitland.

Surface water acidity/alkalinity within the Swamp Creek is described as generally neutral with pH ranging between 7.0 and 7.8 and conductivity is generally fresh, ranging from 626 μ S/cm to 1,520 μ S/cm. This surface water body is considered to be a freshwater receptor.

Groundwater is expected to follow a subsurface drainage line through a sand filled channel and flow north east towards Swamp Creek. Water level gauging completed during previous investigations confirmed the groundwater flow direction to the north east.

According to the Office of Industry and Investment, NSW, there are 17 licensed groundwater abstractions (bores) located within the site, which are known to be associated with monitoring of groundwater impact. There are no other licensed groundwater bores within 2 km of the site.

Potential beneficial uses of groundwater down gradient of the site include:

- Discharge into Swamp Creek, which supports aquatic ecosystems, is used for recreational fishing and flows into Wentworth Swamp, which potentially flows into the Hunter River
- Extraction of water from Swamp Creek may also be used for stock watering and/or irrigation.

Drinking water has not been included as a potential beneficial use of water from Swamp Creek for the following reasons:

- Drinking water supply to the local communities is reticulated and originates from Chichester Dam on the Chichester River
- The Kurri Wastewater Treatment Works is located up gradient of the site. The works has a licensed discharge point into Swamp Creek.

5.3 Appropriate Criteria for Groundwater

Based on the review of potential beneficial uses of groundwater and surface water within the closest receptor, the criteria for protection of aquatic ecosystems, irrigation, stock watering and recreational use will be used.

The investigation levels presented in ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality are considered applicable for the protection of aquatic ecosystems of receiving waters. ANZG (2018) advocates a site-specific approach to developing guideline trigger values based on such factors as local biological affects data and the current levels of disturbance of the ecosystem. The guidelines present 'low risk trigger values' which are defined as concentrations of

key performance parameters below which there is a low risk of adverse biological effects. If these trigger values are exceeded, then further action is required which may include further site-specific investigations to assess potential contamination or management and remedial actions.

Low risk trigger values are presented in ANZG (2018) for the protection of 80-99% of species in fresh and marine waters, with trigger values depending on the health of the receiving waters.

Groundwater results will be compared against trigger values for the protection of 95% of freshwater species. A 95% protection of freshwater species was selected due to the indication from the Hunter Catchment Management Trust that declining stream water quality and a reduction in diversity of native plants and animals has occurred in the last ten years.

A guideline for fluoride that is protective of the environment has not been developed in Australia.

A summary of the assessment criteria for groundwater is presented in Table 5-1.

Table 5-1: Groundwater Assessment Criteria

Contaminant	95% Protection for Aquatic Ecosystems	Irrigation	Stock Watering	Recreational
Aluminium (mg/L)	0.055	5	5	9
Fluoride (mg/L)	No guideline	1	2	1.5
Free Cyanide (mg/L)	0.007	No guideline	No guideline	0.1
pH (pH Units)	6.5 - 8ª	No guideline	No guideline	5 - 9
Electrical Conductivity (µS/cm)	No guideline	4,500 - 7,700 ^b >12,200 ^c	No guideline	No guideline

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000).

^b Values for tolerant crops from Table 4.2.4 in ANZECC (2000).

 $^{^{}c}$ Value from Table 4.2.4 in ANZECC (2000) for where electrical conductivity is 'generally too saline' for plant growth.

6. RESULTS AND TREND ANALYSIS

A summary of groundwater elevation, pH and laboratory results for the past 33 GMEs, including the four quarterly GMEs from 2021 are included in **Appendix 3**. Groundwater field parameter forms are included in **Appendix 5** and calibration certificates for the groundwater quality meter are included in **Appendix 6**.

The identified contaminants of concern associated with the leachate are fluoride, cyanide and aluminium. Fluoride has been selected as the primary contaminant of concern as a result of its persistence observed in groundwater and its concentration range in comparison with the adopted guideline criteria. Aluminium was not selected due to its ubiquity in the environment generally.

The following parameters have been assessed in the following sections:

- Section 6.1: Shallow Aquifer
 - Section 6.1.1: Groundwater Elevation and Flow Direction
 - Section 6.1.2: Groundwater pH
 - Section 6.1.3: Soluble Fluoride
 - o Section 6.1.4: Free Cyanide
- Section 6.2: Deep Aquifer
 - Section 6.2.1: Groundwater Elevation and Flow Direction
 - o Section 6.2.2: Groundwater pH
 - Section 6.2.3: Soluble Fluoride
 - o Section 6.2.4: Free Cyanide

6.1 Shallow Aquifer

6.1.1 Groundwater Elevation and Flow Direction

Figure 6-1 shows groundwater elevation within the shallow aquifer across the 33 monitoring events completed between July 2013 and December 2021. Monthly rainfall is presented for the same period.

Historical groundwater elevation within the shallow aquifer generally shows an increase in response to heavy rainfall and a downward trend in groundwater elevation during extended periods of low rainfall.

Overall, groundwater elevation in the shallow aquifer shows minimal change between the start of monitoring in July 2013 and the most recent GME in December 2021. Decreasing groundwater elevations are consistent with a period of drought from 2017 to 2019, with groundwater elevations recovering following increased rainfall during 2020 and 2021.

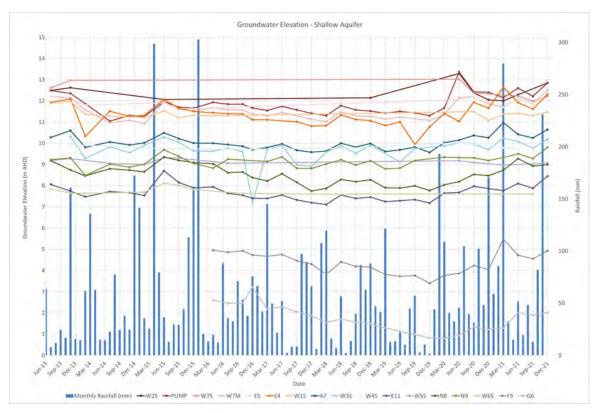


Figure 6-1: Groundwater Elevation – Shallow Aquifer, 2013 to 2021

Interpreted groundwater flow directions within the shallow aquifer for the four GMEs completed during 2021 is presented in **Figure 6-2**.

Between March 2021 and December 2021, groundwater flow within the shallow aquifer was generally to the north and northeast with a centralised low area at E11. These observations are largely consistent with historical observations. Historical elevations and flow directions are attached in **Appendix 7**.

Figure 6-2 | Interpolated Groundwater Elevation and Flow Direction – Shallow Aquifer 2021

6.1.2 Groundwater pH

Table 6-1 summarises field pH values reported within the shallow aquifer during 2021. Complete results are included in **Appendix 3**.

Table 6-1: Field pH Values - Shallow Aquifer

Contaminant of Concern	Date	No. of Samples	Minimum Value (pH Units)	Maximum Value (pH Units)	No. Results Exceeding Criteria
Field pH	March 2021	15	4.22	9.56	3 (Recreational) 6 (95% Protection)
	June 2021	15	4.55	9.91	5 (Recreational) 6 (95% Protection)
	September 2021	12	4.68	10.10	5 (Recreational) 7 (95% Protection)
	December 2021	15	4.20	9.89	4 (Recreational) 5 (95% Protection)

A pH greater than 9 exceeds both the ANZECC (2000) 95% protection for aquatic species criteria and the recreational criteria. Wells with a pH greater than 9, which is also characteristic of leachate impacted groundwater, include the following:

Section 1: E5, W7M

Section 2: E4Section 3: A7Section 4: E11Section 5: None

Shallow wells along the length of the leachate plume reported pH values ranging between 6.89 and 9.89 during 2021.

The pH in shallow sentinel wells F5 and G6 near Swamp Creek were less than 5, which may be indicative of the natural pH of groundwater in this part of the Buffer Zone. Although this pH is outside the range for ANZECC (2000) 95% protection criteria, it is not considered to require further analysis as it is not indicative of leachate impact.

The lateral extent of high pH impacted groundwater in the shallow aquifer throughout 2021 is presented in **Figure 6-3**.

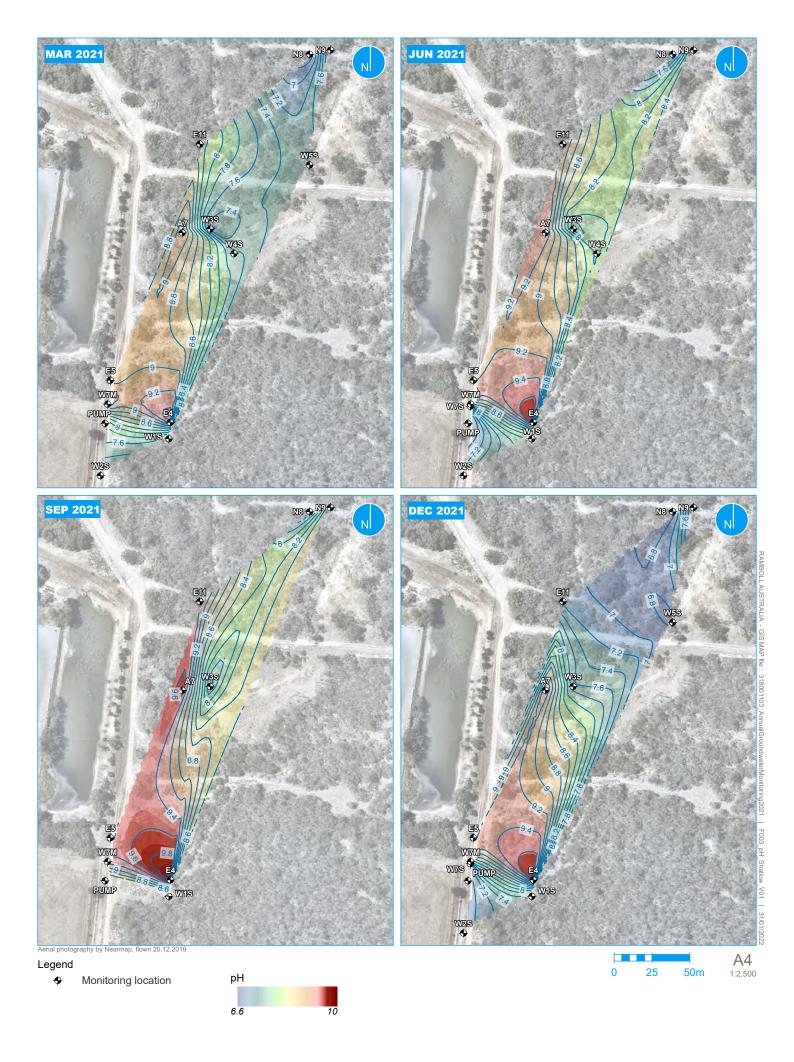


Figure 6-3 | Interpolated Field pH – Shallow Aquifer 2021

6.1.2.1 Time Series Trends

Comparison of pH values for the 33 GMEs completed between July 2013 and December 2021 are shown in **Figure 6-4** to **Figure 6-6**. The blue dotted line shows pH 9, where pH above this is characteristic of leachate impact. The time series trends show the following:

- The consistent presence of groundwater with elevated pH at shallow wells E4, E5, W7M, A7 and E11 along the length of the plume
- Overall decreasing pH in groundwater at PUMP on Section 1
- Low pH of groundwater in sentinel wells F5 and G6.

Figure 6-4: Field pH Values - Shallow Aquifer, Section 1 & 2 Wells

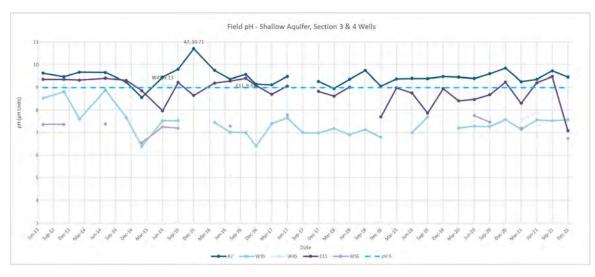


Figure 6-5: Field pH Values - Shallow Aquifer, Section 3 & 4 Wells

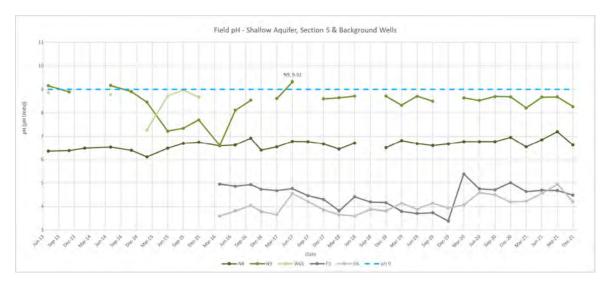


Figure 6-6: Field pH Values - Shallow Aquifer, Section 5 & Sentinel Wells

6.1.2.2 Mann-Kendall Trend Analysis

Mann-Kendall trend analysis was used to statistically assess each of the shallow monitoring locations to identify trends in pH. Trend analysis was carried out using the GSI Environmental Mann-Kendall Toolkit (GSI 2012). The outputs from the Mann-Kendall Toolkit are provided in **Appendix 8**. Data from July 2013 to December 2021 (33 sampling events) were included for the purpose of Mann-Kendall trend analysis of pH, a summary is provided in **Table 6-2**.

Mann-Kendall trend analysis of pH within the shallow aquifer indicates an increasing trend at three locations, W1S (located on Section 2), N8 (located on Section 5) and sentinel well G6. Since the first GME in July 2013, pH values at W1S and N8 have increased from pH 7.22 to pH 7.61 and pH 6.36 to pH 6.63, respectively (see **Figure 6-4** and **Figure 6 6**). These increases are not indicative of leachate impact, nor are they considered a significant change. Groundwater pH values at G6 also remain low and not indicative of leachate impact, increasing from pH 3.6 in April 2016 to pH 4.20 in December 2021 (see **Figure 6-6**). There are no increasing trends in pH for wells impacted by leachate.

Table 6-2: Mann-Kendall pH Trends - Shallow Aquifer

Well	Previous Trend 2013 to 2020	Current Trend 2013 to 2021	pH >Assessment Criteria ¹	Leachate Impacted ²		
Section 1						
PUMP	Decreasing	Decreasing	Yes	No		
W2S	Stable	Stable	No	No		
W7M	Decreasing	Decreasing	Yes	Yes		
W7S	No Trend	Stable	No	No		
E5	Prob. Decreasing	Prob. Decreasing	Yes	Yes		
Section 2						
E4	Stable	No Trend	Yes	Yes		
W1S	No Trend	Increasing	Yes	No		
Section 3						
W3S	Decreasing	Stable	No	No		
W4S	Stable	Decreasing	No	No		

Well	Previous Trend 2013 to 2020	Current Trend 2013 to 2021	pH >Assessment Criteria ¹	Leachate Impacted ²		
A7	Stable	Stable	Yes	Yes		
Section 4						
E11	Decreasing	Decreasing	Yes	Yes		
W5S	No Trend	Stable	No	No		
Section 5						
N8	Increasing	Increasing	No	No		
N9	No Trend	Stable	Yes	No		
W6S	-	+	No	No		
Sentinel						
F5	Stable	Stable	No	No		
G6	Increasing	Increasing	No	No		

⁻ Indicates no 2021 data available

6.1.3 Soluble Fluoride

Table 6-3 summarises the laboratory results for soluble fluoride within the shallow aquifer during 2021. Complete results are included in **Appendix 3**.

Table 6-3: Soluble Fluoride Concentrations - Shallow Aquifer

Contaminant of Concern	Date	No. of Samples	Minimum Concentration (mg/L)	Maximum Concentration (mg/L)	No. Results Exceeding Criteria
Soluble Fluoride	March 2021	15	0.20	630	12 (Irrigation, Stock Watering and Recreational)
	June 2021	15	0.30	760	12 (Irrigation, Stock Watering and Recreational)
	September 2021	12	0.20	570	9 (Irrigation, Stock Watering and Recreational)
	December 2021	15	0.20	680	12 (Irrigation, Stock Watering and Recreational)

During the four GMEs completed in 2021, soluble fluoride concentrations in shallow groundwater exceeded the site assessment criteria for Irrigation, Stock Watering and Recreational use at 13 wells as follows:

- Section 1: Pump, W2S, W7M, W7S, E5
- Section 2: E4, W1S
- Section 3: W3S, W4S, A7
- Section 4: E11, W5S
- Section 5: N9

I.D Insufficient data to perform trend analysis

¹Field pH exceeded the assessment criteria for 95% Protection for Aquatic Ecosystems or Recreational criteria during any GME completed in 2021 ²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

The lower number of results exceeding site criteria during September 2021 were the result of a number of wells being dry at the time of sampling.

All Section 1, Section 2, Section 3, and Section 4 shallow wells exceeded the site assessment criteria for soluble fluoride during 2021, with concentrations generally decreasing to the northeast away from the CWS. The highest concentrations were generally reported at Section 2 well E4 (maximum concentration of 760 mg/L during June 2021) located hydraulically downgradient of Section 1. The sentinel wells F5 and G6, located adjacent to the nearest surface water receptor (Swamp Creek), have consistently reported fluoride concentrations below 1 mg/L, indicating no impact from the leachate plume. The lateral extent of soluble fluoride in the shallow aquifer throughout 2021 is presented in **Figure 6-7**.

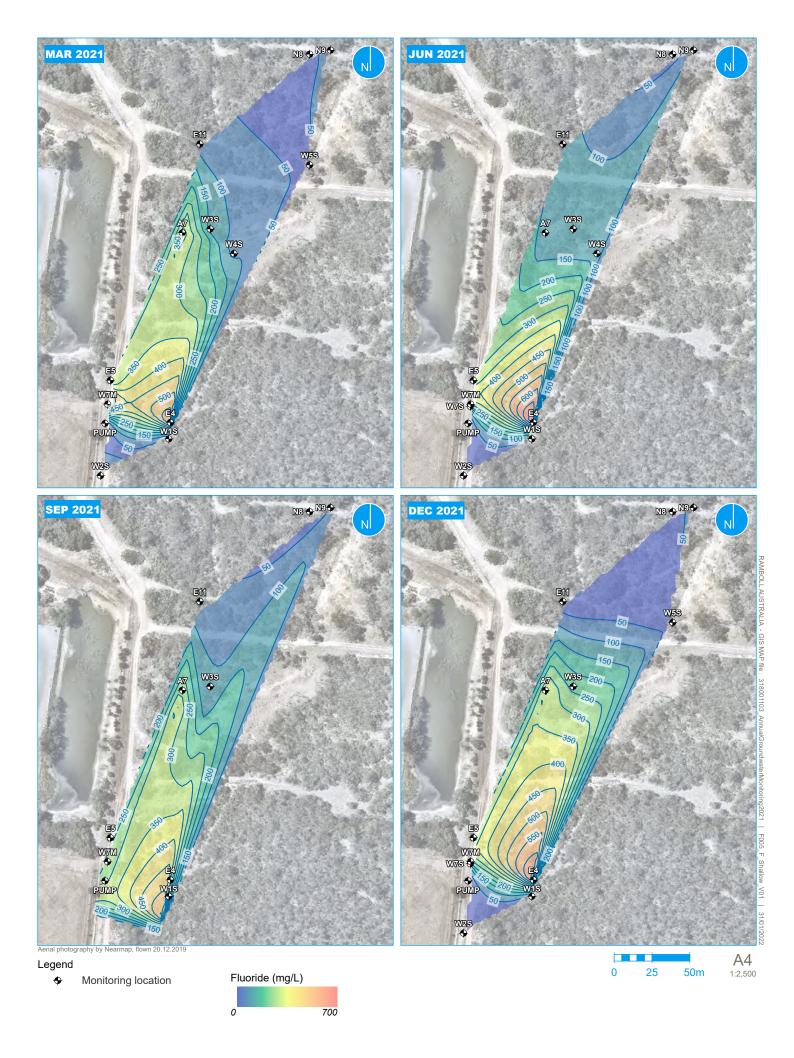


Figure 6-7 | Interpolated Soluble Fluoride - Shallow Aquifer 2021

6.1.3.1 Time Series Trends

Comparison of soluble fluoride concentrations for the 33 GMEs completed between July 2013 and December 2021 are shown in **Figure 6-8** to **Figure 6-10**. The time series trends show the following:

- Fluctuating soluble fluoride concentrations in wells on Section 1 and Section 2, closest to the source of the leachate
- Increasing soluble fluoride concentrations at E4 since September 2017
- Consistently elevated soluble fluoride concentrations indicating leachate impact at Section 3 and Section 4 wells despite overall decreasing concentrations at W4S
- Generally stable soluble fluoride concentrations at well N9 on Section 5, the leading edge of the plume
- Consistently low soluble fluoride concentrations at the sentinel wells F5 and G6.

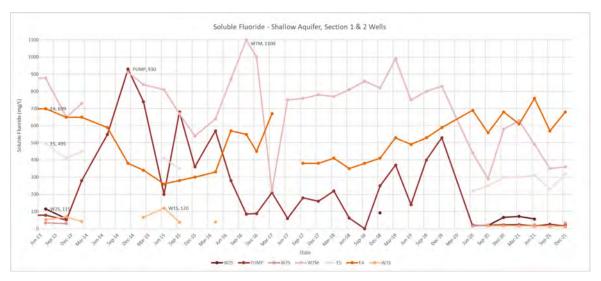


Figure 6-8: Soluble Fluoride Concentrations – Shallow Aquifer, Section 1 & 2 Wells

Figure 6-9: Soluble Fluoride Concentrations - Shallow Aquifer, Section 3 & 4 Wells

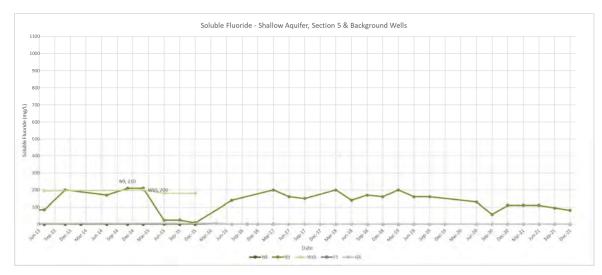


Figure 6-10: Soluble Fluoride Concentrations – Shallow Aquifer, Section 5 & Sentinel Wells

6.1.3.2 Mann-Kendall Trend Analysis

Data from July 2013 to December 2021 (33 sampling events) were included for the purpose of Mann-Kendall trend analysis of soluble fluoride, a summary is provided in **Table 6-4**.

Mann-Kendall trend analysis of soluble fluoride within the shallow aquifer indicates an increasing trend at 2 wells, E4 (located on Section 2) and N8 (located on Section 4). Further review of soluble fluoride concentrations at E4 reveal the increase to be minor, from 699 mg/L in July 2013 to 760 mg/L in June 2021 before decreasing again to 680 mg/L in December 2021. Soluble fluoride concentrations at N8 are within natural fluctuations and pH is not characteristic of leachate impacted groundwater at this location.

Mann-Kendall trend analysis of soluble fluoride at N9, the well at the leading edge of the plume, shows a decreasing trend indicating the plume is not expanding to the north.

Table 6-4: Mann-Kendall Trend Analysis of Soluble Fluoride – Shallow Aquifer

Well	Previous Trend 2013 to 2020	Current Trend 2013 to 2021	Soluble Fluoride >Assessment Criteria ¹	Leachate Impacted ²		
Section 1						
PUMP	Decreasing	Decreasing	Yes	No		
W2S	Stable	Stable	Yes	No		
W7M	Stable	Decreasing	Yes	Yes		
W7S	Stable	Stable	Yes	No		
E5	Decreasing	Decreasing	Yes	Yes		
Section 2						
E4	No Trend	Increasing	Yes	Yes		
W1S	Decreasing	Decreasing	Yes	No		
Section 3						
W3S	Decreasing	Decreasing	Yes	No		
W4S	Decreasing	Decreasing	Yes	No		
A7	No Trend	Stable	Yes	Yes		

Well	Previous Trend Current Trend 2013 to 2020 2013 to 2021		Soluble Fluoride >Assessment Criteria ¹	Leachate Impacted ²				
Section 4								
E11	Decreasing	Decreasing	Yes	Yes				
W5S	I.D	Stable	Yes	No				
Section 4	Section 4							
N8	Increasing	Increasing	No	No				
N9	Stable	Decreasing	Yes	No				
W6S	-	Stable	-	No				
Sentinel	Sentinel							
F5	No Trend	Prob. Increasing	No	No				
G6	No Trend	No Trend	No	No				

⁻ Indicates no 2021 data available

6.1.4 Free Cyanide Shallow Wells

Both total and free cyanide were included for analysis in the 2021 GMEs. Free cyanide was introduced for analysis in 2015, as there are no Australian guidelines for total cyanide.

Laboratory results for free cyanide in shallow groundwater reported during 2021 are summarised in **Table 6-5**.

Table 6-5: Free Cyanide Concentrations - Shallow Aquifer

Contaminant of Concern	Date	No. of Samples	Minimum Concentration (mg/L)	Maximum Concentration (mg/L)	No. Results Exceeding Criteria
Free Cyanide	March 2021	15	< 0.004	0.03	2 (95% Protection for Aquatic Ecosystems)
	June 2021	15	<0.004	0.02	2 (95% Protection for Aquatic Ecosystems)
	September 2021	12	< 0.004	0.01	3 (95% Protection for Aquatic Ecosystems)
	December 2021	15	< 0.004	0.03	4 (95% Protection for Aquatic Ecosystems)

I.D Insufficient data to perform trend analysis

¹Soluble fluoride exceeded the assessment criteria of either Irrigation, Stock Watering or Recreational during any GME completed in 2021

²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

Free cyanide concentrations were below the laboratory limit of reporting in most wells along the leachate plume, aside from the following:

Section 1: W2S, E5, W7M

Section 2: E4

Section 3: A7, W3S

Free cyanide concentrations exceeded the ANZECC (2000) 95% protection for aquatic ecosystems criterion in the following wells:

Section 1: E5, W7M

Section 2: E4Section 3: W3S

Sentinel wells F5 and G6 have consistently reported free cyanide concentrations below the laboratory limit of reporting (<0.004 mg/L) since regular monitoring began in 2016.

6.1.4.1 Time Series Trends

Comparison of free cyanide concentrations for the 28 GMEs completed between February 2015 and December 2021 are shown in **Figure 6-11** to **Figure 6-13**. Overall, concentrations of free cyanide in groundwater have decreased between 2015 and 2021 with no detections above the human health recreational guideline value of 0.1 mg/L since December 2015.

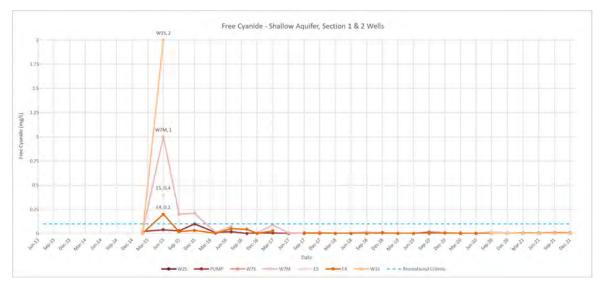


Figure 6-11: Free Cyanide Concentrations – Shallow Aquifer, Section 1 & 2 Wells

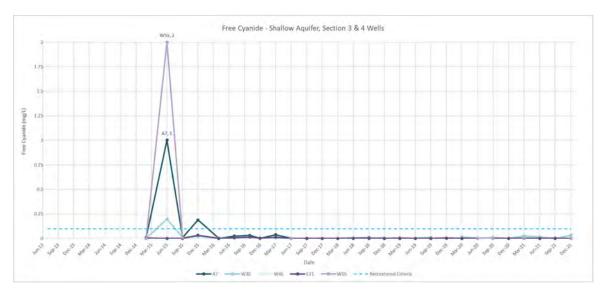


Figure 6-12: Free Cyanide Concentrations – Shallow Aquifer, Section 3 & 4 Shallow Wells

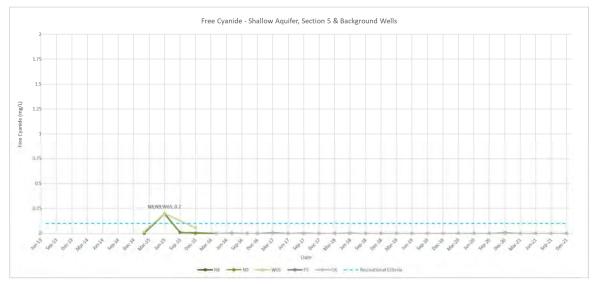


Figure 6-13: Free Cyanide Concentrations - Shallow Aquifer, Section 5 & Sentinel Shallow Wells

6.1.4.2 Mann-Kendall Trend Analysis

Data from February 2015 to December 2021 (28 sampling events) were included for the purpose of Mann-Kendall trend analysis of free cyanide in the shallow aquifer, a summary is provided in **Table 6-6**.

Mann-Kendall trend analysis of free cyanide in shallow groundwater indicates no increasing trends.

Table 6-6: Mann-Kendall Trend Analysis of Free Cyanide Trends - Shallow Aquifer

Well	Previous Trend Current Trend 2013 to 2013 to 2020 2021		Free Cyanide >Assessment Criteria ¹	Leachate Impacted ²
Section 1				
PUMP	Decreasing	Decreasing	No	No
W2S	Stable	Stable	No	No
W7M	Decreasing	Prob. Decreasing	Yes	Yes
W7S	I.D	Stable	No	No
E5	No Trend	No Trend	Yes	Yes
Section 2			No	
E4	Decreasing	No Trend	Yes	Yes
W1S	No Trend	No Trend	No	No
Section 3		No		
W3S	No Trend	No Trend	Yes	No
W4S	No Trend	No Trend	No	No
A7	Decreasing	Decreasing	No	Yes
Section 4			No	
E11	Prob. Decreasing	Decreasing	No	Yes
W5S	No Trend	No Trend	No	No
Section 5			No	
N8	Stable	Stable	No	No
N9	No Trend	No Trend	No	No
W6S	I.D	I.D	No	No
Sentinel			No	
F5	Stable	Stable	No	No
G6	Stable	Stable	No	No

I.D Insufficient data to perform trend analysis

6.2 Deep Aquifer

6.2.1 Groundwater Elevation and Flow Direction

Figure 6-14 shows groundwater elevation within the deep aquifer across the 33 monitoring events completed between July 2013 and December 2021. Monthly rainfall is presented for the same period.

Groundwater levels within the deep aquifer decreased over the period of low rainfall between 2017 and 2019 and have since increased in response to increased rainfall in 2020 and 2021, with groundwater levels in the deep aquifer now similar to those observed during the first monitoring event in July 2013.

¹ Free cyanide exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2021

²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

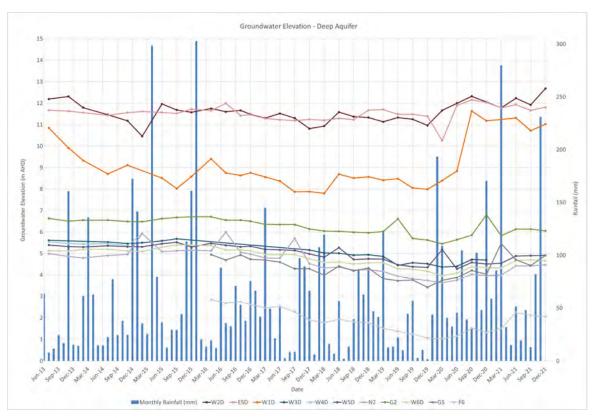


Figure 6-14: Groundwater Elevation - Deep Aquifer, 2013 to 2021

Interpreted groundwater flow directions within the deep aquifer for the four GMEs completed during 2021 is presented in **Figure 6-15**. Historical elevations and flow directions are attached in **Appendix 7**.

Groundwater flow direction in the deep aquifer is to the northeast. The deep aquifer shows little variation in flow direction between June 2013 and December 2021. There is a consistent gradient from approximately 11 m AHD near E5D to approximately 5 m AHD near W5D, then the gradient shallows through the northern vegetation impact area.



Figure 6-15 | Interpolated Groundwater Elevation and Flow Direction – Deep Aquifer 2021

6.2.2 Groundwater pH

Table 6-7 summarises field pH values reported within the deep aquifer during 2021. Complete results are included in **Appendix 3**.

Table 6-7: Field pH Values – Deep Aquifer

Contaminant of Concern	Date No. of Samples		Minimum Value (pH Units)	Maximum Value (pH Units)	No. Results Exceeding Criteria
Field pH	March 2021	9	3.94	9.72	1 (95% Protection and Recreational)
	June 2021	9	4.22	10.11	2 (95% Protection) 1 (Recreational)
	September 2021	per 2021 9	3.98	10.37	2 (95% Protection) 1 (Recreational)
	December 2021	9	3.68	10.19	1 (95% Protection and Recreational)

The deep aquifer has generally not been impacted by leachate with pH levels largely below pH 8, except for W2D located on Section 1. The pH at W2D has consistently been greater than 9 indicating leachate impacted groundwater at this well.

The natural pH conditions in the deep aquifer are slightly acidic to neutral, with pH conditions generally within or below the trigger values for lowland rivers of 6.5 to 8 (ANZECC 2000).

The lateral extent of high pH impacted groundwater in the deep aquifer throughout 2021 is presented in **Figure 6-16**.

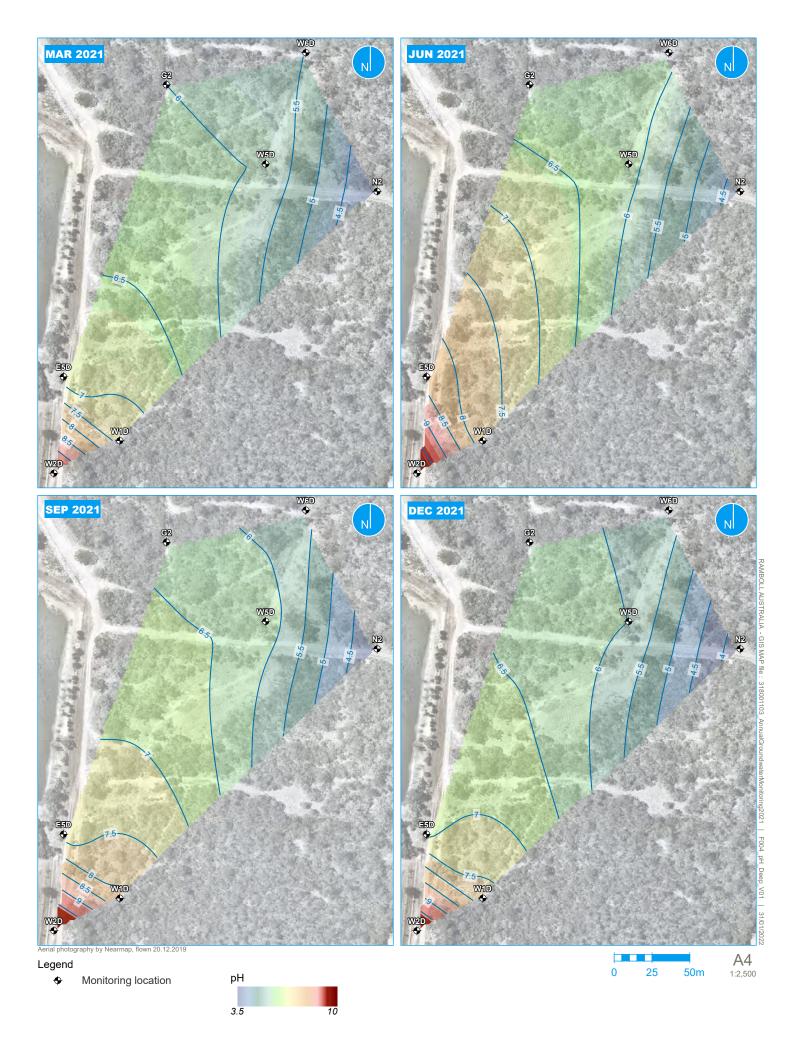


Figure 6-16 | Interpolated Field pH – Deep Aquifer 2021

6.2.2.1 Time Series Trends

Comparison of pH values reported within the deep aquifer for the 33 GMEs completed between July 2013 and December 2021 are shown in **Figure 6-17** to **Figure 6-19**. The blue dotted line shows pH 9 which is indicative of leachate impact.

The time series trends show the following:

- Consistently elevated pH above 9 at well W2D on Section 1
- Some fluctuations in pH in wells on Section 3 and Section 4
- pH consistently below 8 in down gradient and sentinel wells.



Figure 6-17: Field pH Values - Deep Aquifer, Section 1 & 2 Wells

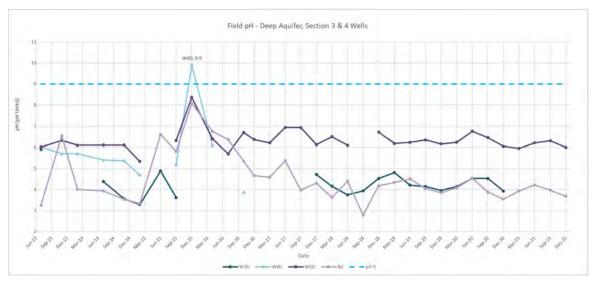


Figure 6-18: Field pH Values - Deep Aquifer, Section 3 & 4 Wells

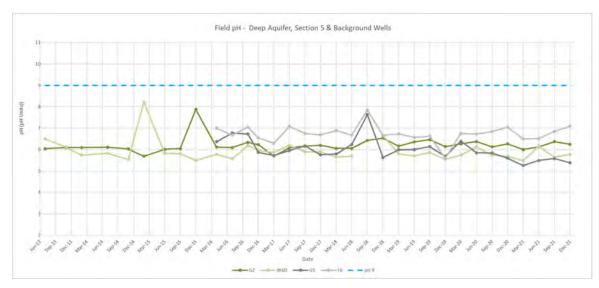


Figure 6-19: Field pH Values, Section 5 & Sentinel Deep Wells (pH Units)

6.2.2.2 Mann-Kendall Trend Analysis

Data from July 2013 to December 2021 (33 sampling events) were included for the purpose of Mann-Kendall trend analysis of pH, a summary is provided in **Table 6-8**.

Mann-Kendall trend analysis of pH within the deep aquifer indicates increasing trends at W1D, located on Section 2 and G2, located on Section 5. Further review of W1D indicates an increase from pH 6.98 in July 2013 to pH 7.71 in December 2021. While pH values at W1D are not characteristic of leachate impact the groundwater has been described as clear to dark yellow/brown and the overall increasing pH trend may be indicative of the leachate plume expanding to the east of well W2D, the most leachate-impacted well.

The increase in pH at Section 5 well G2 is minor, from pH 6.04 in July 2013 to pH 6.24 in December 2021, and not characteristic of leachate impacted groundwater.

Table 6-8: Mann-Kendall pH Trends - Deep Aquifer

Well	Previous Trend Current Trend 2013 to 2020 2013 to 2021		pH >Assessment Criteria ¹	Leachate Impacted ²
Section 1				
W2D	No Trend	No Trend	Yes	Yes
E5D	Decreasing	Decreasing	Yes	No
Section 2				
W1D	Increasing	Increasing Yes		No
Section 3				
W3D	Stable	Damaged	Damaged	Damaged
W4D	Destroyed	Destroyed	Destroyed	Destroyed
Section 4				
W5D	Prob. Increasing	No Trend	No	No
N2	Prob. Decreasing	Decreasing	No	No
Section 5				
G2	Increasing	Increasing	No	No

Well	Previous Trend Current Trend 2013 to 2020 2013 to 2021		pH >Assessment Criteria ¹	Leachate Impacted ²
W6D	Stable	Stable Prob. Decreasing		No
Sentinel				
G5	Decreasing	Decreasing	No	No
F6	No Trend	No Trend	No	No

I.D Insufficient data to perform trend analysis

6.2.3 Soluble Fluoride

Laboratory results for soluble fluoride in the deep aquifer reported during 2021 are summarised in

Table 6-9: Soluble Fluoride Concentrations – Deep Aquifer

Contaminant of Concern	Date	No. of Samples	Minimum Concentration (mg/L)	Maximum Concentration (mg/L)	No. Results Exceeding Criteria
Soluble Fluoride	March 2021	9	<0.1	1000	3 (Irrigation, Stock Watering & Recreational)
	June 2021	9	<0.1	860	4 (Irrigation) 3 (Stock Watering & Recreational)
	September 2021	9	<0.1	880	3 (Irrigation, Stock Watering & Recreational)
	December 2021	9	0.1	1000	3 (Irrigation, Stock Watering & Recreational)

During the GMEs completed throughout 2021 soluble fluoride exceeded site assessment criteria at three wells as follows:

Section 1: W2D and E5D

Section 2: W1D

• Section 4: N2

The highest soluble fluoride concentrations were consistently reported at Section 1 deep well W2D. W2D is located directly adjacent to the CWS and reports the highest soluble fluoride concentrations of all the wells.

The lateral extent of soluble fluoride in the deep aquifer throughout 2021 is presented in **Figure 6-20**.

¹ Free cyanide exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2021

²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

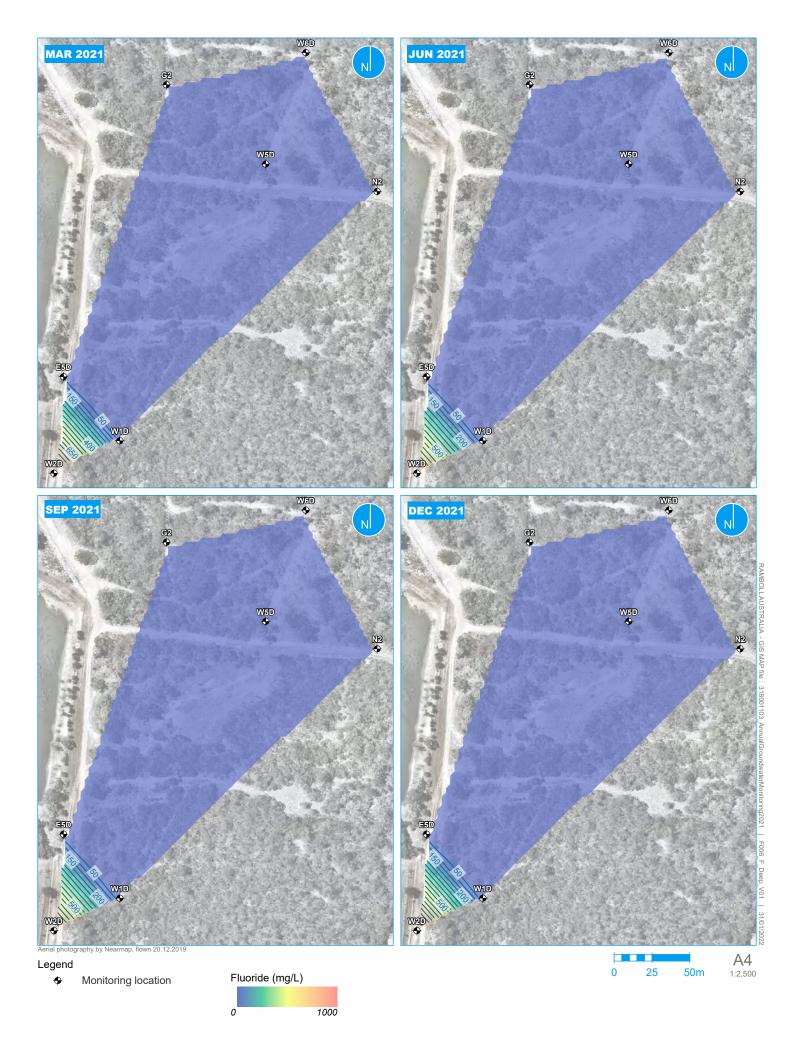


Figure 6-20 | Interpolated Soluble Fluoride - Deep Aquifer 2021

6.2.3.1 Time Series Trends

Comparison of soluble fluoride concentrations within the deep aquifer for the 33 GMEs completed between July 2013 and December 2021 are shown in **Figure 6-21** to **Figure 6-24** with concentrations for W2D only, shown in **Figure 6-21**.

The time series trends show the following:

- Consistently elevated soluble fluoride concentrations at well W2D on Section 1
- Some initial fluctuations in concentrations on Section 1 to Section 5 followed by consistently lower soluble fluoride concentrations from 2017 to 2021, aside from an increase at W1D from 2020 to 2021
- Consistently low soluble fluoride concentrations in the sentinel wells.

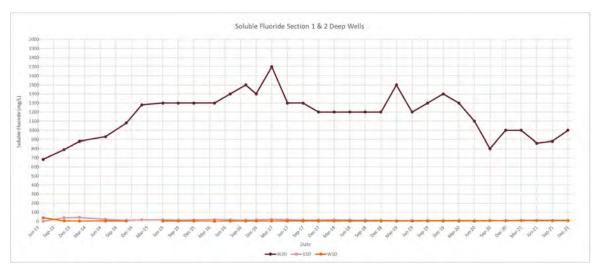


Figure 6-21: Soluble Fluoride Concentrations – Deep Aquifer, W2D

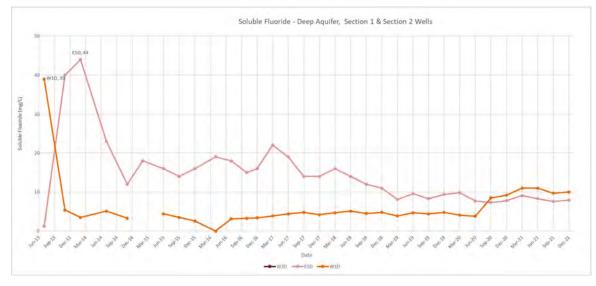


Figure 6-22: Soluble Fluoride Concentrations – Deep Aquifer, Section 1 & 2 Wells

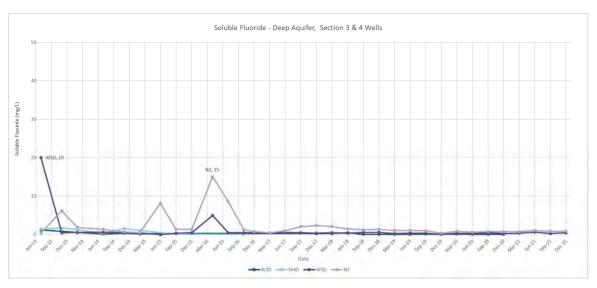


Figure 6-23: Soluble Fluoride Concentrations – Deep Aquifer, Section 3 & 4 Wells

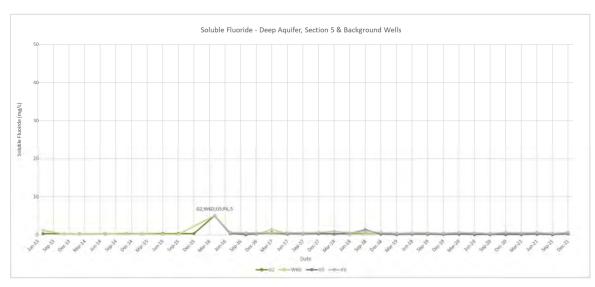


Figure 6-24: Soluble Fluoride Concentrations – Deep Aquifer, Section 5 & Sentinel Wells

6.2.3.2 Mann-Kendall Trend Analysis

Data from July 2013 to December 2021 (33 sampling events) were included for the purpose of Mann-Kendall trend analysis of soluble fluoride, a summary is provided in **Table 6-10**. Mann-Kendall trend analysis of soluble fluoride indicates an increasing trend in well W1D located on Section 2. Further review indicates fluoride concentrations have increased from 2.6 mg/L in December 2015 to 10 mg/L in December 2021, although pH at W1D is not characteristic of leachate impacted groundwater, field observations have reported groundwater discolouration indicating the plume may be expanding to the east of highly impacted well W2D.

Table 6-10: Mann-Kendall Soluble Fluoride Trends - Deep Aquifer

Well	Previous Trend 2013 to 2020 Current Trend 2013 to 2021		Soluble Fluoride >Assessment Criteria ¹	Leachate Impacted ²	
Section 1					
W2D	No Trend	Stable	Yes	Yes	
E5D	Decreasing	Decreasing	Yes	No	
Section 2					
W1D	No Trend	Increasing	Yes	No	
Section 3					
W3D	Decreasing	Damaged	Damaged	Damaged	
W4D	Destroyed	Destroyed	Destroyed	Destroyed	
Section 4					
W5D	Decreasing	Decreasing	No	No	
N2	Decreasing	Decreasing	No	No	
Section 5					
G2	No Trend	Prob. Increasing	No	No	
W6D	Decreasing	Decreasing	No	No	
Sentinel					
G5	Decreasing	Decreasing	No	No	
F6	No Trend	No Trend	No	No	

I.D Insufficient data to perform trend analysis

¹Soluble Fluoride exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2021

²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

6.2.4 Free Cyanide

Laboratory results for free cyanide in deep groundwater reported during 2021 are summarised in **Table 6-11** *Table 6-5*. Free cyanide concentrations exceeded the site ecological assessment criteria for 95% protection for aquatic ecosystems at W2D during June 2021, September 2021 and December 2021. All other wells targeting the deep aquifer reported free cyanide concentrations below the laboratory limit of reporting.

Table 6-11: Free Cyanic	le Concentrations –	Deep Aquifer
-------------------------	---------------------	--------------

Contaminant of Concern	Date	No. of Samples	Minimum Concentration (mg/L)	Maximum Concentration (mg/L)	No. Results Exceeding Criteria
Free Cyanide	March 2021	9	<0.004	0.005	0
	June 2021	9	<0.004	0.008	1 (95% Protection)
	September 2021	9	<0.004	0.011	1 (95% Protection)
	December 2021	9	<0.004	0.009	1 (95% Protection)

6.2.4.1 Time Series Trends

Comparison of free cyanide concentrations at W2D for twenty-eight GMEs completed between February 2015 and December 2021 are shown in **Figure 6-25**. Only concentrations at W2D have been graphed because all other concentrations have historically fallen below the laboratory limit of reporting. Free cyanide concentrations at W2D increased marginally from 0.005 mg/L in March 2021 to 0.009 mg/L in December 2021 but have remained consistently low overall since 2017.

Figure 6-25: Free Cyanide Concentration - Deep Aquifer, W2D

6.2.4.2 Mann-Kendall Trend Analysis

Data from February 2015 to December 2021 (28 sampling events) were included for the purpose of Mann-Kendall trend analysis of free cyanide, a summary is provided in **Table 6-12**.

Mann-Kendall trend analysis of free cyanide in the deep aquifer shows a 'stable' trend at all wells aside from the leachate impacted well W2D, which shows a 'decreasing' trend.

Table 6-12: Mann-Kendall Trend Analysis of Free Cyanide – Deep Aquifer

Well	Previous Trend 2013 to 2020	Current Trend 2013 to 2021	Free Cyanide >Assessment Criteria ¹	Leachate Impacted ²	
Section 1					
W2D	Decreasing	Decreasing	Yes	Yes	
E5D	Stable	Stable	No	No	
Section 2					
W1D	Stable	Stable	No	No	
Section 3					
W3D	Stable	Damaged	Damaged	Damaged	
W4D	Destroyed	Destroyed	Destroyed	Destroyed	
Section 4					
W5D	Stable	Stable	No	No	
N2	Stable	Stable	No	No	
Section 5					
G2	Stable	Stable	No	No	
W6D	Stable	Stable	No	No	
Sentinel					
G5	Stable	Stable	No	No	
F6	Stable	Stable	No	No	

I.D Insufficient data to perform trend analysis

¹Free cyanide exceeded the assessment criteria of either 95% Protection of Aquatic Ecosystems or Recreational during any GME completed in 2021
²Groundwater generally characteristic of leachate impact i.e., pH >9, brown in colour

7. HYDRO DATA

Hydro collect groundwater samples for analysis from the monitoring well network in between the Ramboll quarterly GMEs. Thirty-three (33) sampling events have been completed by Hydro between May 2014 and December 2021. Hydro personnel gauged the depth to water and collected groundwater samples for pH, conductivity, fluoride, and total cyanide.

Fluoride concentrations for wells sampled by Hydro are included in **Table 7-1** with a graphic representation provided in **Figure 7-1**.

Wells W2S and W7M have been dry for all sampling rounds. Wells W1S, W7S, W4S, W5S and W6S have been dry for the majority of sampling rounds. Fluoride concentrations have been most elevated in W2D. Elevated fluoride concentrations in wells W1S, W2D, W3S, W4S, W5S and W6S show impact from the leachate plume. Fluoride concentrations in wells W1D and E5D are also elevated but to a lesser extent. Fluoride concentrations in W6D were marginally above site assessment criteria (irrigation and recreation) during December 2017. The results from the Hydro sampling are similar to the results of the quarterly GMEs completed by Ramboll.

Table 7-1: Fluoride Concentrations in Wells Sampled by Hydro (mg/L)

Date	W1S	W1D	W2D	W7S	E5D	W3S	W4S	W5S	W6S	W6D
May 2014	70	8.9	840	39	39	410	610	180	-	-
June 2014	75	5.7	660	-	36	310	400	87	-	1.1
September 2014	79	3	1,200	-	15	270	460	110	-	0.7
December 2014	58	2	1,200	-	10	230	-	89	-	0.7
March 2014	-	2	1,200	-	10	230	-	-	-	< 0.5
June 2014	-	3.4	1,300	-	14	240	500	95	150	0.7
September 2015	-	2	1,300	-	7	220	-	77	-	< 0.5
December 2015	-	<5	1,100	-	9	180	-	8.3	-	< 0.5
March 2016	-	8.3	1,200	-	14	230	-	-	-	0.9
June 2016	-	3.7	1,600	-	< 0.5	160	-	-	-	< 0.5
September 2016	-	4.1	1,100	-	12	130	-	-	-	< 0.5
December 2016	-	7.5	1,400	-	15	-	-	-	-	< 0.5
March 2017	-	5.3	1,200	-	14	220	-	-	-	< 0.5
June 2017	-	4.5	1,300	-	18	140	-	-	-	< 0.5
September 2017	-	4.2	1,200	-	20	90	-	-	-	< 0.5
December 2017	-	6.7	1,600	-	200	1,100	-	-	-	1.7
March 2018	-	15.0	1,700	-	25	1,700	-	-	-	-
June 2018	-	6.4	2,200	-	30	120	-	-	-	-
September 2018	-	4.5	860	-	12	96	-	-	-	-
December 2018	-	4.3	1,100	-	10	87	-	-	-	-
March 2019	-	5.5	1,100	-	20	-	-	-	-	-
June 2019	-	5.2	1,500	-	10	120	-	-	-	-
September 2019	-	7.7	1,200	-	12	140	-	-	-	-
December 2019	-	4.8	1,200	-	7.3	-	-	-	-	-
March 2020	-	5.6	1,100	-	8.4	180	-	-	-	-

Date	W1S	W1D	W2D	W7S	E5D	W3S	W4S	W5S	W6S	W6D
June 2020	-	6.8	650	-	8.0	130	-	-	-	-
September 2020	-	12	910	-	17	33	-	-	-	-
December 2020	-	9.6	770	-	11	< 0.5	-	-	-	-
March 2021	-	11	780	-	15	28	-	-	-	-
June 2021	-	11	1100	-	11	270	-	-	-	-
September 2021	-	13	1100	-	15	150	-	-	-	-
December 2021	-	46	270*	-	8.5	220	-	-	-	-

⁻ Not sampled

^{*} Anomalous data, not included in graph

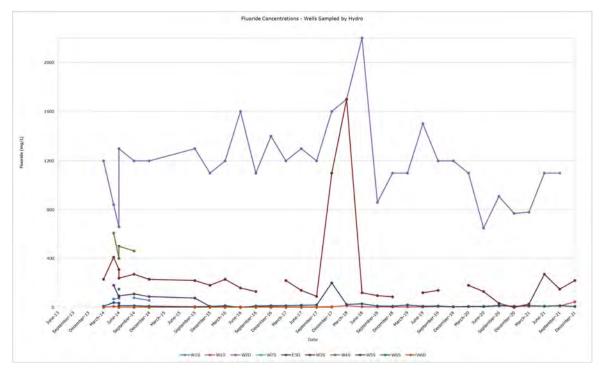


Figure 7-1: Fluoride Concentrations in Wells Sampled by Hydro

8. CONCLUSIONS AND RECOMMENDATIONS

Thirty-three GMEs have been completed within a leachate impacted groundwater plume associated with the CWS (AEC 1) at the former Hydro Aluminium Kurri Kurri Smelter. The four most recent events were completed in March, June, September, and December 2021.

Each GME included the sampling and analysis of groundwater from a network of 27 shallow and deep wells located on five sections along the length of the leachate plume down-gradient of the CWS. An additional pair of two shallow and deep wells were added to the network in 2016. These wells are located adjacent to Swamp Creek, the nearest surface water receptor. Physico-chemical parameters were recorded, and groundwater samples were collected and analysed for soluble fluoride, total and free cyanide as well as total and dissolved aluminium.

Evaluation of 2021 GME data has identified the following:

- The leachate plume in shallow groundwater is delineated to the north, with a decreasing trend in soluble fluoride concentrations in well N9 at the leading edge of the plume
- There are no changes in trend analysis for pH or soluble fluoride in the shallow aquifer compared to 2020 results that are indicative of the plume expanding. An increasing trend in soluble fluoride concentrations has been reported at well E4 on the eastern boundary of the leachate plume, which is constrained from further eastern migration at this location due to the geological constraints. In addition, soluble fluoride concentrations in leachate at this location on the eastern edge of the leachate plume have not increased significantly since monitoring commenced in 2013
- Consistent with previous monitoring, the leachate plume has impacted the deeper sand aquifer in a localised area close to the plume source, the CWS, as shown by elevated soluble fluoride concentrations and a high pH in well W2D. Concentrations at this well have been elevated over the monitoring period and there is no increasing trend observed, however there may be some expansion of impact to the east, towards W1D, with dark yellow to brown coloured groundwater observed and an increasing trend identified for both pH and soluble fluoride concentrations, although pH still remains below levels indicative of leachate impact.
- Consistent with previous monitoring, the leachate plume is not reaching the nearest surface water receptor of Swamp Creek, as indicated by continued low pH and low soluble fluoride concentrations in sentinel wells
- Leachate is currently only generated in limited quantities following heavy rainfall and removal of leachate from the northern interception trench is completed as required. Pumping of leachate from the active interception trench has not been required since 2016 due to the lack of leachate generation. Monitoring of groundwater and occasional pump out of passive leachate interception trenches is proposed to continue until remediation of the Capped Waste Stockpile is completed in 2023.

9. REFERENCES

ANZG (2018) Guidelines for Fresh and Marine Water Quality

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

ENVIRON (March 2013) Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter

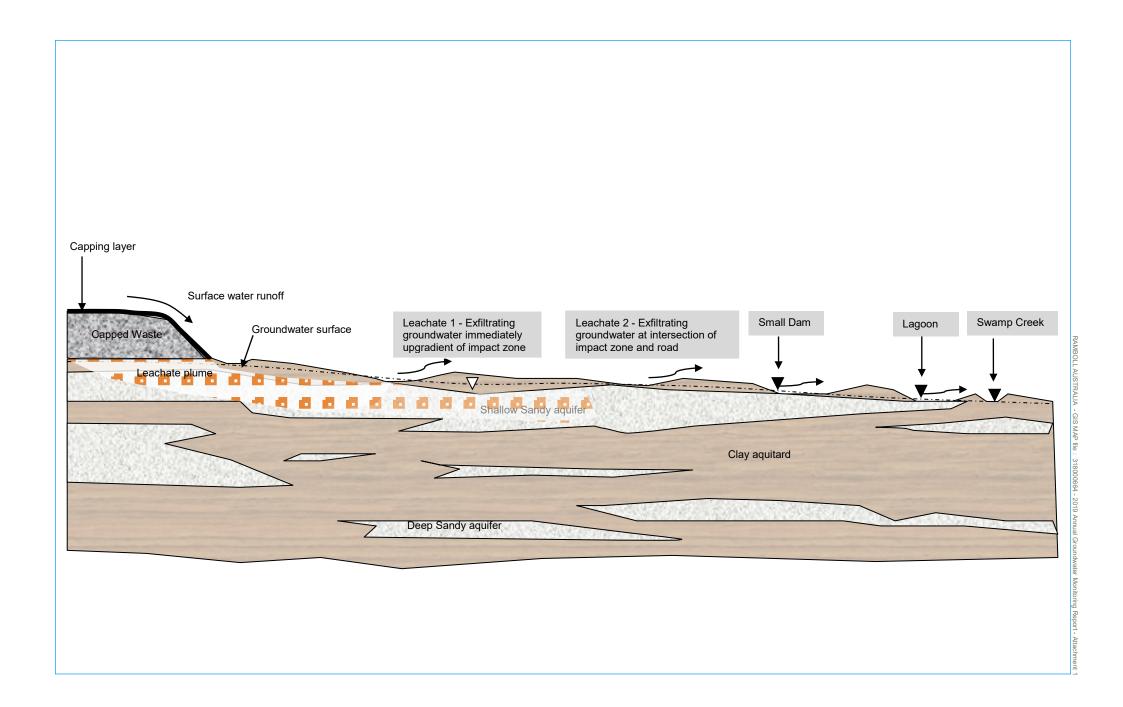
ENVIRON (February 2015) Groundwater Fate and Transport Modelling, Leachate Plume – Capped Waste Stockpile, Hydro Aluminium Smelter Kurri, NSW

ENVIRON (June 2016) Hydro Aluminium Kurri Kurri Smelter, Capped Waste Stockpile, 12 Month Groundwater Monitoring Report

ENVIRON (September 2016) Plume Delineation Report, Capped Waste Stockpile

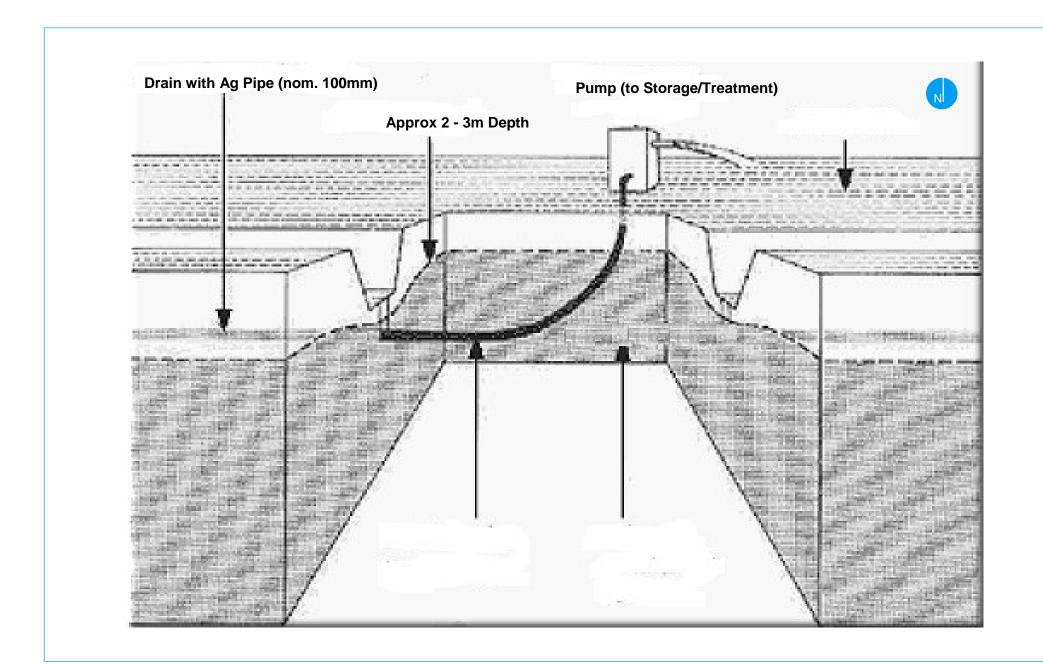

GSI (2012) Groundwater Services Inc., GSI Man-Kendall Toolkit for Constituent Trend Analysis, Version 1.0, November 2012

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination


Ramboll (April 2016) Hydro Aluminium Smelter, Capped Waste Stockpile, 2015 Annual Groundwater Monitoring Report

APPENDIX 1 FIGURES

Figure 1 | AEC 1: Site Location Plan, 2021 Annual Groundwater Monitoring Report



APPENDIX 2 ATTACHMENTS

Topographic Contours mAHD (based on 1m Lidar)

APPENDIX 3 2013-2021 GME HISTORICAL DATA

Table vi: Results Shallow Aquifer, Background

	-		

					Sample Type	#: 	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundw											
					Laboratory:		Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirol											
					Sample date	:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-1
					Sample ID:		W2S	W2S	W2S	W2S	W2S	W2S											
					Project Nam	e:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarte Groundy Monitor											
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kur											
	Ecosystems				Section:		Section 1	Section 1	Section 1	Section 1	Section 1	Section											
					Aquifer:		Shallow	Shallow	Shallow	Shallow	Shallow	Shall											
					SWL (m AHD)):	12.489	12.619	=	=	-	-	-	-	-	-	-	-	=	=	-	-	
					Aquifer: SWL (m AHD): Sample Descriptio	rintion:	Light brown	Clear	Dry	Dry	Dry	Dry	Turbid, brown,	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	D
					Sample Desc	i iption.	Eight brown	Cleal	ыу	ыу	Diy	2.9	purged dry				Di y	Dry	Diy	ыу	Diy	,	
e grouping/Anal	alyte				Units	LOR	Light brown	Cleal	Dry	Diy	Diy	5.9						J. J	Diy	Dry	Diy		
				5 . 0	Units					Dry		5.9						Jan 19		Diy	Diy		
d)	6.5-8°	1	2	5 - 9	Units PH units	LOR	7.33	6.82	-	- -	-	-	purged dry	-	-	-	-	- -	-	- -	-	-	
te grouping/Anal	6.5-8°	1	2	1.5	Units PH units mg/L	LOR - 0.1				-		-						- - -			-		
d) Fluoride anide		1	2		Units PH units	LOR	7.33	6.82 <u>58</u>	-	-	-	-	purged dry		-	-	-	- - - -	-	- - -	-	- - - -	
d) Fluoride	6.5-8°	1	2	1.5	Units PH units mg/L mg/L	LOR - 0.1 0.004	7.33	6.82 <u>58</u>	-	-	-	-	purged dry		- - -	-	-	- - - -	-	- - - -	-		

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

RAMBOLL

					Sample Type	9:	Groundwater	Groundwater	Groundwater	Groundwater													
	7				Laboratory:		Envirolab	Envirolab	Envirolab	Envirolab													
					Sample date):	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13
					Sample ID:		W2S	W2S	W2S	E5													
	95%				Project Nam	ne:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring													
	Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri													
	Ecosystems				Section:		Section 1	Section 1	Section 1	Section 1													
					Aquifer:		Shallow	Shallow	Shallow	Shallow													
					SWL (m AHI	0):	-			12.139						13.289	12.379	12.049	11.999	12.289	-	12.849	12.214
					Sample Desc	cription:	Dry	Dry	Dry	Clear, no odour	Dry	Dry	Dry	Dry	Dry	Clear, turbid	Turbid, pale yellow, no odour	Turbid, light brown, no odour	Turbid, light brown, no odour	Slightly turbid, pale yellow/grey, no odour	Insufficient water to sample	Turbid, pale yellow brown, no odour	Brown
Analyte grouping/Ana	llyte				Units	LOR																	
oH (field)	6.5-8°			5 - 9	pH units	-	_	-	-	7.47	_	-	_	-	_	6.74	6.73	6.97	7.19	7.32	-		9.54
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	<u>92</u>	-	-	-	-	-	<u>20</u>	<u>20</u>	<u>66</u>	<u>72</u>	<u>57</u>	-	<u>24</u>	495
ree Cyanide	0.007			0.1	mg/L	0.004	-	-	-	0.01	-	-	-	-	-	<0.004	<0.004	0.008	<0.004	0.005	-	<0.004	-
					mg/L	0.004		_	_	3.9	_	_	-	-	-	0.17	0.48	1.8	1.5	0.44	_	0.061	
Total Cyanide					IIIg/L	0.004																0.001	
Fotal Cyanide Aluminium (total)	0.055	5	5	9	mg/L	0.004	-	-	-	<u>37</u>	-	-	-	-	-	<u>18</u>	<u>19</u>	<u>31</u>	<u>43</u>	6.9	-	9.6	0.33

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

RAMBOLL

					Sample Type	:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwat
					Laboratory:		Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolat
					Sample date		Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	14-April-2017	Jun-17	Sep-17	Dec-17	Mar-18
					Sample ID:		E5	E5	E5	E5	E5	E5	E5	E5	E5	E5	E5	E5	E5	E5	E5	E5	E5
	059/				Project Name	e:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterl Groundwa Monitorir
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Ku Kurri
	Ecosystems				Section:		Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section
					Aquifer:		Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
					SWL (m AHD):	12.054	11.804	-	-	-	11.904	11.614	-	11.724	-	=	-	-	÷	=	-	-
					Sample Desc	ription:	Brown	Brown	Dry	Dry	Dry	Brown	Brown	Dry	Brown	Dry	Dry						
nalyte grouping/Analy	yte			•	Units	LOR			•	•	•	•	•			•			•			•	
(field)	6.5-8□			5 - 9	pH units	=	<u>9.37</u>	<u>9.78</u>	-	=	-	<u>9.14</u>	<u>9.42</u>	-	<u>9.48</u>	-	-	-	-	=	-	-	-
uble Fluoride		1	2	1.5	mg/L	0.1	<u>410</u>	<u>450</u>	-	-	-	<u>410</u>	<u>350</u>	-	<u>330</u>	-	-	-	-	÷	-	-	-
e Cyanide	0.007			0.1	mg/L	0.004	-	-	=	-	-	<u><0.8</u>	-	=	-	-	-	-	=	-	-	-	-
al Cyanide					mg/L	0.004	 	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
minium (total)	0.055	5	5	9	mg/L ma/L	0.01	0.52	2.5	-	-	-	3	-		-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater										
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab										
					Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13	Nov-13
					Sample ID:	E5	E5	E5	E5	E5	PUMP	PUMP										
					Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring										
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri										
	Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1										
					Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow										
					SWL (m AHD):	-	-	-	-	-	=	-	-	12.054	12.184	11.914	11.714	12.134	11.864	12.304	12.487	12.352
					Sample Description:	Dry	Slightly red/brown	Clear, yellow/brown, no odour	Clear to slightly turbid, brown, no odour	Slightly turbid, pale brown, no odour	Clear, dark brown, no odour	Clear, yellow brown, no odour	Clear, dark brown, no odour	Light brown	Light brown, cloudy							
nalyte grouping/Anal	yte			•	Units LOR		•			•		•										
oH (field)	6.5-8°			5 - 9	pH units -	-	-	-	-	=	-	-	-	8.79	<u>9.11</u>	<u>9.2</u>	8.89	<u>9.15</u>	<u>9.36</u>	<u>9.16</u>	7.45	7.24
Soluble Fluoride		1	2	1.5	mg/L 0.1	-	-	-	-	-	-	-	-	<u>220</u>	<u>250</u>	<u>300</u>	<u>300</u>	<u>310</u>	<u>230</u>	<u>320</u>	<u>79</u>	<u>51</u>
Soluble Fluoride Free Cyanide	0.007	1	2	1.5 0.1	mg/L 0.004	-	-	-	-	-	-	-	-	0.007	0.011	0.01	< 0.004	0.011	0.011	0.013	<u>79</u>	
	0.007	1	2	.	J	++	-	-	-	-	-	-		· —							<u>79</u> - - 58.1	<u>51</u>

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results

RAMBOLL Shallow Aquifer, Background

					Sample Type:	Groundwater	Groundwater															
					Laboratory:	Envirolab	Envirolab															
					Sample date:	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18
					Sample ID:	PUMP	PUMP															
					Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwate Monitoring															
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri															
	Ecosystems				Section:	Section 1	Section 1															
					Aquifer:	Shallow	Shallow															
					SWL (m AHD):	11.862	11.042	11.312	11.262	11.952	11.702	11.652	11.932	11.842	11.842	11.662	11.542	11.742	11.572	11.412	11.302	11.772
					Sample Description:	Brown, murky, light brown	Brown, no odour	Brown, turbid, some odour	Light brown, no odour	Light brown	Very turbid, brown	-	Brown, turbid	Very turbid, brown	-	Milky	Brown	Brown	Milky brown	Brown	Turbid, brown	Light brown no odour
ouping/Anal	lyte		•		Units LOR		•	•	•	•		•	•	•	•		•	•				
																						-

pH (field)	6.5-8ª			5 - 9	pH units	=	<u>9.65</u>	<u>10.14</u>	<u>10.01</u>	<u>9.95</u>	<u>9.87</u>	<u>10.22</u>	<u>10.27</u>	<u>10.13</u>	<u>10.22</u>	<u>9.98</u>	<u>9.72</u>	<u>9.56</u>	<u>9.2</u>	<u>9.9</u>	<u>9.6</u>	<u>9.73</u>	<u>9.17</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>280</u>	<u>550</u>	<u>930</u>	<u>740</u>	<u>200</u>	<u>680</u>	<u>360</u>	<u>570</u>	<u>280</u>	<u>85</u>	<u>88</u>	<u>210</u>	<u>60</u>	<u>180</u>	<u>160</u>	<u>220</u>	<u>62</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	0.021	<0.08	0.029	0.1	0.01	0.018	< 0.004	0.006	0.006	< 0.004	< 0.005	0.009	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	4.1
Aluminium (total)	0.055	E	E	0	mg/L	0.01	<u>17</u>	-	<u>310</u>	<u>370</u>	<u>120</u>	<u>610</u>	<u>97</u>	<u>280</u>	<u>93</u>	<u>90</u>	<u>120</u>	<u>740</u>	<u>39</u>	<u>160</u>	<u>45</u>	<u>82</u>	<u>46</u>
Aluminium (dissolved)	0.055	3	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.09
																							ĺ

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results

Shallow Aquifer, Background

					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
					Sample date:	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13	Nov-13	Feb-14
					Sample ID:	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	W7S	W7S	W7S
	95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
	Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
	Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
					Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
					SWL (m AHD):	11.572	11.522	11.422	11.502	11.432	11.302	11.662	13.362	12.422	12.402	12.152	12.602	12.212	12.852	12.614	12.969	-
					Sample Description:	Light brown/grey, hydrogen sulfide odour	Clear to slightly brown, no odour	Slightly brown, slight sulphidic odour	Slightly turbid, clear, no odour	Brown/grey, sulphidic odour	Turbid, slightly brown	Yellow/brown, turbid	Clear, no odour	Turbid, yellow, no odour	Slightly turbid, light brown, no odour	Turbid, pale black/grey/br own, strong odour	Slightly turbid, some flocculants, pale grey, no odour	Slightly turbid, pale grey, no odour	Clear, colourless, no odour	Cloudy/turbid	Light brown, cloudy sediment	Dry
Analyte grouping/Analy	te				Units LOR																	

pH (field)	6.5-8°			5 - 9	pH units	-	<u>13.68</u>	<u>9.55</u>	<u>9.42</u>	<u>9.43</u>	<u>9.89</u>	<u>9.93</u>	7.2	<u>9.59</u>	7.4	6.88	7.9	6.61	8.32	6.91	7.29	7.1	-
Soluble Fluoride		1	2	1.5	mg/L	0.1		<u>250</u>	<u>370</u>	<u>140</u>	<u>400</u>	<u>530</u>	<u>30</u>	<u>17</u>	<u>21</u>	<u>22</u>	<u>24</u>	<u>17</u>	<u>26</u>	<u>17</u>	<u>34</u>	<u>31</u>	-
Free Cyanide	0.007			0.1	mg/L	0.004	0.01	0.009	< 0.004	< 0.004	0.014	0.007	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	=	=	=
Total Cyanide					mg/L	0.004	44	14	21	9.8	35	57	0.31	0.009	0.077	0.23	0.23	0.056	0.068	0.012	-	-	-
Aluminium (total)	0.055	E	-	0	mg/L	0.01	<u>23</u>	5.4	<u>9.3</u>	<u>38</u>	<u>93</u>	<u>77</u>	<u>49</u>	3.2	6.1	<u>12</u>	<u>23</u>	<u>12</u>	<u>18</u>	4.1	<u>415</u>	<u>42</u>	-
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	0.46	1.9	1.3	4.3	0.86	2.9	<u>17</u>	0.44	0.76	1.9	<u>15.00</u>	6.40	<u>11.00</u>	2.10	-	-	-
·																							

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results

RAMBOLL Shallow Aquifer, Background

					Sample Type	:	Groundwater	Groundwater															
					Laboratory:		Envirolab	Envirolab															
					Sample date:		Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18
					Sample ID:		W7S	W7S															
					Project Name	e:	Quarterly Groundwater Monitoring	Quarterly Groundwate Monitoring															
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurr Kurri															
	Ecosystems				Section:		Section 1	Section 1															
					Aquifer:		Shallow	Shallow															
					SWL (m AHD):	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					Sample Desc	ription:	Dry	Purge dry	Dry	Dry	Dry	Dry											
nalyte grouping/Analy	rte				Units	LOR		<u> </u>		<u> </u>								<u> </u>	<u> </u>				
H (field)	6.5-8°			5 - 9	pH units	_	-	_	_	-	-	-	-	_	_	-	-	-	-	-	_	-	_
ioluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ree Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
otal Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
luminium (total)	0.055	5	5	o	mg/L	0.01	<u>210</u>	-	-	9	-	-	-	-	-	-	-	-	=	-	=	=	-
luminium (dissolved)	0.000	3	,	7	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
											1	1	1										

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

RAMBOLL

					Sample Type	. 1	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Craundwater	Groundwater	Groundwater	Groundwater	Groundwater	Croundwater	Groundwate
	-					e:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
	+				Laboratory:																		
	4				Sample date	::	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13	Nov-13	Feb-14	Jul-14
					Sample ID:		W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7S	W7M	W7M	W7M	W7M
					Project Nam		Quarterly Groundwater	Quarterly Groundwater	Quarterly Groundwater	Quarterly Groundwater	Quarterly Groundwater	Quarterly	Quarterly	Quarterly Groundwater	Quarterly Groundwater	Quarterly	Quarterly Groundwater	Quarterly	Quarterly Groundwater	Quarterly	Quarterly Groundwater	Quarterly	Quarterly
					Project Nam	ie:	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Groundwater Monitoring	Groundwater Monitoring	Monitoring	Monitoring	Groundwater Monitoring	Monitoring	Groundwater Monitoring	Monitoring	Groundwater Monitoring	Monitoring	Groundwater Monitoring	Groundwate Monitoring
	95%						3	Ŭ	J	J			Ŭ.	J.		, , , , , , , , , , , , , , , , , , ,	, ,	,	3	J	Ŭ		
	Protection of	Irrigation	Stock	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kuri Kurri					
	Aquatic Ecosystems		Watering				Kuiti	Kuiii	Kuiti	Kuiti	Kuiti	Kuiti	Kuiii	Kuiii	Kuiii	Kuiii	Kuiii	Kuiii	Kuiii	Kuiii	Kuiii	Kuiti	Kuiii
	Locayatama				Section:		Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1					
					Aquifer:		Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
					SWL (m AHI	0):	-	-	-	-	-	-	13.019	12.369	-	-	12.229	11.979	12.219	12.218	12.138	11.568	10.958
					Sample Desc	cription:	Dry	Dry	Dry	Dry	Dry	Dry	Clear, no odour	Turbid, yellow/brown, no odour	Dry	Dry	Very turbid, pale brown, no odour	Dry	Very turbid, pale brown, no odour	Light brown	Brown	Brown, dark, sulphur smell	Brown, no odour
nalyte grouping/Anal	lyte				Units	LOR	-																
H (field)	6.5-8°			5 - 9	pH units	-	-	-	-	-	-	-	8.08	7.61	-	-	7.24	-	7.01	<u>9.81</u>	<u>9.87</u>	<u>10.1</u>	<u>10.12</u>
oluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	<u>17</u>	<u>22</u>	-		24	-	<u>33</u>	<u>878</u>	<u>650</u>	<u>730</u>	-
ree Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	-	-	< 0.004	<0.004	-	-	< 0.004	-	< 0.004	-	-	-	-
otal Cyanide					mg/L	0.004	=	=	=	=	-	=	0.08	1.1	=	=	1.2	=	1	=	=	=	-
luminium (total)	0.055	-	E	0	mg/L	0.01	-	-	-	-	-	-	5.9	<u>65</u>	-	-	<u>410</u>	-	<u>86</u>	<u>11.4</u>	2.3	<u>45</u>	
luminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	2.1	0.55	-	-	<u>20</u>	-	<u>9.1</u>	-	-	-	-

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results

RAMBOLL Shallow Aquifer, Background

					Sample Type	e:	Groundwater																
					Laboratory:		Envirolab																
					Sample date	:	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18
					Sample ID:		W7M																
					Project Nam	ne:	Quarterly Groundwater Monitoring																
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri																
	Ecosystems				Section:		Section 1																
					Aquifer:		Shallow																
					SWL (m AHI	0):	11.088	10.918	11.938	11.608	11.518	11.668	11.578	11.568	11.388	11.278	11.458	11.298	11.128	11.018	11.478	11.298	11.268
					Sample Desc	cription:	Brown, turbid, some odour		Brown	Brown	-	Brown	-	Brown	-	Brown	Brown	Brown	Tea brown	Tea brown	Turbid, light brown, no odour	Turbid, brown, no odour	Slightly brown, slight odour
Analyte grouping/Anal	lyte				Units	LOR			•	•													
pH (field)	6.5-8ª			5 - 9	pH units	=	<u>9.78</u>	<u>9.44</u>	<u>9.82</u>	<u>9.91</u>	<u>9.7</u>	<u>9.99</u>	<u>9.95</u>	<u>10.17</u>	<u>9.68</u>	<u>9.61</u>	<u>10.1</u>	<u>9.8</u>	<u>9.6</u>	<u>9.61</u>	<u>9.7</u>	<u>13.24</u>	<u>9.63</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>910</u>	<u>840</u>	<u>810</u>	<u>670</u>	<u>540</u>	<u>640</u>	<u>870</u>	<u>1100</u>	<u>1000</u>	<u>220</u>	<u>750</u>	<u>760</u>	<u>780</u>	<u>770</u>	<u>810</u>	<u>860</u>	<u>820</u>
Free Cyanide	0.007			0.1	mg/L	0.004		0.02	<u><2</u>	<u><0.4</u>	<u>0.21</u>	0.013	0.072	-	0.007	0.09	0.007	0.005	0.006	< 0.004	0.008	0.017	0.007
Total Cyanide					mg/L	0.004	-	-	-	=	-	-	=	-	=	-	-	-	-	140	190	160	130
Aluminium (total)	0.055	5	5	0	mg/L	0.01	<u>21</u>	0.99	<u>32</u>	8.7	7.8	4.4	0.08	6.2	<u>11</u>	3.4	1.3	1.2	3.6	<u>10</u>	0.76	6.6	0.31
Aluminium (dissolved)	0.055	5		9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.16	0.14	0.22

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

					Sample Type	e:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
					Laboratory:		Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
					Sample date	::	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
-					Sample ID:		W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M	W7M
	a-				Project Nam	e:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
	95% Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
	Ecosystems				Section:		Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
					Aquifer:		Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
					SWL (m AHI)):	11.138	11.228	11.158	11.068	11.348	12.148	12.188	11.858	11.698	12.128	11.848	12.518
					Sample Desc	cription:	Slightly brown	Brown, no odour	Brown/red, slightly sulphidic odour	Slightly brown	Slightly red/brown, no odour	Clear, no odour	Clear to slightly turbid, brown, no odour	Slightly turbid, brown, no odour	Slightly turbid, dark brown, strong odour	Slightly turbid, dark brown, no odour	Clear, dark yellow, no odour	Slightly turbid, pale yellow brown, no odour
Analyte grouping/Anal	yte				Units	LOR												
pH (field)	6.5-8°			5 - 9	pH units	-	<u>9.68</u>	<u>9.65</u>	<u>9.73</u>	<u>9.75</u>	<u>9.67</u>	<u>8.97</u>	<u>9.1</u>	<u>9.28</u>	<u>9.47</u>	<u>9.86</u>	<u>9.42</u>	<u>9.44</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>990</u>	<u>750</u>	<u>800</u>	<u>830</u>	<u>810</u>	<u>440</u>	<u>290</u>	<u>580</u>	<u>630</u>	<u>490</u>	<u>350</u>	<u>360</u>
Free Cyanide	0.007			0.1	mg/L	0.004	0.006	< 0.004	0.006	0.009	0.006	<0.004	0.019	0.009	0.005	0.006	0.013	0.008
Total Cyanide	-				mg/L	0.004	150	130	160	160	130	34	28	30	75	48	25	16
Aluminium (total)	0.055	5	5	9	mg/L	0.01	7.5	1.5	2	<u>10</u>	0.74	2.8	<u>11</u>	<u>11</u>	2.1	8.1	2.3	6.8
Aluminium (dissolved)	0.033	9	3	,	mg/L	0.01	0.28	0.30	0.30	0.27	0.39	0.83	2.60	0.76	0.35	0.51	0.36	0.37

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Shallow Aquifer, Background

Units

LOR

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W1S																
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 2																
				Aquifer:	Shallow																
				SWL (m AHD):	11.887	11.977	11.367	11.277	-	11.217	11.527	11.207	11.317	11.297	-	-	-	-	-	-	-
				Sample Description:	Brown	Brown	Brown, cloudy, sulphur odour	Dark brown	Dry	Brown, no odour	Dark brown, turbid	Brown		Brown	Dry						

pH (field)	6.5-8ª			5 - 9	pH units	=	7.22	7.17	6.84	6.9	=	6.66	6.83	6.86	=	7.21	=	=	=	=	=	-	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>53</u>	<u>69</u>	<u>42</u>	-	-	<u>66</u>	<u>120</u>	<u>38</u>	-	<u>39</u>	-	-	-	-	-	-	-
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	-	0.004	<u><4</u>	-	-	-	-	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	E	-	0	mg/L	0.01	<u>121</u>	<u>130</u>	<u>27</u>	-	-	<u>120</u>	<u>1200</u>	-	-	<u>15</u>	-	-	-	-	-	-	i -
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																							i

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Units

LOR

Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13
				Sample ID:	W1S	E4															
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 2																
				Aquifer:	Shallow																
				SWL (m AHD):	-	-	-	-	-	-	-	-	-	10.857	11.487	11.077	11.377	11.417	11.297	11.477	11.93
				Sample Description:	Dry	Turbid, yellow, no odour	Red/brown, sulphidic odour	Turbid, yellow brown, no odour	Turbid, dark yellow, no odour	Turbid, yellow brown, no odour	Turbid, yellow brown, no odour	Brown									

																						1	
pH (field)	6.5-8ª			5 - 9	pH units	-	=	-	=	-	=	-	-	-	-	-	7.89	8.24	7.55	7.99	8.11	7.61	<u>9.91</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	-	-	-	-	-	-	<u>17</u>	<u>17</u>	<u>17</u>	<u>14</u>	<u>14</u>	<u>13</u>	<u>699</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	-	-	-	-	-	-	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	ı -
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	0.71	0.7	0.44	0.45	0.18	0.35	-
Aluminium (total)	0.055	-	-	0	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	3.2	7	7.6	<u>56</u>	4.7	2.1	0.379
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	0.3	0.14	0.12	0.22	0.11	0.07	· -
																				,	1	i	1

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Shallow Aquifer, Background

					Sample Type:	Groundwater																
					Laboratory:	Envirolab																
					Sample date:	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18
					Sample ID:	E4																
					Project Name:	Quarterly Groundwater Monitoring																
Prote Ac	95% ection of quatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecos	systems				Section:	Section 2																
					Aquifer:	Shallow																
					SWL (m AHD):	12.09	10.33	11.51	11.28	11.31	12.07	11.65	11.5	11.44	11.39	11.38	11.11	11.11	-	11.01	10.81	10.83
					Sample Description:	Brown, sulphur smell	Brown	Dark brown, no odour	Strong sulphur odour, dark	Brown/orange , no odour	Brown	Dark brown, turbid		Brown	Brown	Turbid, brown	Tea colour	Tea brown	Dry	Milky brown	Dark brown	Brown

Analyte grouping/Analyte Units LOR

pH (field)	6.5-80			5 - 9	pH units	-	<u>9.79</u>	<u>9.94</u>	<u>9.84</u>	<u>9.4</u>	8.84	<u>9.46</u>	<u>9.62</u>	<u>10.57</u>	<u>9.73</u>	<u>9.83</u>	<u>9.94</u>	<u>9.53</u>	<u>9.53</u>	-	<u>9.59</u>	<u>9.46</u>	<u>9.32</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>650</u>	<u>650</u>	<u>590</u>	<u>380</u>	<u>340</u>	<u> 260</u>	<u>280</u>	<u>300</u>	<u>330</u>	<u>570</u>	<u>550</u>	<u>450</u>	<u>670</u>	-	<u>380</u>	<u>380</u>	<u>410</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	< 0.004	< 0.4	<0.04	0.032	0.004	0.049	0.045	< 0.004	0.029	-	0.008	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	61
Aluminium (total)	0.055	F	_	0	mg/L	0.01	0.89	0.4	3.2	<u>35</u>	<u>46</u>	<u>49</u>	<u>53</u>	<u>18</u>	<u>14</u>	<u>9.9</u>	2.6	<u>36</u>	<u>12</u>	-	<u>32</u>	<u>37</u>	<u>37</u>
Aluminium (dissolved)	0.055	5	5	1	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

RAMBOLL

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
				Sample ID:	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4	E4
9504				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
 95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	11.33	11.12	11.06	10.84	11	9.94	10.77	11.4	11.03	11.93	11.65	12.64	11.92	11.61	12.31
				Sample Description:	Brown/orange , strong hydrogen sulfide odour	Turbid, slightly brown/yellow	Slightly brown, no odour	Slightly brown, slight sulphidic odour	Slightly yellow, sulphidic odour	Brown, sulphidic odour	Clear to slightly grey	Yellow/brown	Red/brown, no odour	Clear to slightly turbid, orange/brown , slight unknown	brown/red,	Clear, brown, slight odour	Turbid, brown, no odour	Very turbid, dark brown, no odour	Slightly turbid, yellow brown, sulphidic odour

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8ª			5 - 9	pH units	-	<u>9.62</u>	<u>9.29</u>	<u>9.27</u>	<u>9.47</u>	<u>9.56</u>	<u>9.58</u>	<u>9.67</u>	<u>9.65</u>	<u>9.73</u>	<u>9.87</u>	<u>10.64</u>	<u>9.56</u>	<u>9.91</u>	<u>10.1</u>	<u>9.89</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>350</u>	<u>380</u>	<u>410</u>	<u>530</u>	<u>490</u>	<u>530</u>	<u>590</u>	<u>560</u>	<u>690</u>	<u>560</u>	<u>680</u>	<u>610</u>	<u>760</u>	<u>570</u>	<u>680</u>
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	0.006	<0.004	< 0.004	< 0.004	0.006	0.004	< 0.004	< 0.004	< 0.004	0.008	0.006	0.008	0.008
Total Cyanide					mg/L	0.004	69	41	48	57	74	130	130	110	160	190	1.8	89	120	47	81
Aluminium (total)	0.055	-	-	0	mg/L	0.01	<u>13</u>	<u>22</u>	1.7	5.2	1.3	0.98	1.8	<u>14</u>	0.5	0.55	0.44	0.65	<u>9.4</u>	<u>70</u>	0.49
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	1	0.42	0.8	1.1	0.25	0.83	0.45	0.79	0.36	0.46	0.28	0.38	0.45	0.53	0.29

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

ole vi: Results	RAMBOLL
quifer, Background	

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	10.279	10.599	9.809	10.059	9.919	10.019	10.489	10.219	10.009	9.999	9.939	9.859	9.699	9.799	9.969	9.669	9.579
				Sample Description:	Brown	Brown	Brown	Brown, strong organic material odour	Brown/orange , slightly turbid, slight odour	Dark orange/brown , no odour	Brown	Brown	-	Brown	Brown	Turbid, brown	Brown	Tea brown	Tea brown	Tea brown, foul smell	Tea brown, smelly

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8ª			5 - 9	pH units	-	<u>9.63</u>	<u>9.47</u>	<u>9.67</u>	<u>9.66</u>	<u>9.24</u>	8.56	<u>9.45</u>	<u>9.8</u>	<u>10.71</u>	<u>9.75</u>	<u>9.37</u>	<u>9.57</u>	<u>9.15</u>	<u>9.12</u>	<u>9.49</u>	2.65	<u>9.27</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>436</u>	<u>420</u>	<u>410</u>	<u>380</u>	<u>410</u>	<u>550</u>	<u>500</u>	<u>400</u>	<u>320</u>	<u>330</u>	<u>320</u>	<u>360</u>	<u>380</u>	<u>500</u>	<u>400</u>	<u>390</u>	<u>400</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	-	<u>11</u>	<u><2</u>	<0.020	<u>0.19</u>	< 0.004	0.026	0.032	< 0.004	0.039	< 0.004	< 0.005	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	-	-	0	mg/L	0.01	0.208	4.7	0.7	0.26	0.71	1.7	2.7	0.61	0.72	<u>14</u>	2.9	2.1	3	<u>25</u>	3.7	5.9	4.1
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13
				Sample ID:	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	A7	W3S
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	9.629	9.999	9.819	9.989	9.609	9.689	9.819	9.569	10.029	10.149	10.369	10.259	10.969	10.419	10.249	10.649	-
				Sample Description:	Tea brown	Dark brown/orange , very strong hydrogen	Slightly brown/yellow, 'rotten egg' odour	Brown, sulphidic odour	Slightly brown, sulphidic odour	Slightly brown, sulphidic odour	Brown sulphidic odour	Slightly red/brown, sulphidic odour	Slightly red/brown, sulphidic odour	Slightly brown, sulphidic odour	Clear, brow, strong 'rotten eggs' odour	,	Clear, brown, strong odour	Clear to slightly turbid, dark yellow/brown, slight odour	Slightly turbid, dark brown, strong odour	Clear to slightly turbid, dark brown, sulphidic	Light brown

Analyte grouping/Analyte Units LOR

pH (field)	6.5-80			5 - 9	pH units	-	8.96	<u>9.36</u>	<u>9.75</u>	<u>9.06</u>	<u>9.38</u>	<u>9.4</u>	<u>9.39</u>	<u>9.48</u>	<u>9.46</u>	<u>9.4</u>	<u>9.6</u>	<u>9.85</u>	<u>9.26</u>	<u>9.36</u>	<u>9.73</u>	<u>9.46</u>	8.53
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>190</u>	<u>390</u>	<u>450</u>	<u>410</u>	<u>600</u>	<u>480</u>	<u>480</u>	<u>520</u>	<u>410</u>	<u>470</u>	<u>370</u>	<u>500</u>	<u>380</u>	<u>110</u>	<u>370</u>	<u>360</u>	<u>237</u>
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	0.007	0.009	< 0.004	< 0.004	< 0.004	< 0.004	0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.005	< 0.004	0.005	< 0.004	-
Total Cyanide					mg/L	0.004	15	87	80	54	100	82	88	90	64	86	81	1.8	43	9.2	20	18	-
Aluminium (total)	0.055	-	-	0	mg/L	0.01	8.9	<u>24</u>	4.4	1	0.44	0.5	0.4	0.33	0.46	0.37	0.4	0.87	0.31	0.16	1	0.28	<u>11.7</u>
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	0.37	0.2	0.25	0.19	0.16	0.21	0.28	0.25	0.21	0.22	0.23	0.21	0.11	0.23	0.15	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18
				Sample ID:	W3S																
250/				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
Ecosystems				Section:	Section 3																
				Aquifer:	Shallow																
				SWL (m AHD):	10.312	9.282	9.832	9.552	9.902	10.292	10.052	9.632	9.622	9.762	9.602	7.182	9.702	9.902	8.982	8.912	9.582
				Sample Description:	Brown	Light brown	Clear to brown, no odour	Brown/orange , no odour	Brown/orange , no odour	Brown	Light brown, slightly turbid	-	Brown	Turbid, brown	Turbid, brown	Brown	-	Tea brown	Brown	Purge dry	Milky brown

Analyte grouping/Analyte Units LOR

pH (field)	6.5-80			5 - 9	pH units	-	8.82	7.61	8.89	7.68	6.38	7.53	7.53		7.46	7.02	7.01	6.4	7.4	7.66	7	6.99	7.19
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>310</u>	<u>210</u>	<u>270</u>	<u>210</u>	<u>250</u>	<u>230</u>	<u>200</u>	<u>160</u>	<u>190</u>	<u>170</u>	<u>150</u>	<u>110</u>	<u>180</u>	<u>62</u>	<u>99</u>	-	<u>180</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	< 0.004	<u><0.4</u>	< 0.02	0.023	0.007	0.005	0.014	< 0.004	0.007	< 0.004	< 0.005	-	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	=	20
Aluminium (total)	0.055	-	F	0	mg/L	0.01	2.6	7.1	<u>9.2</u>	5.3	<u>34</u>	4.4	<u>24</u>	<u>92</u>	<u>15</u>	6.9	<u>21</u>	<u>90</u>	<u>48</u>	<u>15</u>	<u>110</u>	-	<u>80</u>
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001103 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2021 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 01-02-22 Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13	Nov-13
				Sample ID:	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W3S	W4S	W4S
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
Ecosystems				Section:	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3	Section 3				
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	9.872	9.522	9.902	-	9.122	9.752	-	9.872	10.022	9.952	9.702	10.242	10.082	9.772	10.182	-	9.934
				Sample Description:	Turbid, brown	Turbid, brown, no odour	Slightly brown, no odour	Turbid, pale brown, silty	Clear to yellow, slightly turbid, cloudy	Slightly brown	Insufficient water for sampling	Slightly brown/red	Clear, slightly red/brown	Clear to slightly turbid, brown, no odour	Red/brown, no odour	Turbid, yellow/brown, no odour	Clear to slightly turbid, yellow brown, no odour		Clear, dark yellow brown, no odour	Dry	Brown

RAMBOLL

LOR Analyte grouping/Analyte Units

	6.5-8a			5 - 9	pH units	-	6.91	7.14	6.8	-	7.01	7.7	-	7.21	7.29	7.28	7.59	7.14	7.57	7.53	7.58	-	<u>9.13</u>
oluble Fluoride		1	2	1.5	mg/L	0.1	<u>120</u>	<u>96</u>	<u>100</u>	-	<u>90</u>	<u>170</u>	-	<u>150</u>	<u>150</u>	<u>97</u>	<u>100</u>	<u>130</u>	<u>130</u>	<u>110</u>	<u>230</u>	-	<u>480</u>
ree Cyanide	0.007			0.1	mg/L	0.004	0.007	0.004	0.008	-	< 0.004	0.013	-	0.016	0.005	0.011	< 0.004	0.028	0.016	< 0.004	0.033	-	-
otal Cyanide					mg/L	0.004	24	14	15	-	15	20	-	26	18	9.3	14	13	17	12	14	-	-
luminium (total)	0.055	-	-		mg/L	0.01	<u>16</u>	<u>23</u>	<u>21</u>	-	<u>33</u>	3.8	-	<u>26</u>	3.1	8.2	<u>29</u>	8.7	4	3.1	0.73	-	3.6
luminium (dissolved)	0.055	5	5	9	mg/L	0.01	1.3	1.1	3.2	-	3.3	0.79	-	4.1	1.2	4.4	3.5	2.5	0.58	0.62	0.3	-	-

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

-					Sample Type:	Groundwater																
					Laboratory:	Envirolab																
					Sample date:	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18
					Sample ID:	W4S																
					Project Name:	Quarterly Groundwater Monitoring																
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
	Ecosystems				Section:	Section 3																
					Aquifer:	Shallow																
					SWL (m AHD):	-	-	-	-	9.739	9.729	-	-	9.719	-	-	-	-	-	-	-	9.759
					Sample Description:	Dry	Dry	Dry	Dry	Brown	Dark brown	Dry	Dry	Slightly turbid, brown	Dry	Dark brown, orange odour						

RAMBOLL

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8ª			5 - 9	pH units	-	-	-	-	-	<u>9.13</u>	<u>9.07</u>	-	-	5.11	-	-	-	-	-	-	-	8.26
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	-	-	<u>490</u>	<u>400</u>	-	-	-	-	-	-	-	-	-	-	<u>160</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	<u><4</u>	<u><40</u>	-	-	-	-	-	-	-	-	-	-	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12
Aluminium (total)	0.055	-	E	0	mg/L	0.01	-	-	-	-	2.3	<u>13</u>	-	-	-	-	-	-	-	-	-	-	<u>71</u>
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.38

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

					Sample Type:		Groundwater	Groundwater	Groundwater	Groundwater										
					Laboratory:		Envirolab	Envirolab	Envirolab	Envirolab										
					Sample date:		Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
					Sample ID:		W4S	W4S	W4S	W4S										
	2504				Project Name:		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring										
	95% Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri										
	Ecosystems				Section:		Section 3	Section 3	Section 3	Section 3										
					Aquifer:		Shallow	Shallow	Shallow	Shallow										
					SWL (m AHD):		-	=	-	-	-	-	9.599	10.029		10.629	9.789	9.739	-	-
					Sample Descrip	ption:	Dry	Slightly red/brown	Purge dry	Dry, mud at base of well	Very turbid, brown, organic odour	Very turbid, grey/black/br own, organic odour		Insufficient water to sample						
Analyte grouping/Ana	alyte				Units	LOR														
pH (field)	6.5-8°			5 - 9	pH units	-	_	_	-	_	-	_	-	8.32	-	-	7.58	7.91	_	_
Soluble Fluoride		1	2	1.5	mg/L	0.1	-	-	=	-	-	-	-	<u>76</u>	-	-	<u>81</u>	<u>120</u>	-	-
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	=	-	-	-	-	<0.004	-	-	< 0.004	< 0.004	-	-
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	2.1	-	-	2.2	1.7	-	-
Aluminium (total)	0.055	F	F	0	mg/L	0.01	-	-	-	-	-	-	-	<u>19</u>	-	-	<u>63</u>	<u>170</u>	-	-
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	5.4	-	-	<u>24</u>	2.3	-	-
		+	1	+			1	1	+	1	+	1	+			+				

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001103 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2021 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 01-02-22 Table vi: Results Shallow Aquifer, Background

Units

LOR

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	8.06	7.735	7.48	7.72	7.67	7.54	8.7	8.15	7.9	7.94	7.64	7.55	7.41	7.4	7.56	7.33	7.2
				Sample Description:	Clear/light brown	Cloudy, brown	Light brown	Brown, slightly turbid, sulphidic odour	Dark grey, turbid, no odour	Brown/orange , slight sulphidic odour	Brown	-	-	Clear to light brown, turbid	Turbid, brown	Turbid, brown	Grey	Brown	Brown	Milky	Brown

RAMBOLL

pH (field)	6.5-8°			5 - 9	pH units	-	<u>9.36</u>	<u>9.36</u>	<u>9.33</u>	9.41	<u>9.32</u>	8.86	7.97	<u>9.23</u>	8.65	<u>9.2</u>	<u>9.29</u>	9.41	<u>9.1</u>	8.7	<u>9.07</u>	3.51	8.83
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>102</u>	<u>160</u>	<u>190</u>	<u>160</u>	<u>150</u>	<u>230</u>	<u>7.4</u>	<u>110</u>	<u>96</u>	<u>120</u>	<u>120</u>	<u>130</u>	<u>200</u>	<u>230</u>	<u>99</u>	<u>130</u>	<u>110</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	-	0.005	< 0.004	< 0.004	0.033	<0.004	0.009	0.016	0.004	0.015	< 0.004	<0.005	<0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-
Aluminium (total)	0.055	-	-	0	mg/L	0.01	<u>23</u>	<u>23</u>	4	7.8	3.6	5	2.5	<u>11</u>	2.7	7.6	<u>23</u>	<u>22</u>	<u>15</u>	<u>89</u>	5.6	<u>120</u>	<u>49</u>
Aluminium (dissolved)	0.055	э	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Units

LOR

Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13
				Sample ID:	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	E11	W5S
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	7.11	7.56	7.4	7.46	7.25	7.29	7.34	7.18	7.65	7.68	7.97	7.86	7.76	8.1	7.88	8.45	9.188
				Sample Description:	Yellow	Light brown, hydrogen sulfide odour	Slightly brown	Clear, no odour	-	Clear, sulphidic odour	Clear, slightly turbid	Clear, sulphidic odour	-	Clear, slight sulphidic odour	Clear, yellow/brown, no odour	Clear to slightly turbid, light brown, no odour	Low turbid, pale yellow, strong odour	Very turbid	Turbid, pale yellow brown, slight odour	Turbid, pale brown, no odour	Light brown

RAMBOLL

pH (field)	6.5-8ª			5 - 9	pH units	-	8.62	<u>9.02</u>	<u>10.45</u>	7.7	8.99	8.76	7.87	8.95	8.41	8.48	8.69	<u>9.24</u>	8.3	<u>9.21</u>	<u>9.48</u>	7.09	7.37
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>120</u>	<u>120</u>	<u>130</u>	<u>49</u>	<u>150</u>	<u>74</u>	<u>41</u>	<u>120</u>	<u>41</u>	<u>54</u>	<u>53</u>	<u>78</u>	74	120	76	12	<u>35</u>
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.004	< 0.004	< 0.004	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-
Total Cyanide					mg/L	0.004	7.4	10	8	0.65	18	3.8	0.3	20	0.79	1.9	3.5	5.1	1.9	3.1	1.4	0.17	-
Aluminium (total)	0.055	E	-	0	mg/L	0.01	4.4	4.9	<u>9.3</u>	6.4	<u>11</u>	1.8	3.9	1.5	3.3	2.4	2.6	5.3	1.1	<u>50</u>	5	4.8	<u>13</u>
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	0.03	0.02	0.1	0.06	0.04	0.03	0.03	0.07	0.06	0.12	0.08	0.05	0.23	0.09	2	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

mg/L

mg/L

0.01

0.01

Table vi: Results Shallow Aquifer, Background RAMBOLL

						11			1				1		1	1			1			1
					Sample Type:	Groundwater	Groundwate															
					Laboratory:	Envirolab	Envirolab															
					Sample date:	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18
					Sample ID:	W5S	W5S															
	0504				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwate Monitoring															
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri															
	Ecosystems				Section:	Section 4	Section 4															
					Aquifer:	Shallow	Shallow															
					SWL (m AHD):	9.273	-	9.053	-	8.993	9.323	9.293	-	-	9.063	-	-	-	-	-	-	-
					Sample Description:	Light brown, cloudy	Dry	Brown, turbid, no odour	Dry	Brown/orange , no odour	Brown	Brown	Dry	Dry	-	Dry	Dry	Dry	Brown	Dry	Dry	Dry
Analyte grouping/Ar	nalyte				Units LOR																	
pH (field)	6.5-8°			5 - 9	pH units -	7.37	-	7.39	-	6.55	7.26	7.2	-	-	7.29	-	-	-	7.79	-	-	-
Soluble Fluoride		1	2	1.5	mg/L 0.1	<u>61</u>	-	<u>100</u>	-	<u>93</u>	<u>88</u>	<u>70</u>	-	-	<u>62</u>	-	-	-	<u>50</u>	-	-	-
Free Cyanide	0.007			0.1	mg/L 0.004	-	-	-	-	< 0.004	<u><4</u>	< 0.02	-	-	-	-	-	-	< 0.004	-	-	-
Total Cyanide					mg/L 0.004	-	-	=	=	-	-	-	-	=	-	-	-	-	=	=	-	-
-	-		1	1	H	++						1		l			1	1			l	1

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Aluminium (total)

Aluminium (dissolved)

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

0.055

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

5

5

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001103 Client Name: Hydro Aluminium Kurri Kurri Ptv Ltd

Table vi: Results Shallow Aquifer, Background RAMBOLL

Project Name: 2021 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 01-02-22

Groundwater Ground Sample Type: Laboratory: Envirolab Dec-18 Mar-19 Sample date: Jun-18 Sep-18 Jun-19 Sep-19 Dec-19 Mar-20 Jun-20 Sep-20 Dec-20 Mar-21 Jun-21 Sep-21 Dec-21 Sample ID: W5S Quarterly Project Name: Groundwate roundwate roundwate Groundwate roundwate Groundwate Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Hydro Kurri Protection of Aquatic Hydro Kurri Hydro Kurri Hydro Kurri Hydro Kurr Stock Irrigation Site: Kurri Kurri Kurri Kurri Kurri Kurri Watering Section: Section 4 Aquifer: Shallow SWL (m AHD): 8.843 9.173 9.093 8.973 9.073 Very turbid, Very turbid turbid. Sample Description: Dry Dry Dry Dry Dry Dry Dry low/orange Dry brown, no Dry Dry grey brown, no odour / brown, no odour no odour

pH (field)	6.5-8°			5 - 9	pH units -	-	-	-	-	-	-	-	-	7.76	7.47	-	7.2	-	-	6.74
Soluble Fluoride		1	2	1.5	mg/L 0.1	-	-	-	-	-	-	-	-	<u>34</u>	<u>34</u>	-	39	-	-	24
Free Cyanide	0.007			0.1	mg/L 0.00		-	-	-	-	-	-	-	< 0.004	< 0.004	-	< 0.004	-	-	< 0.004
Total Cyanide					mg/L 0.00	. -	-	-	-	-	-	-	-	2.6	2.2	-	2.5	-	-	0.34
Aluminium (total)	0.055	E	E	0	mg/L 0.01	-	-	-	-	-	-	-	-	11	23	-	<u>42</u>	-	=	<u>32</u>
Aluminium (dissolved)	0.055	5	5	9	mg/L 0.01	-	-	-	-	-	-	-	-	6.6	2.6	-	5	-	-	<u>14</u>

LOR

Units

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

					Sample Type:	Groundwate	er Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwat
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolal
					Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
					Sample ID:	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8
					Project Name:	Quarterly Groundwate Monitoring	Quarterly Groundwater Monitoring	Quarter Groundwa Monitori														
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kuri Kurri	i Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Ku Kurri
	Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section
					Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallov
					SWL (m AHD):	9.18	8.74	8.46	8.8	8.73	8.65	9.35	9.19	9.09	9.03	8.61	8.64	8.38	8.22	8.56	8.16	7.75
					Sample Description	on: Yellow	Clear, slightly cloudy	Light brown, sulphur odour	Clear/dark yellow, no odour	Dark grey, turbid, no odour	Orange/yello w, no odour	Brown	Slightly turbid, light brown	-	Brown, turbid	-	Turbid, brown	-	Light brown	Brown	Faint yellow	Faint bro
alyte grouping/Anal	lyte				Units I	.OR																
(field)	6.5-80			5 - 9	pH units	- 6.36	6.38	6.48	6.53	6.39	6.11	6.49	6.69	6.74	6.59	6.63	6.92	6.4	6.54	6.78	6.76	6.67
uble Fluoride		1	2	1.5	mg/L	0.1 0.27	0.17	0.26	0.27	0.29	0.35	0.9	0.3	0.4	<u><10</u>	0.4	0.6	0.4	1	0.4	0.4	0.4
ee Cyanide	0.007			0.1	mg/L 0	.004 -	-	-	-	-	< 0.004	< 0.4	<0.02	0.005	< 0.004	0.004	<0.004	< 0.004	0.006	<0.004	<0.005	< 0.004
al Cyanide					mg/L 0	.004 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
minium (total)	0.055	5	5	9	mg/L (0.102	<u>12</u>	0.11	0.3	<u>91</u>	1.8	<u>29</u>	5.3	3.4	<u>34</u>	0.47	1.6	1	<u>34</u>	3.9	<u>25</u>	4
minium (dissolved)	0.000		I	· ·	ma/L (0.01 -	-	-	-	-	_	_	-	-	_	-	-	-	_	-	_	1 -

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

0.004

0.01

0.01

0.004

mg/L

mg/L

mg/L

mg/L

< 0.004

0.54

5.1

< 0.004

0.56

0.22

0.03

< 0.004

0.67

4.3

0.02

Table vi: Results	RAMBOLL
llow Aquifer, Background	

					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwate
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
					Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13
					· · · · · · · · · · · · · · · · · · ·	++	Juli- 16	N8	1			+	ł	1		· ·	1		Juli-21			_
					Sample ID:	N8	N8	110	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N8	N9
	0504				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwat Monitorin
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kur Kurri
	Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
					Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
					SWL (m AHD):	7.87	8.29	8.18	8.28	7.9	7.89	7.99	7.77	8.04	8.19	8.53	8.47	8.73	9.27	8.93	8.99	9.222
					Sample Description:	Brown	Light brown, some odour	Brown/yellow	Slightly brown, very slight sulphidic odour	Slightly brown/yellow, no odour	Clear to yellow	Turbid, brown/yellow, no odour	Slightly yellow, sulphidic odour	Clear, bright yellow, sulphidic odour	Slightly yellow/red, no odour	Turbid, yellow, no odour	Slightly turbid, brown, slight odour	Turbid, yellow/orange /brown, slight odour	1	Turbid, yellow/orange brown, slight odour	Turbid, pale yellow brown no odour	, Light brov
e grouping/An	alyte				Units LOR																	
				1			_				ı			ı		_			_			
ield)	6.5-8□			5 - 9	pH units -	6.45	6.71	<u>10.53</u>	6.51	6.81	6.68	6.6	6.67	6.76	6.77	6.77	6.95	6.54	6.85	7.19	6.63	<u>9.16</u>
e Fluoride		1	2	1.5	mg/L 0.1	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.5	0.5	85

< 0.004

0.61

0.9

0.04

< 0.004

0.6

0.35

0.06

< 0.004

0.55

0.76

0.06

< 0.004

0.63

1.7

0.06

<0.004

0.47

1.1

0.06

< 0.004

0.49

0.63

0.05

< 0.004

0.66

4.5

0.06

< 0.004

0.35

0.3

0.07

< 0.004

0.44

0.05

< 0.004

0.1

0.7

0.06

< 0.004

0.2

5.1

0.05

< 0.004

0.1

6.5

0.04

< 0.004

0.041

0.2

0.04

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Free Cyanide

Total Cyanide

Aluminium (total)

Aluminium (dissolved)

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

0.007

0.055

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

5

5

9

Concentration in red font exceed Irrigation criteria value

Concentration in $\ensuremath{\textbf{bold}}$ font exceed Stock Watering criteria value

Table vi: Results	RAMBOLL
Shallow Aquifer, Background	

					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwa
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Enviro
					Sample date:	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-
					Sample ID:	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9
	0.504				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quart Ground Monito
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kur
	Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section
					Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shal
					SWL (m AHD):	9.312	8.482	9.012	8.872	9.002	9.692	9.382	9.052	8.832	9.252	-	=-	9.142	9.352	8.822	8.812	9.0
								Dark yellow,	Dark grey,	Brown/orange		Clear, strong										
					Sample Description:	Cloudy brown	Dry	slightly turbid, no odour	becoming yellow, turbid, no odour	, sulphidic odour	Turbid, grey	sulphidic odour	-	Brown	Slightly brown	Brown	Dry	Brown	Light brown, smelly	-	Tea brown	Tea b
lyte grouping/Anal	liyte				Sample Description: Units LOR	Cloudy brown	Dry	turbid, no	yellow, turbid,		Turbid, grey		-	Brown	Slightly brown	Brown	Dry	Brown		-	Tea brown	Tea b
lyte grouping/Anal	6.5-8°			5 - 9		Cloudy brown	Dry	turbid, no	yellow, turbid,		Turbid, grey		7.7	Brown 6.61	Slightly brown	Brown	Dry -	Brown		-	Tea brown	Tea b
J		1	2	5 - 9	Units LOR		Dry -	turbid, no odour	yellow, turbid, no odour	odour		odour	7.7						smelly	- 150		
field)		1	2	1	Units LOR	8.9		turbid, no odour	yellow, turbid, no odour	odour	7.22	odour 7.34	7.7		8.11			8.61	smelly 9.32	- 150 <0.005		8.0
field) ble Fluoride Cyanide	6.5-8°	1	2	1.5	Units LOR PH units - mg/L 0.1	8.9	-	turbid, no odour	yellow, turbid, no odour	8.46 210	7.22 <u>24</u>	7.34 25	<u>9</u>		8.11 <u>140</u>		-	8.61 200	9.32 160		8.6	8. <u>20</u> <0.
field) ble Fluoride	6.5-8°	1	2	1.5	Units LOR	8.9		turbid, no odour	yellow, turbid, no odour	8.46 210 <0.004	7.22 24 <0.4	7.34 25 <0.02	<u>9</u>	6.61	8.11 <u>140</u>	8.54		8.61 200 <0.004	9.32 160	<0.005	8.6	8.4 20

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001103 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2021 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 01-02-22 Table vi: Results Shallow Aquifer, Background

				•										•	,							
					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
					Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13	Nov-13
_					Sample ID:	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	N9	W6S	W6S
					Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
	Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
					Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
					SWL (m AHD):	9.222	8.972	9.172	8.792	8.832	9.182	-	9.342	9.322	9.312	9.182	9.332	9.502	9.282	9.802	7.85	7.65
					Sample Description:	Light brown, some odour	Brown, sediment, strong hydrogen sulfide odour	Clear, slightly brown, sulphidic odour	Light brown, sediments, strong sulphidic	Clear, sediments	Clear to slightly brown, sulphidic odour	Insufficient water for sampling	Clear, sulphidic odour	Clear, sulphidic odour	Clear to slightly turbid, yellow, sulphidic odour	Turbid, light brown, slight odour	Low turbid, pale brown/yellow, strong odour	Turbid, pale yellow, strong odour	Turbid, pale yellow brown, no odour		Light brown	Dry

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8□			5 - 9	pH units	=-	8.72	<u>12.9</u>	8.72	8.33	8.71	8.5	-	8.64	8.53	8.7	8.69	8.21	8.67	8.68	8.27	8.87	-
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>140</u>	<u>170</u>	<u>160</u>	<u>200</u>	<u>160</u>	<u>160</u>	-	<u>140</u>	<u>130</u>	<u>57</u>	<u>110</u>	<u>110</u>	<u>110</u>	<u>95</u>	<u>82</u>	<u>195</u>	-
Free Cyanide	0.007			0.1	mg/L	0.004	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	=	< 0.004	< 0.004	< 0.004	0.008	< 0.004	< 0.004	< 0.004	< 0.004	-	=
Total Cyanide					mg/L	0.004	6.7	7.2	7.4	6.6	9.2	8	-	5.4	3.7	2.9	5.3	2.3	1.1	0.83	0.18	-	-
Aluminium (total)	0.055	E	-	0	mg/L	0.01	<u>17</u>	0.95	0.28	1.5	2	0.64	-	4.9	1.6	1.3	1.6	0.52	<u>15</u>	3.7	0.71	<u>60.1</u>	-
Aluminium (dissolved)	0.055	5	5	7	mg/L	0.01	0.1	0.1	0.08	0.27	0.46	0.08	-	1.1	0.7	0.6	0.28	0.06	0.84	0.6	0.06	-	-

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Concentration in <u>underline/italics</u> exceed Recreational criteria value

RAMBOLL

Project No: 318001103 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Project Name: 2021 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 01-02-22 Table vi: Results Shallow Aquifer, Background

mg/L

mg/L

0.01

0.01

					Sample Type:	Croundwator	Groundwater	Croundwater	Groundwater	Croundwater	Groundwater	Groundwater	Groundwater	Groundwater	Croundwater	Groundwater	Croundwater	Croundwater	Groundwater	Groundwater	Groundwater	Groundwa
						++	+	+		1		1	1		+	1	1	+		!	!	
					Laboratory:	Envirolab	Envirol															
					Sample date:	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-1
					Sample ID:	W6S	W65															
					Project Name:	Quarterly Groundwater Monitoring	Quarte Ground Monito															
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro K Kurr															
	Ecosystems				Section:	Section 5	Section															
					Aquifer:	Shallow	Shallo															
					SWL (m AHD):	7.64	-	-	7.69	8.12	8.01	7.82	-	-	7.63	-	-	-	-	-	-	7.59
					Sample Description:	Dry	Brown/yellow, turbid	Dry	Orange, no odour	Light brown, turbid	Light brown, slightly turbid	-	Dry	Dry								
nalyte grouping/An	alyte				Units LOR																	
H (field)	6.5-8°			5 - 9	pH units -	-	8.79	-	7.27	8.72	8.98	8.67	-	-	-	-	-	-	-	-	-	-
oluble Fluoride		1	2	1.5	mg/L 0.1	-	-	-	<u>200</u>	<u>180</u>	-	<u>180</u>	-	-	-	-	-	-	-	-	-	-
ee Cyanide	0.007			0.1	mg/L 0.004	-	-	-	0.019	< 0.4	-	0.058	-	-	-	-	-	-	-	-	-	-
tal Cyanide					mg/L 0.004	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
-	+	1	1	+		++	+	+		1		+		†	+	-	†	+	-	l	-	+

3.5

7.7

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Aluminium (total)

Aluminium (dissolved)

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

0.055

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

5

5

9

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Concentration in <u>underline/italics</u> exceed Recreational criteria value

RAMBOLL

Table vi: Results Shallow Aquifer, Background

					Sample Type:	Groundwater													
					Laboratory:	Envirolab													
					Sample date:	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
					Sample ID:	W6S													
					Project Name:	Quarterly Groundwater Monitoring													
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri													
	Ecosystems				Section:	Section 5													
					Aquifer:	Shallow													
					SWL (m AHD):	7.6	=	-	=	=	=	7.59	-	-	Dry	=	=	7.6	-
					Sample Description:	Dry													
Analyte grouping/Ana	alyte				Units LOR														
pH (field)	6.5-8			5 - 9	pH units -	-	-	-	=	-	-	-	-	-	-	-	-	-	=
Soluble Fluoride		1	2	1.5	mg/L 0.1	=	=	-	=	-	=	=	-	-	-	-	-	-	-
Free Cyanide	0.007			0.1	mg/L 0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Cyanide					mg/L 0.004	=	-	-	=	-	-	-	-	-	-	-	-	-	-
								1	1			i -				1	1		

0.01

0.01

mg/L

mg/L

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Aluminium (total)

Aluminium (dissolved)

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

0.055

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

5

5

9

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwa											
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirola											
				Sample date:	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20
				Sample ID:	F5	F5	F5	F5	F5	F5	F5											
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarter Groundw Monitor											
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kı Kurri											
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Backgro											
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallo											
				SWL (m AHD):	4.95	4.86	4.93	4.73	4.67	4.76	4.46	4.3	3.82	4.41	4.19	4.16	3.8	3.71	3.75	3.39	3.75	3.85
				Sample Description:	Clear to light brown	Clear	Clear	Colourless	Colourless with particles	Faint yellow	Colourless	Colourless with particles	Colourless with particles	Clear, hydrogen sulfide odour	Clear	Clear, very slight sulphidic odour	Clear, no odour	Clear, slight sulphidic odour	Clear, no odour	Clear, sulphidic odour	Clear, organic odour	Clear, s sulphi

			1		1	ı	<u> </u>		ı	ı				ı		ı			ı	ı		i e e e e e e e e e e e e e e e e e e e	ı	
pH (field)	6.5-8°			5 - 9	pH units	-	7.38	5.58	5.25	4.46	4.11	5.08	4.21	4.57	4.3	4.46	4.35	5.02	4.96	4.71	4.6	4.54	5.38	4.75
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u><10</u>	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	< 0.1	< 0.4	< 0.4
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	=	=	-	=	-	=	=	=	<0.004	0.013	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	E	-	0	mg/L	0.01	2.2	2.1	0.89	2.3	2.3	4.6	2.9	3.2	3	2.2	2.1	2	1.4	1.7	2.3	1.9	1.7	2.5
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	1.5	1.9	1.7	1.1	0.92	1.5	1.2	1.3	2.3

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundy
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Enviro
				Sample date:	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-
				Sample ID:	F5	F5	F5	F5	F5	F5	G6	G6										
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarte Groundy Monitor
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kur
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Backgr
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shall
				SWL (m AHD):	4.23	4.04	5.48	4.72	4.55	4.93	2.59	2.45	2.45	3.21	2.17	2.28	2.04	1.86	1.55	1.7	1.55	1.4
				Sample Description:	Clear, no odour	Clear, sulphidic odour	Clear to slightly turbid, colourless/gre	Clear, colourless, slight sulphidic	Clear with some flocculants, colourless, strong odour	Clear, colourless, black flocculants, sulphidic	-	Clear	Clear	Colourless with particles	Colourless with particles	Colourless	Colourless with particles	Colourless with particles	Colourless with particles	Clear, no odour	Clear, no odour	Clear, i odoui

pH (field)	6.5-8°			5 - 9	pH units	-	4.71	5.01	4.63	4.69	4.68	4.48	3.6	3.82	4.04	3.79	3.66	4.55	4.21	3.86	3.66	3.6	3.88	3.81
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.1	0.2	0.2	0.3	0.2	0.2	<u><10</u>	< 0.1	0.2	< 0.1	< 0.1	0.4	0.4	0.5	0.4	0.4	0.4	0.7
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-	-	< 0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	_	_		mg/L	0.01	3.2	2.2	2.6	2.7	2.7	2.4	<u>28</u>	0.78	0.13	<u>29</u>	<u>25</u>	<u>23</u>	<u>21</u>	<u>27</u>	<u>27</u>	<u>25</u>	<u>23</u>	<u>25</u>
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	2.7	1.9	2.2	2	2.2	2	-	-	-	-	-	-	-	-	-	<u>26</u>	<u>22</u>	<u>23</u>

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

RAMBOLL

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
				Sample ID:	G6	G6	G6	G6	G6	G6	G6	G6	G6	G6	G6	G6
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
				Aquifer:	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
				SWL (m AHD):	1.29	1.13	0.99	0.81	0.8	0.96	1.33	1.23	1.28	1.99	1.88	2.01
				Sample Description:	Clear, slight sulphidic odour	Clear, sulphidic odour	Slightly brown, strong sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour, slightly turbid	Clear, no odour	Clear, sulphidic odour	Slightly turbid, black/grey, strong odour	Clear, colourless, strong sulphidic odour, slight	Clear with flocculants, colourless, slight odour	Clear, colourless, strong sulphidic odour

Analyte grouping/Analyte	Units	LOR	

pH (field)	6.5-8°			5 - 9	pH units	-	4.14	3.88	4.14	3.93	4.06	4.59	4.49	4.19	4.22	4.55	4.94	4.2
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.6	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.4	0.6	0.4	0.6
Free Cyanide	0.007			0.1	mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	-	-	0	mg/L	0.01	<u>16</u>	<u>17</u>	<u>9.8</u>	9	6.9	7.3	<u>9.3</u>	6.9	8	3.5	6.6	7.4
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	<u>16</u>	<u>18</u>	<u>9.5</u>	8.9	6.7	5.8	8.5	6.9	8	2.8	5.9	5.6

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as < value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18
				Sample ID:	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	12.193	12.313	11.793	11.463	11.183	10.463	11.963	11.683	11.573	11.753	11.603	11.663	11.483	11.303	11.523	11.303	10.813	10.933
				Sample Description:	Brown	Brown	Brown	Dark brown, slight sulphidic odour	Brown, turbid, strong odour	Copper/brow n, strong sulphidic odour	Brown	Brown	-	Brown	Brown	Brown	Brown	Dark brown	Dark brown	Tea brown	Tea brown	Reddish/tea brown

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8ª			5 - 9	pH units	-	<u>10.09</u>	<u>9.9</u>	<u>10.13</u>	<u>10.1</u>	9.94	<u>9.99</u>	<u>10.11</u>	<u>10.27</u>	<u>10.34</u>	<u>10.42</u>	<u>10.29</u>	<u>10.4</u>	<u>10.02</u>	<u>10.07</u>	<u>9.37</u>	<u>10.08</u>	<u>10.1</u>	<u>10.14</u>
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>682</u>	<u>790</u>	<u>880</u>	<u>930</u>	<u>1080</u>	<u>1279</u>	<u>1300</u>	<u>1300</u>	<u>1300</u>	<u>1300</u>	<u>1400</u>	<u>1500</u>	<u>1400</u>	<u>1700</u>	<u>1300</u>	<u>1300</u>	<u>1200</u>	<u>1200</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	=	=	-	-	0.03	< 4	<u>0.058</u>	<u>0.88</u>	<u>0.21</u>	<u>0.11</u>	<u>0.11</u>	<u>0.12</u>	<u>0.15</u>	0.012	0.01	0.006	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	300
Aluminium (total)	0.055	_	_	0	mg/L	0.01	2.86	0.6	0.67	1.4	44	0.03	0.19	0.03	3.5	0.06	0.09	0.92	<u>31</u>	1	0.08	1.6	0.28	1.1
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Shallow Aquifer, Background

					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
					Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13	Nov-13	Feb-14
					Sample ID:	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	W2D	E5D	E5D	E5D
					Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
	95% rotection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
E	cosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1				
					Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
					SWL (m AHD):	11.583	11.373	11.333	11.133	11.333	11.253	10.963	11.663	8.842	12.323	12.053	11.783	12.233	11.923	12.683	11.672	11.632	11.562
					Sample Description:	Dark brown, odour	Dark brown	Brown, slight 'burnt' odour	Dark brown	Brown, very slight sulphidic odour	Brown/red, no odour	Slightly brown/red	Red/brown, sulphidic odour	Red/brown, sulphidic odour	Turbid, orange/brown , no odour	Clear to turbid, brown, slight odour	Slightly turbid, brown, strong odour	Clear to slightly turbid, dark chocolate brown, no	Clear to slightly turbid, dark brown, no odour	Clear, dark brown, sulphidic odour	Cloudy, brown	-	Light brown/clear

RAMBOLL

Units LOR Analyte grouping/Analyte

pH (field)	6.5-80			5 - 9	pH units	-	<u>10.18</u>	<u>13.74</u>	<u>9.87</u>	<u>9.99</u>	<u>10.1</u>	<u>10.08</u>	<u>10.14</u>	<u>10.12</u>	<u>10.11</u>	<u>10.18</u>	<u>10.09</u>	<u>9.72</u>	<u>10.11</u>	<u>10.37</u>	<u>10.19</u>	7.22	7.29	7.53
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>1200</u>	<u>1200</u>	<u>1200</u>	<u>1500</u>	<u>1200</u>	<u>1300</u>	<u>1400</u>	<u>1300</u>	<u>1100</u>	<u>800</u>	<u>1000</u>	<u>1000</u>	<u>860</u>	<u>880</u>	<u>1000</u>	1.21	<u>40</u>	44
Free Cyanide	0.007			0.1	mg/L	0.004	0.007	0.029	0.009	0.004	0.004	0.03	0.018	0.009	< 0.004	0.008	0.006	0.005	0.008	0.011	0.009	T.	=	-
Total Cyanide					mg/L	0.004	330	280	330	300	230	240	270	250	210	190	1.8	120	100	46	82	-	-	-
Aluminium (total)	0.055	_	_	0	mg/L	0.01	0.71	0.39	1	0.61	0.72	0.83	1.2	0.97	0.76	0.76	0.71	1.6	2	1.6	0.68	1.697	1.5	<u>110</u>
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	0.77	0.52	0.69	0.51	0.7	0.73	0.7	0.76	0.78	0.69	0.58	0.73	0.6	0.6	0.56	-	-	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwate																
				Laboratory:	Envirolab																	
				Sample date:	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18
				Sample ID:	E5D																	
9504				Project Name:	Quarterly Groundwater Monitoring																	
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																	
Ecosystems				Section:	Section 1																	
				Aquifer:	Deep																	
				SWL (m AHD):	11.432	11.562	11.612	11.572	11.522	11.722	11.652	11.992	11.422	11.462	11.282	11.232	11.192	11.242	11.202	11.292	11.232	11.672
				Sample Description:	Brown, no odour	Yellow/orange , no odour	Light brown/copper , no odour	-	Brown	-	Brown	Brown	Brown	Milky	Brown	Light brown	Milky brown	Light tea brown	Light yellow	Light brown, some odour	Brown	Slightly brown, no odour

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8ª			5 - 9	pH units	-	7.44	8.32	6.8	7.23	7.23	7.18	7.1	7.27	7.39	7	7.08	7.97	7.16	7	6.97	7.29	<u>12.79</u>	6.95
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>23</u>	<u>12</u>	<u>18</u>	<u>16</u>	<u>14</u>	<u>16</u>	<u>19</u>	<u>18</u>	<u>15</u>	<u>16</u>	<u>22</u>	<u>19</u>	<u>14</u>	<u>14</u>	<u>16</u>	<u>14</u>	<u>12</u>	<u>11</u>
Free Cyanide	0.007			0.1	mg/L	0.004	=	=	< 0.004	< 0.4	< 0.02	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	=	-	-	-	=	-	-	-	=	=	=	-	=	0.6	1.6	1.2	0.81
Aluminium (total)	0.055	E	-	0	mg/L	0.01	2.2	3.3	3.4	2.1	2.1	4.3	3.6	2.7	1.9	4.2	<u>64</u>	2.8	5	2.2	3.4	4.1	2.2	0.72
Aluminium (dissolved)	0.055	5	5	7	mg/L	0.01	-	=	-	-	-	=	-	-	-	=	=	=	-	=	-	< 0.01	0.01	0.03

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

_	_	-	_
- C A	44.0	-	
RA	MB	u	

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
				Sample ID:	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D	E5D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1	Section 1
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	11.702	11.482	11.482	11.392	10.262	11.892	12.152	12.032	11.782	11.932	11.662	11.812
				Sample Description:	Clear to slightly yellow, no odour	Slightly brown, no odour	Clear to slightly brown, no odour	Clear, no odour	Bright yellow, sulphidic odour	Clear, no odour	Clear to slightly turbid, yelow, no odour	Slightly turbid, light brown, no odour	Medium turbid, yellow brown, strong odour	Clear, yellow, no odour	Clear to slightly turbid, dark yellow, slight odour	Clear, pale brown, sulphidic odour

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8°			5 - 9	pH units	-	6.96	7.1	7.3	6.95	7.05	7.1	7.04	7.02	6.77	8.32	7.31	6.95
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>8.1</u>	<u>9.6</u>	<u>8.3</u>	<u>9.4</u>	<u>9.8</u>	<u>7.7</u>	<u>7.3</u>	<u>7.8</u>	<u>9.1</u>	<u>8.3</u>	<u>7.6</u>	<u>7.9</u>
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004
Total Cyanide					mg/L	0.004	1.1	0.92	0.68	1.1	2.3	0.84	0.7	0.63	0.38	0.61	0.17	0.27
Aluminium (total)	0.055	_	-	0	mg/L	0.01	1.3	1.2	1.2	2.5	1.2	1.3	1.6	1.3	1.6	0.33	0.42	0.27
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	< 0.01	0.01	< 0.01	< 0.01	0.01	< 0.01	0.02	0.01	0.03	0.01	0.02	0.02

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background RAMBOLL

01-02-22	

					Sample Type:	Groundwater	Groundwate															
					Laboratory:	Envirolab	Envirolab															
					Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
					Sample ID:	W1D	W1D															
	0504				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwate Monitoring															
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri															
	Ecosystems				Section:	Section 2	Section 2															
					Aquifer:	Deep	Deep															
					SWL (m AHD):	10.852	9.912	9.332	8.702	9.112	-	8.512	8.022	8.582	9.412	8.752	8.632	8.762	8.562	8.372	7.872	7.882
					Sample Description:	Brown	-	Light brown	Light brown, turbid	-	Dry	Light brown, turbid	Light brown, slightly turbid	-	Brown	Brown	Turbid, brown	Light brown	Tea brown	Tea brown	Tea brown	Tea brown
oing/Analyte	e				Units LOR																	

pH (field)	6.5-8ª			5 - 9	pH units	=	6.98	6.62	6.7	6.71	6.63	=	6.82	6.79	8.48	6.73	6.82	7.02	6.78	6.67	7.3	6.95	6.78
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>39</u>	<u>5.4</u>	<u>3.5</u>	<u>5.1</u>	<u>3.3</u>	-	<u>4.4</u>	<u>3.5</u>	<u>2.6</u>	<u><10</u>	<u>3.1</u>	3.3	3.4	3.9	4.4	4.8	4.2
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	=	=	=	-	< 0.2	<0.02	=	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.005	< 0.004
Total Cyanide					mg/L	0.004	-	-	=	=	=	-	=	-	=	-	II.	-	=	Ü	=	=	=
Aluminium (total)	0.055	E	E	0	mg/L	0.01	21.2	0.9	2.4	2.4	0.26	0.26	4	0.95	0.4	1.5	0.66	0.87	18	89	120	4.1	1.4
Aluminium (dissolved)	0.033	5	5	9	mg/L	0.01	-	-	=	=	=	-	=	-	=	-	II.	-	=	Ü	=	=	=

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

	•			•							•			,			,				
					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwat
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolat
					Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
					Sample ID:	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D	W1D
						Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterl
					Project Name:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		Groundwater	Groundwater	Groundwater	Groundwat
	95%				-	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitorir
	Protection of	Irrigation	Stock	Recreational	Site:	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Kurri	Hydro Ku
	Aquatic	Irrigation	Watering	Recreational		Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri	Kurri
	Ecosystems				Section:	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2	Section 2
					Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
					SWL (m AHD):	7.802	8.692	8.512	8.572	8.412	8.482	8.052	7.992	8.392	8.842	11.632	11.182	11.242	11.312	10.722	11.022
					Sample Description:	Brown	Yellow, hydrogen sulfide odour	Slight brown/yellow	Clear, slightly brown, slight sulphidic odour	Clear to slightly brown, slight sulphidic odour	Clear, slighly cloudy, sulphidic odour	Slightly brown/yellow, sulphidic odour	Slightly yellow, no odour	Bright yellow	Clear to slightly yellow	Clear, dark yellow no odour	Yellow, no odour	Clear, dark yellow, no odour	Clear, yellow/brown, no odour	Clear, dark yellow, no odour	Clear brow no odou
nalyte grouping/Ana	alyte				Units LOR																
H (field)	6.5-8□			5 - 9	pH units -	6.91	7.07	7.12	6.76	6.92	6.83	6.91	7.16	7.12	7.17	7.57	8.14	7.34	7.78	8.13	7.71
oluble Fluoride		1	2	1.5	mg/L 0.1	4.7	5.1	4.5	4.8	3.9	4.7	4.4	4.8	4.1	3.8	8.5	9.2	<u>11</u>	<u>11</u>	<u>9.7</u>	<u>10</u>
ree Cyanide	0.007			0.1	mg/L 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004
otal Cvanide					mg/L 0.004	0.34	0.69	0.59	0.67	0.64	0.47	0.046	0.67	0.25	0.5	1	1.1	0.6	0.19	0.23	0.1
luminium (total)		_	_	_	mg/L 0.01	0.46	0.88	0.38	0.43	0.48	0.69	0.71	0.23	0.98	2.1	1.2	0.53	0.4	0.29	0.32	0.8
luminium (dissolved)	0.055	5	5	5 9	mg/L 0.01	-	0.14	0.14	0.25	0.15	0.21	0.19	0.1	0.15	0.22	0.13	0.09	0.14	0.05	0.05	0.08
arriiriidiii (dissolved)	1	1				1 1															

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Units

LOR

Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater																
				Laboratory:	Envirolab																
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W3D																
				Project Name:	Quarterly Groundwater Monitoring																
95% Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri																
 Ecosystems				Section:	Section 3																
				Aquifer:	Deep																
				SWL (m AHD):	5.61	-	-	5.53	5.46	5.5	5.59	5.68	-	-	-	-	-	-	-	-	5.16
				Sample Description:	Clear	Dry	Dry	Clear, no odour	Grey, slightly turbid, no odour	Clear, no odour	Clear	Sclear, sulphidic odour	Dry	Turbid, suspended particles							

pH (field)	6.5-8 ^a			5 - 9	pH units	=	5.91	-	=	4.38	3.56	3.29	4.89	3.62	-	=	=	=	-	=	-	=	4.72
Soluble Fluoride		1	2	1.5	mg/L	0.1	1.23	-	-	0.19	0.41	0.22	0.3	0.3	-	-	-	-	-	-	-	I	0.3
Free Cyanide	0.007			0.1	mg/L	0.004	=	=	=	=	=	< 0.004	< 0.004	< 0.004	=	-	=	=	-	=	=	=	< 0.004
Total Cyanide					mg/L	0.004	=	-	=	=	=	=	=	=	=	-	=	=	=	-	=	=	-
Aluminium (total)	0.055	-	-	0	mg/L	0.01	0.7	-	-	0.58	0.72	0.76	0.81	0.04	-	-	-	-	-	-	-	-	1.4
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Concentration in $\underline{\textit{underline/italics}}$ exceed Recreational criteria value

RAMBOLL

Table vi: Results Shallow Aquifer, Background

Units

LOR

				Sample Type:	Groundwater	Groundwater	Groundwater														
				Laboratory:	Envirolab	Envirolab	Envirolab														
				Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13
				Sample ID:	W3D	W3D	W4D														
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring														
Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri														
Aquatic Ecosystems				Section:	Section 3	Section 3	Section 3														
				Aquifer:	Deep	Deep	Deep														
				SWL (m AHD):	5.02	5.01	4.92	4.94	4.86	4.45	4.57	4.52	4.37	4.4	4.72	4.69	-	-	-	-	5.539
				Sample Description:	Slightly turbid, odourless	Clear, some odour	Light brown, some odour	Clear, no odour	Clear, no odour	Clear, slight sulphidic odour	-	Clear, no odour	Clear	Clear	Clear, no odour	Clear, no odour		and unable to	Well damaged and unable to be sampled	and unable to	d Clear

T-																							
pH (field)	6.5-8ª			5 - 9	pH units	=	4.16	3.75	3.94	4.53	4.81	4.21	4.15	3.96	4.14	4.54	4.53	3.93	-	=	-	II.	6.02
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.3	0.5	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.1	-	-	-		1.48
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-	-	-	-	-
Total Cyanide					mg/L	0.004	< 0.004	0.036	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-	=	-	II.	-
Aluminium (total)	0.055	E	-	0	mg/L	0.01	1.2	1.5	0.9	1	0.81	1	1	1.1	0.99	2.3	0.97	1.2	-	-	-	-	0.794
Aluminium (dissolved)		5	5	9	mg/L	0.01	-	1.3	0.91	1	0.74	0.87	0.94	0.94	0.89	0.69	0.72	1.1	-	-	-	-	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Concentration in $\underline{\textit{underline/italics}}$ exceed Recreational criteria value

RAMBOLL

Table vi: Results Shallow Aquifer, Background

RAMBOLL

-					Sample Type:	Groundwater										
					Laboratory:	Envirolab										
					Sample date:	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16
					Sample ID:	W4D										
					Project Name:	Quarterly Groundwater Monitoring										
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri										
	Ecosystems				Section:	Section 3										
					Aquifer:	Deep										
					SWL (m AHD):	5.459	5.439	5.459	5.369	5.939	-	-	-	-	-	-
					Sample Description:	Clear	Clear	Clear to pale yellow, no odour	Clear, no odour	Clear, no odour	Clear	Clear	-	Clear	-	-

pH (field)	6.5-8			5 - 9	pH units	-	5.7	5.7	5.4	5.36	4.69	=	5.18	<u>9.9</u>	6.08	=	3.87
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>1.7</u>	1.3	0.41	<u>1.6</u>	1.1	-	0.2	-	-	-	< 0.1
Free Cyanide	0.007			0.1	mg/L	0.004	=	-	-	-	< 0.004	-	-	-	-	-	-
Total Cyanide					mg/L	0.004	=	=	-	=	=	-	=	-	-	=	-
Aluminium (total)	0.055	и	E	0	mg/L	0.01	0.48	0.19	0.27	0.5	0.35	-	=	-	-	=	-
Aluminium (dissolved)	0.055	3	5	7	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-

Units

LOR

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Analyte grouping/Analyte

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jul-13	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17
				Sample ID:	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D	W5D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4				
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	5.396	5.321	5.301	5.361	5.321	5.311	5.451	5.521	5.301	5.471	5.381	5.311	5.341	5.191	5.171	5.141	4.981
				Sample Description:	Clear	Clear	Clear	Clear, no odour	Light brown, slightly turbid, no odour	Clear, no odour	Dry	Clear	-	Clear	Clear	Slightly turbid	Colourless	Colourless	Clear, colourless	Colourless	Faint yellow with particles

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8°			5 - 9	pH units	-	6.02	6.32	6.1	6.11	6.11	5.34	-	6.32	8.37	6.4	5.7	6.7	6.37	6.21	6.94	6.93	6.13
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>20</u>	0.51	0.59	0.65	0.53	0.44	-	0.4	0.5	<u><10</u>	0.5	0.5	0.5	0.4	0.6	0.5	0.4
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	-	< 0.004	-	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (total)	0.055	-	_	0	mg/L	0.01	0.323	0.04	0.02	0.02	0.05	0.16	-	0.99	0.54	0.39	0.23	0.14	0.05	0.01	0.05	0.02	0.2
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

 $\ensuremath{^{\text{o}}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Concentration in $\underline{\textit{underline/italics}}$ exceed Recreational criteria value

RAMBOLL

Table vi: Results Shallow Aquifer, Background RAMBOLL

					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater													
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab													
					Sample date:	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Jul-13
					Sample ID:	W5D	W5D	W5D	N2													
					Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring													
	95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri													
_	Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4													
					Aquifer:	Deep	Deep	Deep	Deep													
					SWL (m AHD):	4.831	5.271	4.721	4.751	4.741	4.471	4.381	4.351	5.181	4.281	4.581	4.511	4.541	4.881	4.901	4.911	4.993
					Sample Description:	Clear with few particles	Clear some particles, no odour	Clear, slightly brown	Clear, no odour	-	Clear, no odour	Clear, no odour	Clear, no odour	Clear, no odour	Clear, sulphidic odour	Clear, no odour	Clear, no odour	Clear, colourless, slight odour	Slightly turbid, grey/brown, no odour	Clear to slightly turbid, colourless, no odour	Turbid, grey/brown, no odour	Clear

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8⁰			5 - 9	pH units	=	6.5	6.1	<u>10.2</u>	6.72	6.18	6.23	6.35	6.16	6.24	6.76	6.46	6.05	5.95	6.21	6.31	6	3.26
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.5	0.4	0.6	0.6	0.3	0.4	0.4	0.1	0.4	0.3	0.5	0.3	0.4	0.7	0.3	0.5	0.43
Free Cyanide	0.007			0.1	mg/L	0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-
Total Cyanide					mg/L	0.004	< 0.004	0.004	0.01	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-
Aluminium (total)	0.055	E	-	0	mg/L	0.01	0.03	0.16	0.09	0.04	0.44	0.04	0.24	0.28	0.04	0.52	0.24	0.09	0.33	0.33	0.27	0.38	5.771
Aluminium (dissolved)		5	5	9	mg/L	0.01	-	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.04	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.02	-

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results allow Aquifer, Background	RAMBOLL	

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18
				Sample ID:	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
2504				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	4.863	4.793	4.903	4.963	5.923	5.083	5.123	5.153	5.123	5.993	5.053	4.973	4.793	4.783	5.703	4.523	4.323
				Sample Description:	Clear	Clear	Pale yellow/brown, slightly turbid, no	Light grey, slightly turbid, no odour	Light brown, no odour	Brown/black	Clear, sulphidic odour	-	Turbid, black	Trubid, black	Turbid	Faint yellow	Brown	Brown	Milky	Faint yellow	-

Units LOR Analyte grouping/Analyte

pH (field)	6.5-8°			5 - 9	pH units	=	6.54	4.01	3.94	3.54	3.34	6.61	5.81	8.09	6.75	6.37	5.35	4.67	4.59	5.37	3.98	4.31	3.63
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u>6.2</u>	<u>1.9</u>	1.4	0.74	0.49	<u>8.1</u>	1.4	1.4	<u>15</u>	<u>8.6</u>	1.3	0.8	0.5	1	<u>2.1</u>	<u>2.4</u>	<u>2.1</u>
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	=	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.054
Aluminium (total)	0.055	-	-	0	mg/L	0.01	3	4.6	4.5	6.7	<u>28</u>	3.4	2.4	<u>9.1</u>	<u>24</u>	3.2	3.7	5.9	<u>23</u>	<u>10</u>	<u>23</u>	5.7	5.2
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

 $^{\mbox{\tiny 0}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

|--|

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater									
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab									
				Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
				Sample ID:	N2	N2	N2	N2	N2	N2									
95%				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring									
Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri									
Ecosystems				Section:	Section 4	Section 4	Section 4	Section 4	Section 4	Section 4									
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep									
				SWL (m AHD):	4.363	4.223	4.243	4.163	3.933	3.813	3.733	3.623	3.753	4.023	3.973	3.983	4.423	4.423	4.473
				Sample Description:	Light brown, no odour	Clear, slightly brown	-	Clear, no odour	Clear to grey, no odour	Clear, no odour. Purged dry	Clear, no odour	Clear to turbid, slightly brown	Clear, sulphidic odour	Clear to slightly turbid, no odour	Clear, no odour	Very turbid, yellow/brown/ grey, no odour	Very turbid, pale brown, no odour	Turbid, pale yellow brown, no odour	Turbid, pale grey, no odour

Analyte grouping/Analyte	Units	LOR
--------------------------	-------	-----

pH (field)	6.5-8°			5 - 9	pH units	-	4.41	2.8	4.18	4.34	4.51	4.05	3.85	4.09	4.54	3.88	3.55	3.94	4.22	3.98	3.68
Soluble Fluoride		1	2	1.5	mg/L	0.1	1.5	1.3	1.4	1.1	1.1	1	0.4	0.9	0.7	0.8	0.8	0.8	1.1	0.9	0.9
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	0.013	0.01	0.005	< 0.004	0.005	0.007	< 0.004	0.051	0.009	< 0.004	< 0.004	0.005	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	_	-	0	mg/L	0.01	6.9	4.7	5	4.2	6.2	8.4	7.7	8.5	6.7	4.5	3.1	<u>12</u>	<u>12</u>	6.5	4.4
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	3.1	3.8	3.9	4.2	3.2	3.2	3.5	2.6	2.6	3.1	2.8	2.4	2.1	3.4	3

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001103 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd

Table vi: Results Shallow Aquifer, Background RAMBOLL

Project Name: 2021 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter 01-02-22

Groundwater Ground Sample Type: Laboratory: Envirolab Jul-13 Dec-17 Sample date: Nov-13 Feb-14 Jul-14 Nov-14 Feb-15 Jun-15 Sep-15 Dec-15 Apr-16 Jul-16 Oct-16 Dec-16 Mar-17 Jun-17 Sep-17 G2 G2 Sample ID: G2 Quarterly Project Name: Groundwater Groundwater Groundwate Groundwater Groundwate Groundwater Groundwate Groundwater roundwate Groundwater Groundwater Groundwater Groundwater Groundwate roundwater Groundwater Groundwater Monitorin Monitorino Monitorina Monitorina Monitoring Monitoring Monitoring Monitoring Monitorina Monitorino Monitoring Monitorino Monitorina Monitoring 95% Hydro Kurri Protection of Aquatic Irrigation Stock Watering Recreational Kurri Ecosystems Section: Aquifer: Deep SWL (m AHD): 6.632 6.502 6.552 6.552 6.492 6.482 6.622 6.682 6.712 6.712 6.552 6.552 6.502 6.352 6.342 6.342 6.142 Pale brown Liaht _ight brown Sample Description: Γurbid, brown Slightly turbid Faint yellow Faint yellow Faint yellow Faint yellow Faint yellow turbid, no slight odour no odour cloudy turbid odour slightly turbid

LOR Units Analyte grouping/Analyte

pH (field)	6.5-8°			5 - 9	pH units	-	6.04	6.09	6.09	6.1	6.03	5.7	6.01	6.04	7.87	6.11	6.09	6.33	6.22	5.71	6.08	6.16	6.19
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.28	0.28	0.25	0.28	0.28	0.28	0.3	0.3	0.3	<u><10</u>	0.3	0.3	0.3	0.4	0.2	0.3	0.4
Free Cyanide	0.007			0.1	mg/L	0.004	=	=	-	-	-	< 0.004	< 0.004	<0.02	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	=	-	-	-	-	-	=	-	-	=	-	=	-	=	-	- 1
Aluminium (total)	0.055	-	-	0	mg/L	0.01	0.115	0.1	0.04	1.2	2.1	2.9	2	4.1	1.8	<u>9.6</u>	1.2	1.6	1.2	1.2	6.6	1.8	1.7
Aluminium (dissolved)	0.055	יס	5	7	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																							Ţ

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Project No: 318001103 Client Name: Hydro Aluminium Kurri Kurri Pty Ltd Table vi: Results Shallow Aquifer, Background RAMBOLL

ale grey, no

Project Name: 2021 Annual Groundwater Monitoring Report Project Site: Kurri Kurri Smelter

01-02-22

Groundwater Ground Sample Type: Laboratory: Envirolab Mar-18 Mar-19 Sample date: Jun-18 Sep-18 Dec-18 Jun-19 Sep-19 Dec-19 Mar-20 Jun-20 Sep-20 Dec-20 Mar-21 Jun-21 Sep-21 Dec-21 Jul-13 G2 W6D Sample ID: G2 Quarterly Project Name: Groundwate Groundwate Groundwater Groundwate Groundwate Groundwater Groundwater Groundwater roundwate roundwater Groundwate Groundwate roundwate Groundwate Groundwater roundwater Groundwater Monitoring Monitorino Monitorino Monitorina Monitoring Monitoring Monitoring Monitorina Monitoring Monitoring Monitoring Monitoring Monitorina 95% Hydro Kurri Protection of Stock Watering Recreational Irrigation Aquatic Ecosystems Kurri Section: Deep Aquifer: Deep Deep Deep Deep Deep SWL (m AHD): 6.042 6.032 5.992 5.962 6.022 6.612 5.702 5.622 5.452 5.642 5.852 6.802 5.822 6.132 6.132 6.052 5.129 Sliahtly Sliahtly Sliahtly Turbid, arev slightly turbid, Slightly Light brown Clear, no Clear, no Clear, no turbid, light turbid, strong Faint yellow Clear Sample Description: turbid, pale brown, no odour no odour odour odour odour odour odour odour odour yellow, no lourless, n sulphidic grey olourless t odour odour odour odour

Analyte grouping/Analyte Units LOR

pH (field)	6.5-8ª			5 - 9	pH units	-	6.05	6.05	6.42	6.53	6.16	6.35	6.46	6.13	6.26	6.37	6.12	6.26	6	6.12	6.36	6.24	6.49
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.3	0.3	0.4	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.4	0.3	0.3	0.5	1.19
Free Cyanide	0.007			0.1	mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	-
Total Cyanide					mg/L	0.004	< 0.004	0.005	0.006	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	-
Aluminium (total)	0.055	_	_	0	mg/L	0.01	0.5	2.4	0.57	1.5	1	0.68	1.1	1.3	0.41	1	1.9	1.7	0.62	0.73	0.62	0.1	1.087
Aluminium (dissolved)	0.055	9	5	9	mg/L	0.01	-	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.01	< 0.01	< 0.01	0.03	-

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in $\ensuremath{\mathsf{red}}$ font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results RAMBOLL Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Nov-13	Feb-14	Jul-14	Nov-14	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18
				Sample ID:	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	5.109	5.189	5.199	5.119	5.089	5.299	5.399	5.389	5.369	5.159	5.169	5.129	4.959	4.949	4.949	4.749	4.589
				Sample Description:	Clear	Clear	Pale brown, slightly turbid, no odour	Clear, no odour	Clear, no odour	Clear	Clear	-	Clear	Clear	Colourless, clear	Faint yellow	Clear	Clear, colourless	Light yellow	Clear, colourless	Colourless with particles

Analyte grouping/Analyte	Units	LOR

pH (field)	6.5-8°			5 - 9	pH units	1	6.11	5.75	5.83	5.54	8.22	5.84	5.81	5.5	5.79	5.58	6.18	5.96	5.88	6.19	5.9	5.9	5.65
Soluble Fluoride		1	2	1.5	mg/L	0.1	0.25	0.21	0.4	0.19	0.3	0.1	0.1	-	<u><10</u>	0.2	0.1	0.1	1.4	0.3	0.1	0.2	0.3
Free Cyanide	0.007			0.1	mg/L	0.004	-	-	-	-	< 0.004	Ī	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	=	=	=	=	=	ı	=	-	=	=	-	=	=	=	п	=	0.01
Aluminium (total)	0.055	-	-	0	mg/L	0.01	0.06	0.04	1.2	0.5	0.12	0.19	0.74	-	0.08	0.08	0.17	-	1.1	0.09	<u>25</u>	2.7	0.47
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Blank Cell indicates no criterion available

^a Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as < value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
				Sample ID:	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D	W6D
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri					
Ecosystems				Section:	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5	Section 5					
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	4.609	4.509	4.559	4.569	4.289	4.269	4.169	3.959	4.089	4.379	4.339	4.319	4.679	4.699	4.659
				Sample Description:	Turbid, light brown, no odour	Clear, slightly brown	Clear, no odour	Slightly yellow	Clear, slight odour	Turbid, slightly brown, no odour	Clear, slight sulphidic odour	Clear, no odour	Clear, no odour	-	Turbid, yellow/brown, no odour	Very turbid, pale brown/grey, no odour	Very turbid, pale brown, no odour	Turbid, pale yellow brown, slight odour	Turbid, pale brown, no odour

Analyte grouping/Analyte	Ullits	LUK

pH (field)	6.5-8ª			5 - 9	pH units	=	5.7	<u>10.47</u>	6.65	5.81	5.71	5.87	5.56	5.75	6.12	5.75	5.69	5.49	6.16	5.65	5.78
Soluble Fluoride		1	2	1.5	mg/L	0.1	< 0.1	0.2	0.2	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.1
Free Cyanide	0.007			0.1	mg/L	0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	0.005	0.006	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.028	< 0.004	<0.004
Aluminium (total)	0.055	E	E	0	mg/L	0.01	<u>19</u>	0.96	2.4	3.6	0.98	3.6	1.9	1.6	4.4	3.6	3.2	7.1	8.4	5.4	4.1
Aluminium (dissolved)	0.055	5	b	9	mg/L	0.01	< 0.01	< 0.01	0.02	0.02	0.02	0.02	0.02	0.04	0.03	0.04	0.02	0.98	0.05	0.05	0.04

Blank Cell indicates no criterion available

^o Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Units

LOR

Table vi: Results Shallow Aquifer, Background

				Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
				Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
				Sample date:	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20
				Sample ID:	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5	G5
				Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
 95% Protection of Aquatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
Ecosystems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
				Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
				SWL (m AHD):	4.95	4.69	4.93	4.73	4.69	4.6	4.29	4.29	3.99	4.41	4.19	4.32	3.82	3.72	3.76	3.42	3.74
				Sample Description:	Clear	-	Colourless, clear	Colourless	Colourless with suspended solids	Turbid	Light brown with particles		Colourless with few particles	Clear, some particles, no odour	Clear	Clear, very slight sulphidic odour	Clear, slight sulphidic odour	Clear, sulphidic odour	Clear, black particulates, very slight sulphidic odour	Clear, no odour	Clear, very strong sulphidic odour

Analyte grouping/Anal	lyte				Units	LOR																	
pH (field)	6.5-8ª			5 - 9	pH units	-	6.36	6.77	6.72	5.88	5.73	5.96	6.15	5.77	5.8	6.23	7.63	5.64	5.99	6	6.13	5.7	6.38
Soluble Fluoride		1	2	1.5	mg/L	0.1	<u><10</u>	0.4	< 0.1	0.3	0.6	0.3	0.3	0.3	0.2	0.4	1.3	0.2	< 0.1	0.2	0.2	0.1	0.2
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	0.006	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	-	-	-	-	-	-	-	-	< 0.004	< 0.004	0.01	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	0.055	-	-	0	mg/L	0.01	1.8	<u>24</u>	0.14	0.17	6.2	3.6	4.9	0.26	0.19	0.9	0.04	0.21	0.29	0.12	0.29	0.41	0.11
Aluminium (dissolved)	0.055	5	5	9	mg/L	0.01	-	-	-	-	-	-	-	-	-	< 0.01	< 0.01	0.03	0.03	< 0.01	0.01	0.02	< 0.01
																							i

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Concentration in <u>underline/italics</u> exceed Recreational criteria value

RAMBOLL

ble vi: Results	RAMBOLL
Aquifer, Background	

					Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
					Laboratory:	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
					Sample date:	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18
					Sample ID:	G5	G5	G5	G5	G5	G5	G5	F6									
					Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
Prote Aq	quatic	Irrigation	Stock Watering	Recreational	Site:	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri
Ecos	systems				Section:	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
					Aquifer:	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
					SWL (m AHD):	3.87	4.21	4.03	5.46	4.71	4.44	4.91	2.84	2.68	2.75	2.62	2.46	2.53	2.28	1.9	1.78	1.93
					Sample Description:	Clear, sulphidic odour, black particulate	Clear, no odour	Clear, no odour	Clear, colourless, no odour	Clear, colourless, slight sulphidic odour, slight	Clear with flocculants, colourless, slight odour	Clear, colourless, sulphidic odour, black flocculants	-	Clear	-	Colourless	Colourless with particles	Colourless	Colourless with particles	Light grey with particles	Clear, colourless	Clear, no odour

Analyte grouping/Ana	lyte				Units	LOR																	
pH (field)	6.5-8°			5 - 9	pH units	-	5.86	5.85	5.61	5.26	5.5	5.59	5.39	6.99	6.67	7.05	6.54	6.29	7.08	6.75	6.68	6.88	6.67
Soluble Fluoride		1	2	1.5	mg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	0.3	<u><10</u>	0.6	0.5	0.5	0.5	0.5	0.5	0.6	0.9	0.5
Free Cyanide	0.007			0.1	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide					mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	-	-	-	-	-	-	-	-	0.024	< 0.004
Aluminium (total)	0.055	_	_		mg/L	0.01	0.08	0.07	0.06	0.09	0.15	0.18	0.06	0.57	0.7	0.15	0.12	0.33	0.08	0.11	7.6	0.16	0.06
Alconding to one (edition of the ed)	0.055	5	5	9	ma/l	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.03		_		_		_				<0.01

Blank Cell indicates no criterion available

^q Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background

_		_	
D A		100	
R A	MB	v	

					Sample Typ	e:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
					Laboratory:		Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab	Envirolab
					Sample date	e:	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21
					Sample ID:		F6	F6	F6	F6	F6	F6	F6	F6	F6	F6	F6	F6	F6	F6
	250/				Project Nan	ne:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
	95% Protection of Aquatic Ecosystems	Irrigation	Stock Watering	Recreational	Site:		Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri	Hydro Kurri Kurri				
	Ecosystems				Section:		Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
					Aquifer:		Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
					SWL (m AH	D):	1.82	1.77	1.52	1.38	1.25	1.07	1.03	1.16	1.52	1.32	1.51	2.25	2.12	2.06
					Sample Des	cription:	Clear, no odour	Clear	Clear, slight sulphidic odour	Clear, sulphidic odour	Clear, black particulate, sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour	Clear, sulphidic odour	Clear, no odour	Clear, no odour	Clear, colourless, strong odour	Clear to slightly turbid, colourless, slight odour,	Clear to slightly turbid, colourless, no odour	Clear, colourless, sulphidic odour
Analyte grouping/Ar	nalyte				Units	LOR														
pH (field)	6.5-8°			5 - 9	pH units	=	7.85	6.66	6.73	6.57	6.62	5.61	6.75	6.72	6.83	7.05	6.49	6.51	6.84	7.08
pH (field) Soluble Fluoride	6.5-8 ^a	1	2	5 - 9 1.5	pH units mg/L	- 0.1	7.85 1	6.66 0.6	6.73 0.4	6.57 0.5	6.62 0.5	5.61 0.4	6.75 0.6	6.72 0.5	6.83 0.4	7.05 0.6	6.49 0.5	6.51 0.6	6.84 0.4	7.08 0.6
	6.5-8° 0.007	1	2	1	+ +		7.85 1 <0.004	1												
Soluble Fluoride		1	2	1.5	mg/L	0.1	1	0.6	0.4	0.5	0.5	0.4	0.6	0.5	0.4	0.6	0.5	0.6	0.4	0.6
Soluble Fluoride Free Cyanide		1	2	1.5	mg/L mg/L	0.1 0.004	1 <0.004	0.6 <0.004	0.4 <0.004	0.5 <0.004	0.5 <0.004	0.4 <0.004	0.6 <0.004	0.5 <0.004	0.4 <0.004	0.6 <0.004	0.5 <0.004	0.6 <0.004	0.4 <0.004	0.6 <0.004

Blank Cell indicates no criterion available

 $\ensuremath{^{\text{o}}}$ Values for lowland rivers from Table 3.3.2 in ANZECC (2000)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

For Limit of Reporting (LOR) refer to laboratory certificates of analysis

Concentration in grey box exceed 95% Protection of Aquatic Ecosystems criteria value

Concentration in red font exceed Irrigation criteria value

Concentration in **bold** font exceed Stock Watering criteria value

Table vi: Results Shallow Aquifer, Background RAMBOLL

	Duplicate Typ	e:	Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplciate		Primary	Intra- laboratory		Primary	Intra- laboratory		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary
	Sample Type:		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	r Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater
	Sample date:		Feb-15	Feb-15	RPD%	Feb-15	Feb-15	RPD%	Feb-15	Feb-15	RPD%	Jun-15	Jun-15	RPD%	Jun-15	Jun-15	RPD%	Jun-15	Jun-15	RPD%	Sep-15	Sep-15	RPD%	Sep-15
	Sample ID:		G2	QA1	INI B70	G2	QA2	III D70	E11	QA3	111 15 70	PUMP	QA1 (QA100)	10 270	W7M	QA2 (QA101)	KI D70	W7M	QA3 (QC200)	141 270	PUMP	QA100	IN B70	W7M
	Project Name	::	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly r Groundwater Monitoring		Quarterly Groundwater Monitoring			Quarterly Groundwater Monitoring			Quarterly Groundwater Monitoring
	Sampling Met	hod:	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	<u> </u>	Low-flow	Low-flow	<u>l</u>	Low-flow
Analyte grouping/An	aaly Units	LOR																						
Soluble Fluoride	mg/L	0.1	0.28	0.28	0.0	0.28	0.4	35.3	230	240	4.3	200	210	4.9	810	850	4.8	810	895	10.0	680	670	1.5	660
Free Cyanide	mg/L	0.004	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	0.005	0.005	0.0	< 0.08	<0.08	NC	<2	< 4	NC	<2	<0.040	NC	0.029	0.027	7.1	< 0.04
Total Cyanide	mg/L	0.004	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	7.7	13	51.2	8.7	9.3	6.7	170	180	5.7	170	107	45.5	110	100	9.5	100
Aluminium (total)	mg/L	0.01	2.9	2.8	3.5	2.9	1.62	56.6	5	5.2	3.9	120	120	0.0	32	3.4	161.6	32	3.42	161.4	610	6,200	164.2	8700

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

	Intra-			Inter-			Intra-			Inter-			Intra-			Inter-			Intra-			Intra-
Duplicate Type:	laboratory Duplicate		Primary	laboratory Duplicate		Primary	laboratory Duplicate		Primary	laboratory Duplicate		Primary	laboratory Duplicate		Primary	Iboratory Duplicate		Primary	laboratory Duplicate		Primary	laboratory Duplicate
Sample Type:	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	Ī	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	r Groundwater
Sample date:	Sep-15	RPD%	Sep-15	Sep-15	RPD%	Dec-15	Dec-15	RPD%	Dec-15	Dec-15	RPD%	Apr-16	Apr-16	RPD%	Apr-16	Apr-16	RPD%	Apr-16	Apr-16	RPD%	Jul-16	Jul-16
Sample ID:	QA101	KI D76	W7M	QA200	KI D /6	W2D	QA101	KI D76	W2D	QA201	KI D76	G2	QA101	KI D/6	G2	QA201	KI D70	E11	QA102	KI D 70	G2	QC101
Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly r Groundwater Monitoring
Sampling Method:	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	Ī	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow

Soluble Fluoride	mg/L	0.1	13	192.3	660	648	1.8	1300	1200	8.0	1300	1300	0.0	0.2	0.2	0.0	0.2	0.3	40.0	120	120	0.0	0.3	0.3
Free Cyanide	mg/L	0.004	< 0.004	NC	< 0.04	< 0.04	NC	0.88	0.67	27.1	0.88	0.7	22.8	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004
Total Cyanide	mg/L	0.004	1.9	192.5	100	56.9	54.9	290	300	3.4	290	290	0.0	0.046	0.038	19.0	0.046	< 0.004	NC	15	15	0.0	<0.004	< 0.004
Aluminium (total)	mg/L	0.01	2100	122.2	8700	2270	117.2	3.5	3	15.4	3.5	2.8	22.2	9.6	8.9	7.6	9.6	10	4.1	7.6	9.4	21.2	1.2	1.2
Aluminium (dissolved)	mg/L	0.01	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

LOR

Shaded cells exceed RPD >30%

Analyte grouping/Analy Units

Table vi: Results Shallow Aquifer, Background RAMBOLL

NC

	Duplicate Typ	oe:		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate	
	Sample Type	:	П	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	
	Sample date:	:	RPD%	Jul-16	Jul-16	RPD%	Jul-16	Jul-16	RPD%	Oct-16	Oct-16	RPD%	Oct-16	Oct-16	RPD%	Oct-16	Oct-16	RPD%	Dec-16	Dec-16	RPD%	Dec-16	Dec-16	RPD%
	Sample ID:		1070	G2	QC102	KI D70	W7M	QC100	KI D70	W5D	QA100	KI D 70	W5D	QA200	KI D/0	A7	QA101	KI D 76	N2	2DUP	KI D/6	F5	5DUP	Ki D /6
	Project Name	: :		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	
	Sampling Me	thod:	П	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	
Analyte grouping/Ar	aly Units	LOR																						
Soluble Fluoride	mg/L	0.1	0.0	0.3	0.2	40.0	870	900	3.4	0.5	0.4	22.2	0.5	0.5	0.0	390	390	0.0	0.8	0.7	13.3	< 0.1	< 0.1	NC
Free Cyanide	mg/L	0.004	NC	< 0.004	< 0.004	NC	0.072	0.084	15.4	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	0.03	0.03	0.0	< 0.004	< 0.004	NC	<0.004	< 0.004	NC
Total Cyanide	mg/L	0.004	NC	< 0.004	< 0.004	NC	250	260	3.9	0.005	0.005	0.0	0.005	< 0.003	NC	76	94	21.2	0.12	0.098	20.2	< 0.004	< 0.004	NC

0.1

7.4

NC

0.14

0.14

0.0

NC

2.1

4.7

NC

5.6

5.2

2.2

LOR = Limit of Reporting

Aluminium (total)

Aluminium (dissolved)

<value = Less than the laboratory Limit of Reporting (LOR)

mg/L

mg/L

0.01

0.01

0.0

NC

0.79

41.2 0.08

NC

0.08

0.0

NC

0.14

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

Sample Type: Groundwater G				olicate		Duplicate			Duplicate			Duplicate			Duplicate		Primary	laboratory Duplicate		Primary
	Groundwater	Gr	oundwater Groun	ndwater	Groundwate	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	•	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater
Sample date: Mar-17	Mar-17	PD%	Mar-17 Ma	ar-17 RPD	Mar-17	Mar-17	RPD%	Jun-17	Jun-17	RPD%	Jun-17	Jun-17	RPD%	Jun-17	Jun-17	RPD%	Sep-17	Sep-17	RPD%	Sep-17
Sample ID: E5D	DUP1	20%	E5D TR	RIP1	W6D	DUP2	RPD%	N8	DUP1	RPD%	G2	TRIP1	RPD%	G2	DUP2	KPD%	G2	DUP1	KPD%	G2
Project Name: Quarterly Groundwater G Monitoring	Quarterly Groundwater Monitoring	Gr	oundwater Groun	arterly ndwater litoring	Quarterly Groundwate Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	•	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring
Sampling Method: Low-flow	Low-flow		Low-flow Low	v-flow	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	•	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow

Soluble Fluoride	mg/L	0.1	22	19	14.6	22	21.9	0.5	1.4	0.5	94.7	0.4	0.4	0.0	0.2	0.3	40.0	0.2	0.3	40.0	0.3	0.3	0.0	0.3
Free Cyanide	mg/L	0.004	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004
Total Cyanide	mg/L	0.004	5.5	2.3	82.1	5.5	3.04	57.6	0.043	0.043	0.0	< 0.004	0.2	NC	< 0.004	< 0.004	NC	< 0.004	0.004	NC	< 0.004	< 0.004	NC	< 0.004
Aluminium (total)	mg/L	0.01	64	26	84.4	64	13.1	132.0	1.1	0.8	31.6	3.9	4.9	22.7	6.6	1.04	145.5	6.6	9.4	35.0	1.8	4.9	92.5	1.8
Aluminium (dissolved)	mg/L	0.01	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-	-	NC	-

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

NC

NC

	Duplicate Type	e:	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate
	Sample Type:		Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	i	Groundwater	Groundwater
	Sample date:		Sep-17	RPD%	Sep-17	Sep-17	RPD%	Dec-17	Dec-17	RPD%	Dec-17	Dec-17	RPD%	Dec-17	Dec-17	RPD%	Mar-18	Mar-18	RPD%	Mar-18	Mar-18	RPD%	Mar-18	Mar-18
	Sample ID:		TRIP1	KI D 76	N8	DUP2	KI D70	W2D	DUP1	KI D 70	W2D	TRIP1	KI D70	G2	DUP2	KI D 70	F6	DUP1	KI D 76	G5	TRIP1	i Ki D/s	G5	DUP2
	Project Name		Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
	Sampling Met	hod:	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow
Analyte grouping/Ana	ly Units	LOR																						
Soluble Fluoride	mg/L	0.1	0.4	28.6	0.4	0.4	0.0	1200	1200	0.0	1200	1430	17.5	0.4	0.4	0.0	0.9	1	10.5	0.2	0.2	0.0	0.2	0.2
Free Cyanide	mg/L	0.004	<0.004	NC	<0.004	< 0.004	NC	0.006	0.012	66.7	0.006	<1	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004
Total Cyanide	mg/L	0.004	< 0.004	NC	0.41	0.027	175.3	200	230	14.0	200	268	29.1	< 0.004	< 0.004	NC	0.024	0.023	4.3	< 0.004	< 0.004	NC	< 0.004	< 0.004
																						\		

NC

LOR = Limit of Reporting

Aluminium (dissolved)

<value = Less than the laboratory Limit of Reporting (LOR)

mg/L

0.01

NC

NC

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

	Duplicate Typ	e:		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate	
	Sample Type:	:		Groundwater	Groundwater		Groundwater	Groundwater	1	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	í '
	Sample date:		RPD%	Jun-18	Jun-18	RPD%	Jun-18	Jun-18	RPD%	Jun-18	Jun-18	RPD%	Sep-18	Sep-18	RPD%	Sep-18	Sep-18	RPD%	Sep-18	Sep-18	RPD%	Dec-18	Dec-18	RPD%
	Sample ID:		KFD/6	E5D	QA101	KFD/6	W1D	QA102	KFD/6	W1D	QA103	KFD /0	W3D	QA101	KFD /0	G2	QA102	KFD/6	G2	QA103	RFD //	E5D	QA101	KFD/6
	Project Name	: :		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	
	Sampling Met	thod:		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	<u> </u>
Analyte grouping/Anal	ly Units	LOR																						
Soluble Fluoride	mg/L	0.1	0.0	14	14	0.0	5.1	5.9	14.5	5.1	5.1	0.0	0.1	0.1	0.0	0.4	0.4	0.0	0.4	0.4	0.0	11	11	0.0
Free Cyanide	mg/L	0.004	NC	< 0.004	< 0.004	NC	<0.004	< 0.005	NC	<0.004	<0.004	NC	< 0.004	<0.004	NC	< 0.004	<0.004	NC	<0.004	< 0.004	NC	<0.004	<0.004	NC
Total Cyanide	mg/L	0.004	NC	1.6	1.7	6.1	0.69	0.532	25.9	0.7	0.7	4.3	< 0.004	< 0.004	NC	0.006	0.006	0.0	0.006	0.01	50.0	0.81	0.82	1.2
Aluminium (total)	mg/L	0.01	23.5	4.1	3.8	7.6	0.88	0.58	41.1	0.88	0.93	5.5	0.9	1.0	5.4	0.57	0.49	15.1	0.57	0.37	42.6	0.72	0.6	18.2
Aluminium (dissolved)	mg/L	0.01	NC	< 0.01	< 0.01	NC	0.14	0.1	33.3	0.1	0.1	0.0	0.9	1.0	9.4	< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	0.03	0.02	40.0

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

	Duplicate Typ	oe:	Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary
	Sample Type	:	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	r Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	1	Groundwater
	Sample date:		Dec-18	Dec-18	RPD%	Dec-18	Dec-18	RPD%	Mar-19	Mar-19	RPD%	Mar-19	Mar-19	RPD%	Mar-19	Mar-19	RPD%	Jun-19	Jun-19	RPD%	Jun-19	Jun-19	RPD%	Jun-19
	Sample ID:		W1D	QA103	KFD/0	W1D	QA102	KFD /6	W5D	QA101	KFD/0	G5	QA103	KFD //o	W5D	QA102	KFD/0	G2	QA101	KFD/0	F6	QA102	KFD/6	F6
	Project Name	e :	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring			Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring
	Sampling Me	thod:	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	L	Low-flow
Analyte grouping/Anal	ly Units	LOR																						
Soluble Fluoride	mg/L	0.1	4.8	5.7	17.1	4.8	4.8	0.0	0.3	0.3	0.0	< 0.1	0.1	NC	0.3	0.5	50.0	0.3	0.3	0.0	0.5	0.5	0.0	0.5
Free Cyanide	mg/L	0.004	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004
Total Cyanide	mg/L	0.004	0.67	0.171	118.7	0.67	0.45	39.3	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004
Aluminium (total)	mg/L	0.01	0.43	0.76	55.5	0.43	0.51	17.0	0.44	0.38	14.6	0.3	0.3	12.9	0.44	0.36	20.0	0.7	0.7	0.0	0.05	0.04	22.2	0.05
Aluminium (dissolved)	mg/L	0.01	0.25	< 0.01	NC	0.25	0.21	17.4	< 0.01	< 0.01	NC	30.0	30.0	0.0	< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	<0.01
																					-		$\overline{}$	1

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

Duplicate Type:	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate
Sample Type:	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	1	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater
Sample date:	Jun-19	RPD%	Sep-19	Sep-19	RPD%	Sep-19	Sep-19	RPD%	Sep-19	Sep-19	RPD%	Dec-19	Dec-19	RPD%	Dec-19	Dec-19	RPD%	Dec-19	Dec-19	RPD%	Mar-20	Mar-20
Sample ID:	QA103	KFD /0	F6	QA101	KFD/0	G5	QA102	KFD //	G5	QA103	KFD/6	G2	QA101	KFD/6	G5	QA102	KFD/0	G5	QA103	KFD /6	F6	D01
Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Groundwater N	Groundwater N		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	•	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring
Sampling Method:	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow

Soluble Fluoride	mg/L	0.1	0.5	0.0	0.5	0.5	0.0	0.2	0.3	40.0	0.2	0.3	40.0	0.3	< 0.1	NC	0.1	< 0.1	NC	0.1	0.1	0.0	0.6	0.6
Free Cyanide	mg/L	0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004									
Total Cyanide	mg/L	0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004									
Aluminium (total)	mg/L	0.01	0.08	46.2	0.12	0.18	40.0	0.29	0.32	9.8	0.29	0.48	49.4	1.3	1.2	8.0	0.41	0.37	10.3	0.41	0.29	34.3	0.03	0.02
Aluminium (dissolved)	mg/L	0.01	< 0.01	NC	< 0.01	< 0.01	NC	0.01	< 0.01	NC	0.01	< 0.01	NC	< 0.01	< 0.01	NC	0.02	0.02	0.0	0.02	0.02	0	< 0.01	< 0.01
																							,	

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

LOR

Shaded cells exceed RPD >30%

Analyte grouping/Analy Units

Table vi: Results Shallow Aquifer, Background RAMBOLL

	Duplicate Type	e:		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra- laboratory Duplicate	
	Sample Type:		1	Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater	
	Sample date:		RPD%	Mar-20	Mar-20	RPD%	Mar-20	Mar-20	RPD%	Jun-20	Jun-20	RPD%	Jun-20	Jun-20	RPD%	Jun-20	Jun-20	RPD%	Sep-20	Sep-20	RPD%	Sep-20	Sep-20	RPD%
	Sample ID:		RFD/8	G5	D02	KFD/6	G5	T01	KFD/6	G2	D01_170620	KFD //o	F6	D02_180620	KFD /6	F6	T01_180620	KFD/0	G2	DUP1	KFD/6	G5	DUP2	KFD/0
	Project Name:	:		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	
	Sampling Meth	hod:		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow	
Analyte grouping/Analy	Units	LOR									I													
Soluble Fluoride	mg/L	0.1	0.0	0.2	0.3	40.0	0.2	0.3	40.0	0.3	0.3	0.0	0.5	0.5	0.0	0.5	0.6	18.2	0.2	0.3	40.0	<0.1	0.1	NC
Free Cyanide	mg/L	0.004	NC	< 0.004	< 0.04	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	<0.004	NC
H +++							_				1			1										
Total Cyanide	mg/L	0.004	NC	< 0.004	< 0.04	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.008	NC
Total Cyanide Aluminium (total)	mg/L mg/L	0.004 0.01	<i>NC</i> 40.0	<0.004 0.11	<0.04 0.08	<i>NC</i> 31.6	<0.004	<0.004 0.12	<i>NC</i> 8.7	<0.004	<0.004	<i>NC</i> 0.0	<0.004	<0.004 0.05	NC 22.2	<0.004 0.04	<0.004	<i>NC</i> 40.0	<0.004	<0.004	NC 11.1	<0.004	<0.008	<i>NC</i> 13.3

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

	Duplicate Typ	e:	Primary	Inter- laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary
	Sample Type:		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater
	Sample date:		Sep-20	Sep-20	RPD%	Dec-20	Dec-20	RPD%	Dec-20	Dec-20	RPD%	Dec-20	Dec-20	RPD%	Mar-21	Mar-21	RPD%	Mar-21	Mar-21	RPD%	Mar-21	Mar-21	RPD%	Jun-21
	Sample ID:		G5	TRIP1	KI D76	W6D	D01_2020120	KI D76	W6D	T01_20201208	KI D /6	F6	D02_091220	KI D70	W2D	D01_20210317	KI D70	F5	5	KI D70	W2D	T01_20210317	KI D 70	G2
	Project Name	:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring
	Sampling Met	hod:	Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow
Analyte grouping/Anal	y Units	LOR																						
Soluble Fluoride	mg/L	0.1	< 0.1	< 0.1	NC	<0.1	< 0.1	NC	< 0.1	0.1	NC	0.6	0.7	15.4	1000	920	8.3	0.2	0.2	0.0	1000	930	7.3	0.3
																								0.5
Free Cyanide	mg/L	0.004	< 0.004	< 0.004	NC	<0.004	<0.004	NC	< 0.004	<0.004	NC	< 0.004	< 0.004	NC	0.005	0.005	0.0	< 0.004	< 0.004	NC	0.005	0.006	18.2	<0.004
Free Cyanide Total Cyanide	mg/L mg/L	0.004 0.004	<0.004 <0.004	<0.004 <0.004	NC NC	<0.004 <0.004	<0.004 <0.004	NC NC	<0.004 <0.004	<0.004 <0.004	NC NC	<0.004	<0.004 0.007		0.005 120	0.005 120	0.0	<0.004 <0.004	<0.004 <0.004	NC NC	0.005 120	0.006 100		1
	· ·					ł				+		-		NC		+					_	ł – – – ł	18.2	<0.004

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

Di	ouplicate Type:	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Intra-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary	Inter-laboratory Duplicate		Primary	Intra- laboratory Duplicate		Primary
Sa	ample Type:	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater	Groundwater		Groundwater
Sa	ample date:	Jun-21	RPD%	Jun-21	Jun-21	RPD%	Jun-21	Jun-21	RPD%	Sep-21	Sep-21	RPD%	Sep-21	Sep-21	RPD%	Sep-21	Sep-21	RPD%	Dec-21	Dec-21	RPD%	Dec-21
Sa	ample ID:	D01_2021061	KI D 76	F6	D02_20210616	KI D70	G2	101_2021061	KI D70	E5D	D01_20210920	KI D70	W5D	D02_2021092	KI D 70	E5D	T01_20210920	KI D 70	W5D	D01_2021120 2	KI D 70	G5
Pr	roject Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring
Sa	ampling Method:	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow	Low-flow		Low-flow
Analyte grouping/Analy	Units LOR						·													·		

Soluble Fluoride	mg/L	0.1	0.3	0.0	0.3	0.6	66.7	0.3	0.3	0.0	7.6	7.7	1.3	0.3	0.3	0.0	7.6	< 0.0001	NC	0.5	0.5	0.0	0.3
Free Cyanide	mg/L	0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	<0.00004	NC	< 0.004	< 0.004	NC	< 0.004
Total Cyanide	mg/L	0.004	< 0.004	NC	< 0.004	< 0.004	NC	< 0.004	< 0.004	NC	0.17	0.2	16.2	< 0.004	< 0.004	NC	0.17	0.00126	197.1	< 0.004	< 0.004	NC	< 0.004
Aluminium (total)	mg/L	0.01	1.9	89.0	2.7	0.008	198.8	0.73	1.3	56.2	0.42	0.37	12.7	0.27	0.4	38.8	0.42	0.26	47.1	0.38	0.28	30.3	0.06
Aluminium (dissolved)	mg/L	0.01	< 0.01	NC	2	< 0.01	NC	< 0.01	< 0.01	NC	0.02	0.01	66.7	< 0.01	0.01	NC	0.02	0.01	66.7	0.02	0.02	0.0	0.03

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)</pre>

Shaded cells exceed RPD > 30%

Table vi: Results Shallow Aquifer, Background

Duplicate Type:	Intra-laboratory Duplicate		Primary	Inter- laboratory Duplicate	
Sample Type:	Groundwater		Groundwater	Groundwater	
Sample date:	Dec-21	RPD%	Dec-21	Dec-21	RPD%
Sample ID:	D02_20211202	KI D 76	W5D	101_2021120	KI D/0
Project Name:	Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	
Sampling Method:	Low-flow		Low-flow	Low-flow	

alv	te aroupina/An	alv Unit	s LOR

Soluble Fluoride	mg/L	0.1	0.3	0.0	0.5	0.3	50.0
Free Cyanide	mg/L	0.004	< 0.004	NC	< 0.004	< 0.004	NC
Total Cyanide	mg/L	0.004	< 0.004	NC	< 0.004	< 0.004	NC
Aluminium (total)	mg/L	0.01	0.04	40.0	0.38	0.1	116.7
Aluminium (dissolved)	mg/L	0.01	0.03	0.0	0.02	< 0.01	NC

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)</pre>

Shaded cells exceed RPD >30%

Table vi: Results Shallow Aquifer, Background RAMBOLL

Sample Type:	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank
Sample date:	Feb-15	Jun-15	Sep-15	Dec-15	Apr-16	Jul-16	Oct-16	Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19	Dec-19	Mar-20	Jun-20
Sample ID:	QB1	QA4 (QA300)	QA300	QA301	QA301	QA300	QA300	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	QC101	QC101	QC101	QC101	R01	QC101	QC101	R01	R01_180320
Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring			Quarterly Groundwater Monitoring			Quarterly Groundwater Monitoring		Quarterly Groundwater Monitoring				Quarterly Groundwater Monitoring					Quarterly Groundwater Monitoring	

Analyte grouping/Analy	Units	LOR																						
Soluble Fluoride	mg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Free Cyanide	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Cyanide	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Aluminium (total)	mg/L	0.01	0.05	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aluminium (dissolved)	mg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
																								1

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR)</p>
Shaded cells indicate when above the acceptance criteria for Trip Spikes/Blanks and Rinsates

Table vi: Results Shallow Aquifer, Background

Sample Type:	Rinsate Blank	Rinsate Blank
Sample date:	Sep-20	Dec-20
Sample ID:	R01_20200923	R01_091220
Project Name:	Quarterly Groundwater Monitoring	Quarterly Groundwater Monitoring

Analyte grouping/Analy	Units	LOR		
Soluble Fluoride	mg/L	0.1	< 0.1	< 0.1
Free Cyanide	mg/L	0.004	< 0.004	< 0.004
Total Cyanide	mg/L	0.004	< 0.004	< 0.004
Aluminium (total)	mg/L	0.01	< 0.01	< 0.01
Aluminium (dissolved)	mg/L	0.01	< 0.01	< 0.01

LOR = Limit of Reporting

<value = Less than the laboratory Limit of Reporting (LOR Shaded cells indicate when above the acceptance criteria for Trip Spikes/Blanks and Rinsates</p>

APPENDIX 4 FIELD PARAMETER FORMS

No.	Well ID	Well Depth (m)	Notes (March) 2021
1	A7	4.32	25/03/21
2	E11	4.82	17/03/21
3	E4	3.4	25/03/21
4	E5	2.57	17/03/21
5	E5D	5.44	17/03/21
6	F5	7.37	25/03/21
7	F6	15.48	18/03/21
8	G2	13.42	17/03/21
9	G5	11.31	25/03/21
10	G6	7.14	18/03/21
11	N2	5.62	17/03/21
12	N8	5.3	17/03/21
13	N9	2.83	17 (03/21
14	PUMP	3.45	17/03/21
15	W1D	10.38	25/03/21
16	W1S	2.41	25/03/21
17	W2D	6.36	17/03/21
18	W2S	2.37	17/03/21
19	W3D	10.08	25/03/21 >
20	W3S	2.55	25/03/21
21	W3SA	0.5	destroyed
22	W4D	10	destroyed
23	W4S	1.12	25/03/21
24	W5D	10.54	17/03/21
25	W5S	1.7	17/03/21
26	W6D	8.8	17/03/21
27	W6S	3.1	Dry
28	W7M	3.72	17/03/21
29	W7S	2.3	Dry

cunable to be sampled

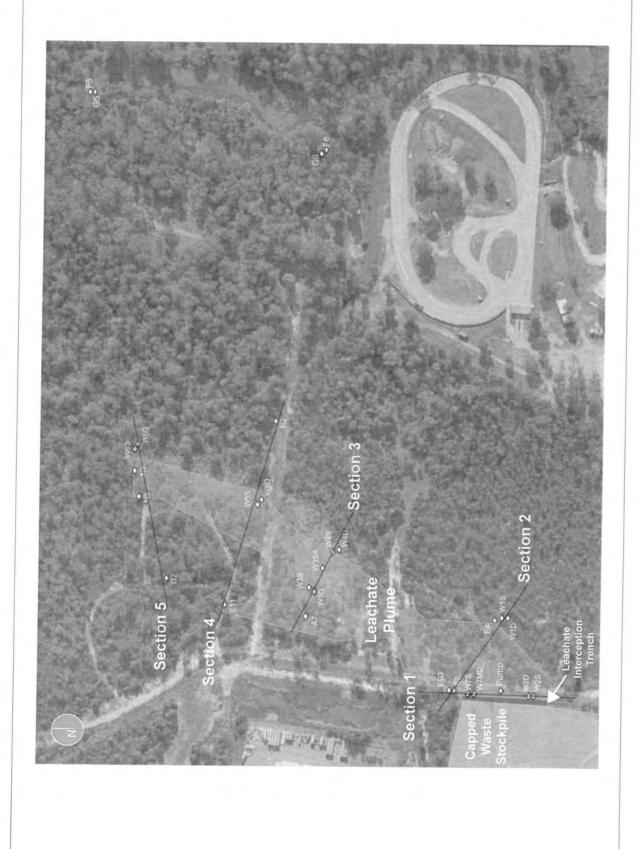


Figure 2 | Groundwater Monitoring Well Network, 2019 Annual Groundwater Monitoring Report

RAMBOLL

Daily Field Report

Project Name: Quarterly GW Monitoring 2021 | Ramboll Personnel: J Bourke

Project No:

318001103

Date:

17/03/2021

Start time:

7.000m

Finish time:

Weather:

2.10pm

Subcontractors: arcast, raining - top of 22°C

BoM

Field Report:

7.00am - JAB arrived onsite to neet Glenn and load gear into Glenn's work ute.

7.30am - JAB and Grenn commence sampling of Gw wells on Section 1, section 5 and most of section 4.

1.30pm - JAB and Glenn call it a day on Section 4 well NZ,

1.55pm - JAB and Etenn transfer gear off Glenn's ute

2.10pm_JAB leaves site for today

wells completed:

WZS, WZD, PUMP, W7S, W7M, E5, E5D, GZ, NB, N9, W6D, W6S, EII, W55, W5D, N2,

QA/QC

DOI - 20210317

Primary sample WZD

Level 2, 200 Adelaide Terrace East Perth WA 6004

Ph: 08 9225 5199

Level 3, 100 Pacific Highway North Sydney NSW 2060

Ph: 02 9954 8100

Suite 18, 50 Glebe Road The Junction NSW 2291

Ph: 02 4962 5444

Ramboll Australia Ptv 1td ACN 095 437 442 ABN 49 095 437 442 www.ramboll.com

Low Flow Groundwater Sampling Field Parameter Form

Droine	h Niamaa.	165.									Well ID:	W25
Project Name: Hydro Quarterly Groundwater Monitoring 2021 Project No: 318001103						Ramboll Personnel: J Bourke						
Date:	L NO.	17	03/2	1				_				
Start t	ime:								C 1			
Start time: 7.300m Finish time: 7.500m								Subcontractors:				
	leasurer		5000	<u> </u>								
		rs in We	ell:						DDDD	Managemen		
		ndwater		23m						Measuren	nent device:	
Correct				3001					m m	IP	Probe	
Ground	lwater E	levation	:						m	Moscuron	nent device:	
Depth 1	to Immi	scible La	yer						m	Measuren	ient device:	
Thickne	ess to Ir	nmiscibl	e layer:						m			
Well De			2.	38 m)				m	Measurem	ent device:	
Thickne	ess to G	roundwa	ter Colu	mn:					m	ricasarcii	iene device.	
	mpling											
Method	-				□ Micr	o-Purge			Peris	talic	□В	ailer
	ampling								End Sar			dici
Sample	Appear	ance:	_									
Stabil	ity Parai	meters	<0.1m	<u>+</u> 0.1°C	±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	<u>+</u> 109	% <u>+</u> 10%		
TIME	Vol (L)	flowrate (L/min)	Drawdow n (m)	TEMP (°C)	pН	SPEC.	DO (mg/L)	Redox (mV)	TDS		Comments (A	ppearance, colou d odour)
: XX	0.4		Z.38	19.13	7.19	4170	4.48	-3	2.6			ight brown
Nega	tive Re	dox and	1 >2ma	/L DO	RECALT	BRATE ar	d charle	2001-	•			
										1912 00	2 C	الماما
		PW	Se	dry	- O	2000	red o	und	150	mples	taken	from flow
mpies	riiterea	Me	tal5		ter	terrel	2.3	8 w	bTO	C		- Cel
			verce	+26								
ner:												

Low Flow Groundwater Sampling Field Parameter Form WZD Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 17/03/21 Start time: 7.50am Subcontractors: Finish time: 8.30 am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 6.36 m Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L ±10% ±10% +10% unit TEMP flowrate Drawdow SPEC. DO TIME Vol (L) TDS Turbidity Comments (Appearance, colour рΗ (L/min) n (m) (°C) (mg/L) (mV) (19/EIII) (NTU) and odour) COND. (µS/cm Slightly tourbid, brown, 2.51 19.19 9.75 29900 1.32 -266 18.3 145 strong odow 19.45 9.73 30100 0.42 -262 18.59 230 19.01 9.72 30200 0.18 -370 18.4221 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. DOL 20210317 and Miscellaneous Field Comments TO1-20210317 taken from this well Well Head Integrity: Metals 3.88 mb TOC nother level Samples Filtered: Weather Conditions: Overcast Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 17/03/21 Start time: 8.30am Subcontractors: Finish time: 9.05am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.15 m m Correction: IP Probe m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 3.45 m Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge ☑ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% +10% +10% flowrate TEMP Drawdow TIME SPEC Redox Vol (L) DO TDS Turbidity рΗ Comments (Appearance, colour (L/min) n (m) (°C) (mg/L) COND. (µS/cm (mV) (NTU) and odour) turbial, parte black/ 3.33 0.46595.4 grey/brown, strong adour 774 0.57 -// 0.48 4 0.387 84.7 6 0.329 331 11 L. 0.313 274 L L, IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: Final water level 2.56mbTOC Samples Filtered: Metals

Other:

Weather Conditions: Overcast/Rain

Low Flow Groundwater Sampling Field Parameter Form Well ID: MM Hydro Quarterly Groundwater Monitoring 2021 Project Name: Ramboll Personnel: J Bourke Project No: 318001103 17/03/21 Date: 9.13am Start time: Subcontractors: Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: 2.62 m Depth to Groundwater Correction: Groundwater Elevation: Measurement device: m Depth to Immiscible Laver m Thickness to Immiscible layer: m Well Depth 3.72m Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: Peristalic ☐ Micro-Purge □ Bailer End Sampling: Start Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L +10% +10% +10% unit TEMP Redox flowrate Drawdow SPEC DO TDS Turbidity Comments (Appearance, colour TIME Vol (L) (L/min) n (m) (mg/L) (NTU) and odour) (mV) COND. (µS/cm slightly turbid, dark brown, strong P.97 20.51 9.55 23800 1.01 239 15.0 28.3 odour 3.1020.60 9.52 22100 tv 20.67 9.48 20800 0.35 - 298 12.9 1.3 17.6 L -280 129 11.0 4 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: Final moder Level 3.21 mbTOC Samples Filtered: Metals Weather Conditions: Overcost Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project Name: 318001103 Project No: 17/03/21 Date: 9.10am Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.32m IP Probe Correction: Measurement device: Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 2.32m Measurement device: Well Depth m Thickness to Groundwater Column: m Well Sampling □ Peristalic □ Bailer Method: ☐ Micro-Purge End Sampling: Start Sampling: Sample Appearance: +0.1 pH ±0.1°C +0.1mg/L +10% ±10% <u>+</u>10% Stability Parameters +10% <0.1m unit TEMP Turbidity flowrate Drawdow SPEC. DO TDS Comments (Appearance, colour TIME (mS/cm) and odour) (mg/L) (NTU) (L/min) n (m) (°C) (mV) COND. (µS/cm IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments well Dry. Not sampled Well Head Integrity: Samples Filtered: N/A Weather Conditions: Overtost Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 17/03/21 Start time: 1.40an Subcontractors: 9.56an Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purae □ Bailer Start Sampling: End Sampling: Sample Appearance: +0.1 pH +0.1°C Stability Parameters <0.1m +10% ±0.1mg/L ±10% ±10% ±10% unit TEMP Redox flowrate Drawdow SPEC. DO TDS Turbidity Comments (Appearance, colour TIME Vol (L) (L/min) n (m) (°C) (mg/L) (mS/cm) (NTU) and odour) (mV) COND. (µS/cm Slightly turbid 2.59 0.45 1.26 196 18.89 20100 12500 118 brown, no odowr IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. well purge dry - one set of freid readings taken and sampled from flow cell Miscellaneous Field Comments Well Head Integrity: water level 2.59 mb TOC Samples Filtered: Medous Weather Conditions: Overcast / Rainly Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: E5D Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboil Personnel: J Bourke Project No: 318001103 Date: 17/3/21 Start time: Subcontractors: Finish time: 10.14am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.40m m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C ±10% ±0.1mg/L ±10% +10% +10% unit flowrate Drawdow TEMP Redox TIME SPEC. Vol (L) TDS Turbidity Comments (Appearance, colour (L/min) (mg/L) (mV) (NTU) COND. (µS/cm and odour) Medium turbid 15200 2.29 -72 yellow brown, strong odaw -86 4 15900 0.69 11 L IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: Final water level 2.74 mbTOC

Samples Filtered:

Other:

Weather Conditions: Overcount

metals

Low Flow Groundwater Sampling Field Parameter Form Well ID: Hydro Quarterly Groundwater Monitoring 2021 Project Name: Ramboll Personnel: J Bourke 318001103 Project No: Date: 17/03/21 Start time: 10.20am Subcontractors: 10.48am Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Laver m Thickness to Immiscible layer: m 13.37 m Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer End Sampling: Start Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% ±10% ±10% unit TEMP Redox DO flowrate Drawdow SPEC. Turbidity Comments (Appearance, colour Vol (L) (L/min) n (m) (mg/L) (NTU) and odour) (mV) COND. (µS/cm 0.61 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments 8.56 mbTOC Well Head Integrity: wonter tevel Final Samples Filtered: Metals Weather Conditions: Outrost Other:

Ph: 02 9954 8100

Low Flow Groundwater Sampling Field Parameter Form Well ID: NS Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 17/03/21 Start time: 11:58am Subcontractors: 12:14am Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 3.42m m Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 5.28m Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow Redox Comments (Appearance, colour and odour) SPEC. TDS Turbidity TIME (L/min) n (m) (°C) (mg/L) (NTU) (mV) COND. (µS/cm 3.6x 20.76 6.54 10600 6.01 -108 6.52 244 brown, Slight oder turbid, yellow/onexge/ 6.53 10500 5.41 _107 6.52 261 21.32 6.52 10500 4:20-110 6.54 265 M 11 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water kevel 4.11 mbtoc Samples Filtered: Metals Weather Conditions: rercost Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: 10 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 17/03/21 Date: 10:53am Start time: Subcontractors: Finish time: 11.100m Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.20m m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2.83 m m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge ☑ Peristalic ☐ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L ±10% +10% ±10% unit TEMP flowrate Drawdow SPEC. Redox DO TIME Vol (L) TDS Turbidity Comments (Appearance, colour рΗ (L/min) n (m) (°C) (mg/L) COND. (µS/cm (mV) (NTU) and odour) low tempid, pale brown/fellow 11.00 0.45 2.57 20.10 8.19 10400 0.45 234 chancoul, strong oclour 10500 11.05 0.45 0.56 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Purged dry after samples taken Well Head Integrity: Fival kupl 2.83 mbToc water Samples Filtered: Netals Weather Conditions: Ourcost Other:

RAMBOLL

Low Flow Groundwater Sampling Field Parameter Form WGD Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 17/03/21 Date: Start time: Subcontractors: Finish time: 11:49 am Field Measurements Organic Vapours in Well: ppm Measurement device: 5.97m Depth to Groundwater m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Laver m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L ±10% ±10% +10% TEMP flowrate Drawdow Redox TIME Vol (L) SPEC DO TDS Turbidity Comments (Appearance, colour (L/min) n (m) (mg/L) COND. (µS/cm (NTU) (mV) (mS/cm) and odour) very terrbid, pale 1.32 1000 boun grey no odown 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments NOTE: Trumbidity maxed out at 1000, NTU M. very turbed and hand to FITEN

Well Head Integrity:

Samples Filtered: Weather Conditions:

Other:

noter

Swhy/Overcoust

eve

Low Flow Groundwater Sampling Field Parameter Form

	t Name:	Нус	dro Quari	erly Gr	oundwat	ter Monitor	ina 2021		Rambo	oll Personne	el: J Bourke
Projec	t No:	318	3001103				9		Rambe	n reisonne	er. J Bourke
Date:		17	1/03/2	_(
Start t			:510	in					Subco	ntractors:	
Finish			:52a	m						rer decors.	
	1easurer										
Organi	c Vapou	rs in We							ppm	Measuren	nent device:
		ndwater	3.10	Dm					m		
Correc									m		IP Probe
		levation							m	Measurem	nent device:
Depth	to Immi	scible La	yer						m		ione device.
		nmiscibl							m		
Well De			3.12v	n					m	Measurem	nent device:
hickne	ess to G	roundwa	iter Colui	nn:					m		ione device.
u-II C											
	mpling										
1ethod					□ Micr	o-Purge			□ Peris	talic	□ Bailer
	ampling							E	nd Sar	npling:	
	Appear				1						
Stabil	ity Parai	meters	<0.1m	±0.1°C	±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	+109	6 <u>+</u> 10%	
		flowrate	Drawdow	TEMP	Unit				-		
TIME	Vol (L)	(L/min)	n (m)	(°C)	pН	SPEC.	DO (mg/L)	Redox	103	Turbidity	Comments (Appearance, colo
		-	1	(0)		COND. (µS/cm	(IIIg/L)	(mV)	(mS/ci	n) (NTU)	and odour)
									-		
									1		
									-		
							-		-	+	
									-		
										1	
										-	
Negat celland	tive Receous Fie	dox and ld Comn	l >2mg/ nents			BRATE an				201	Dell
						_ 10	20 3	UN	JOH	CO1 -	DRY
II Head	l Integri	ty: F	LONG	(A)	ton	kvel	N)/A				+
nples I	Filtered:		NIA				- 10/14				
	Conditio				rcox						

Low Flow Groundwater Sampling Field Parameter Form Well ID: EII Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboli Personnel: J Bourke Project No: 318001103 Date: 17/03/21 12:20am Start time: Subcontractors: Finish time: 12:34am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 3.08m m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: Peristalic ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L ±10% ±10% ±10% unit TEMP flowrate Drawdow SPEC. Redox TIME DO Vol (L) Turbidity Comments (Appearance, colour (L/min) n (m) (°C) (mg/L) COND. (µS/cm (NTU) (mV) and odour) 3.12 low turbid, pale 1.30 -124 7.67 73.4 yellow, strong 7.70 67.1 h 4 h IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: rater 3.12 mbroc level

Samples Filtered:

Other:

Weather Conditions:

Metauls

Overcoust

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: .52m Depth to Groundwater m IP Probe Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 1.71m m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge ☑ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% ±10% +10% unit TEMP flowrate Drawdow SPEC. DO TIME Voi (L) TDS Turbidity Comments (Appearance, colour (L/min) n (m) (°C) (mg/L) (ms/cm) (NTU) OND. (µS/cm and odour) 1.61 very turbid, brown, 6.06 1.77 odour 2710 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments wery hard to fit sumples collected from Well Head Integrity: mater leve!

Samples Filtered:

Other:

Weather Conditions: Overcost

timal

Metals

Low Flow Groundwater Sampling Field Parameter Form

Project Name: Hydro Quarterly Groundwater Monitoring 2021 Project No: 318001103 Date: 17/03/z\	Well ID: W	5 D
Date: 17/03/21	Ramboll Personnel: J Bourke	
11/03/21	J Bourke	
Start time: 12:57pm	Subcontractors:	
Finish time: 1.23pm		
Field Measurements		
Organic Vapours in Well:	ppm Measurement device:	
Depth to Groundwater 6.03 m	m	
Correction:	m Probe	
Groundwater Elevation:	m Measurement device:	
Depth to Immiscible Layer	m	
Thickness to Immiscible layer:	m	
Well Depth 10.65m	m Measurement device:	
hickness to Groundwater Column:	m	
Vell Sampling 1ethod: Micro-Purge	/	
netnod:	Peristalic Bailer	
ample Appearance:	End Sampling:	
unit ±10% ±0.1mg/L ±10°		
TIME Vol (L) flowrate (L/min) n (m) $rac{TEMP}{n}$ $rac{pH}{pH}$ $rac{SPEC.}{COND.}$ $rac{DO}{mg/L}$ $rac{mg/L}{mv}$	Total didity Confinents (Appearan	ice, colo
3:04 0.45 6.59 20.44 6.02 6220 1.66 7	200 200 clear colar	rtes
5.92 20.18 5.94 6500 0.48 12	2 4.10 335 11 4	· ·
7.13 0.45 7.15 20.12 5.94 6540 0.47 12		
3.160.95 7.33 20.02 5.95 6530 0.19 10	320	
0.3	(.12)2 \	

Low Flow Groundwater Sampling Field Parameter Form Well ID: N2 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 17/03/21 1.25pm Start time: Subcontractors: 1.56pm Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 4.87m m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purae Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: Stability Parameters ±0.1 pH ±0.1°C <0.1m ±0.1mg/L +10% ±10% ±10% +10% flowrate Drawdow TEMP Redox SPEC TIME Vol (L) DO TDS Turbidity рΗ Comments (Appearance, colour (L/min) n (m) (mg/L) (mV) (NTU) OND. (µS/cm (mS/cm) and odour) 13:32 5.14 19.45 4:13 7280 2:02 283 4:59 herotoly, yellow/brown/ (000) grey, no adour 5.22 1968 4:06 7320 0.71 5.47 19.41 3.95 7180 039 311 4.52 LV 5.55 19.29 3.9 4 6000 0.38 318 IA 1/1 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments NOTE: Turbidity maked out ham at 1000 NTU. Hond to filter. well purged dry - sampled from Well Head Integrity: water level 5.62 mbtoc Final Samples Filtered: Metals Weather Conditions: overcast Other:

Ph: 02 9954 8100

Daily Field Report

Project Name: Quarterly GW Monitoring 2021 Ramboll Personnel: J Bourke

Project No:

318001103

Date:

18/03/21

Start time:

6.30am

Subcontractors:

Finish time:

8.45am

Weather:

Raining - HEAVY & CONSTANT

Field Report:

6.30am JAB armes onsite and transfers grow into Glenn's ate

7.00am Commence sampling by completing

8.30am JAB and Glenn call it a day and postpone samping remaining when sweather is better. Grean transferred out of Glenn's when

8.45 am JAB koves site.

Low Flow Groundwater Sampling Field Parameter Form Well ID: F6 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 18/03/21 Date: 6.54am Start time: Subcontractors: Finish time: 7.4.60h Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 5.17m m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 15.48 m Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purae □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH ±0.1°C Stability Parameters <0.1m <u>+</u>10% ±0.1mg/L ±10% ±10% ±10% unit TEMP flowrate Drawdow Redox SPEC. DO Turbidity TDS Comments (Appearance, colour TIME Vol (L) (L/min) n (m) (°C) (mg/L) (NTU) and odour) (mV) OND. (µS/cm 1.40 clear, colourless. 21.3 60 strong odour 17 u 65 4 3 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments retan 6.68 mbtoc Well Head Integrity: Samples Filtered: Metals Weather Conditions:

Other:

Overcast

Low Flow Groundwater Sampling Field Parameter Form Well ID: G-6 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 18/03/21 Date: Start time: 55am Subcontractors: Finish time: 8.15am Field Measurements Organic Vapours in Well: ppm Measurement device: 5.27m Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L +10% +10% +10% unit TEMP flowrate Drawdow Redox SPEC. DO TDS Turbidity Comments (Appearance, colour TIME Vol (L) рΗ (L/min) n (m) (mg/L) (NTU) (°C) and odour) (mV) (mS/en OND. (µS/cm Slightly turbid, black grey strong odow 1.01 35 30.6 W 27 4 VI V 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: evel 5.45 mbTOC water Samples Filtered: 10-1-21 Weather Conditions: Rouning Other:

RAMBOLL

Daily Field Report

Project Name: Quarterly GW Monitoring 2021 Ramboll Personnel: J Bourke

Project No: 318001103

25/03/2021

Start time: 7.00am

Subcontractors:

Finish time:

Date:

Weather:

Fire/Sunny-top of 26°C

Field Report:

BoM

7.00am JAB armes onsite and meets Glenn to transfer sampling gear into Glenn's ute

7.30am JAB and Glenn commence GW sampling

12.00pm JAB and Glenn complete sampling, and transfer gear off Glenn's rite

12.70pm JAB leaves site

wells completed:

F5, G5, A7, W35, W3D, W45, E4, W15, W1D

QA/QC

DO2_20210325 -> primoury soumple F5

RO1_20210325 > Rinsate

PERTH

Level 2, 200 Adelaide Terrace

East Perth WA 6004

Ph: 08 9225 5199

Level 3, 100 Pacific Highway

North Sydney NSW 2060

Ph: 02 9954 8100

HUNTER

Suite 18, 50 Glebe Road

The Junction NSW 2291

Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 25/03/21 7.43am Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater Z.15m m 1P Proba Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L +10% +10% +10% unit TEMP flowrate Drawdow SPEC. DO Redox Turbidity TDS Comments (Appearance, colour TIME Vol (L) (L/min) n (m) (mg/L) (°C) (NTU) COND. (µS/cm (mV) (ms/FD) and odour) clear to slightly turbid, colourless, 18.18 4.80 12100 1.91 7.50 13.6 24 19.32 7.73 12100 1.10 -20 7.51 12.6 grey, slight odour u 18.30 7.60 12100 0.72 -26 7.50 11.8 18.33 7.63 12100 0.50 -33 7.50 11.0 8.00 0.45 u IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments DO2_20210325 taken Well Head Integrity: Final water level 2.50mb toc Samples Filtered: Metous

Weather Conditions:

Other:

Five

Low Flow Groundwater Sampling Field Parameter Form Well ID: Hydro Quarterly Groundwater Monitoring 2021 Project Name: Ramboll Personnel: J Bourke Project No: 318001103 Date: 25/03/21 Start time: , 26am Subcontractors: Finish time: 8.52am Field Measurements Organic Vapours in Well: ppm Measurement device: 2.13m Depth to Groundwater m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Laver m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow Redox Comments (Appearance, colour and odour) SPEC. Turbidity TIME Vol (L) (L/min) n (m) (mg/L) (NTU) (mV) OND. (µS/cm 2.32 clear, colourless, 12.6 11 M IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: nater level 2.73 motoc Metals Samples Filtered: Weather Conditions: Fine Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: W35 Hydro Quarterly Groundwater Monitoring 2021 Project Name: J Bourke Ramboll Personnel: Project No: 318001103 Date: 25/03/21 Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater Illm m Probe Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters +0.1°C <0.1m +10% ±0.1mg/L ±10% +10% ±10% unit TEMP flowrate Drawdow Redox SPEC. DO Turbidity TDS Comments (Appearance, colour TIME Vol (L) (L/min) n (m) (mg/L) (NTU) and odour) (mV) COND. (µS/cm turbid, yellow/brown 6830 2.52 263 no odour 19.877.19 5500 297 278 3.44 22.4 N 19.85 7.15 5770 2.58 281 3.68 Ú, 19.827.14 6590 1.83 29 1. 1 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments kue! Well Head Integrity: 1.57mbTOC noter Samples Filtered: Weather Conditions: Fine / Sunny Other:

Low Flow Groundwater Sampling Field Parameter Form

											Well ID: W3D		
Project	Name:	Hyd	lro Ouart	erly Gro	oundwate	er Monitori	na 2021		Rambo	Il Personne	: J Bourke		
Project		318	001103			51 110111011	ng zozi		Rambo	ir reisonne	i. J bourke		
Date:			5/03/	21									
Start t	me:	9	,32a	m					Subcor	tractors:			
inish	time:	9	.46a	m									
ield M	easurer	nents											
Organi	c Vapou	rs in We							ppm	Measurem	nent device:		
		ndwater	Or	kno	wh				m				
Correct	tion:								m		IP Probe		
		levation							m	Measurem	ent device:		
		scible La							m				
		nmiscible	e layer:						m				
/ell De									m	Measurem	ent device:		
hickne	ess to G	roundwa	ter Colur	nn:					m				
	mpling												
ethod					□ Micro	-Purge		[□ Peris	talic	□ Bailer		
	ampling							E	nd Sar	npling:			
ample	Appear	ance:											
Stabil	ity Para	meters	<0.1m	<u>+</u> 0.1°C	±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	<u>+</u> 109	6 <u>±</u> 10%			
TIME	Vol (L)	flowrate (L/min)	Drawdow n (m)	TEMP (°C)	pН	SPEC.	DO (mg/L)	Redox (mV)	TDS (mS/c		Comments (Appearance, colou and odour)		
									-				
NI	Alexa B	ala:	4 . 5	/= = =									
nega	tive Re					BRATE ar							
cellar	ieous Fi	eld Com	ments	Ono	ble:	to be	500	mp	led.	One	able to get 2mbtoc		
	1 .	W.	Trok	e or	- 4cu	ung to	when	1 th	noun	4.63	2mbtoc		
	d Integ	,											
	Filtered												
	Condition	ons:	ine/	scun	4								
er:					1								

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 25/03/2 Date: Start time: 10:00 am Subcontractors: Finish time: 10.220m Field Measurements ppm Measurement device: Organic Vapours in Well: 35m Depth to Groundwater m IP Propo Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 4.30 m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH ±0.1°C Stability Parameters ±10% <0.1m +10% ±0.1mg/L ±10% ±10% unit TEMP Redox Drawdow DO Turbidity flowrate SPEC TDS Comments (Appearance, colour TIME (L/min) (ms/cm) and odour) n (m) (mg/L) (mV) (NTU) COND. (µS/cm brown, clean, 10.2 Strong adout 1.48 20.22 9.27 11.0 -368 n 10.14 0.75 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Final water level 1.61 mbTOC Well Head Integrity: Samples Filtered: Fine / Sunn Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 25/03/21 10.24am 10.55am Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 0.84m m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling ☐ Micro-Purge Method: ☑ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L ±10% +10% +10% unit flowrate Drawdow TEMP Redox SPEC. Turbidity TIME TDS Vol (L) Comments (Appearance, colour and (L/min) COND. (µS/cm (mg/L) n (m) (mV) (NTU) odour) very turbid, brown 22.947.66 6630 1.12 organic adour -109 Li ĸ IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Purged well dry. Sample taken from Well Head Integrity: Water Ruel 1.12mbTOC Samples Filtered: Fre/Sunny Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: h115 Hydro Quarterly Groundwater Monitoring 2021 Project Name: Ramboll Personnel: J Bourke Project No: 318001103 25/03/21 Date: Start time: 11.04am Subcontractors: Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: .80m Depth to Groundwater m Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C +10% +0.1mg/L +10% +10% ±10% TEMP Redox flowrate Drawdow SPEC. DO Turbidity TDS Comments (Appearance, colour Vol (L) (L/min) n (m) (mg/L) (NTU) and odour) (mV) COND. (µS/cm 15. turbid, yellow brown, no odow 5 131 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Soumpled from flow cell Well Head Integrity: level 2.37mptoc Final noter Metals Samples Filtered:

Weather Conditions:

Other:

Sunny

Low Flow Groundwater Sampling Field Parameter Form Well ID: WID Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 25/03/21 Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater .87m m IP Probe Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 10.40m m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow SPEC. DO Redox Turbidity TIME TDS Comments (Appearance, colour Vol (L) (L/min) n (m) (mg/L) (mV) OND. (µS/cm (NTU) and odour) clean dank yellow, no adown IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: level 3.12 mbTOC

Samples Filtered: Weather Conditions:

Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: E4 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 25/03/21 Start time: 11.50am Subcontractors: Finish time: 12.21 pm Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 3.41m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: Stability Parameters ±0.1 pH <0.1m ±0.1°C +10% +0.1mg/L +10% +10% +10% flowrate TEMP Drawdow Redox SPEC DO Vol (L) Turbidity Comments (Appearance, colour (L/min) n (m) (mg/L) (NTU) (mV) and odour) OND. (µS/cm clear brown 0.0 5/19ht odow 0.0 u 0.0 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water tevel 1.42 motoc Samples Filtered: Weather Conditions: Other:

No.	Well ID	Well Depth (m)	Notes (June) 2021	
1	A7	4.32	16/06/21	
2	E11	4.82	15/06/21	
3	E4	3.4	16/06/21	
4	E5	2.57	15/06/21	
5	E5D	5.44	15/06/21	
6	F5	7.37	16/06/21	
7	F6	15.48	16/06/21	
8	G2	13.42	15/06/21	
9	G5	11.31	16/06/21	
10	G6	7.14	16/06/21	
11	N2	5.62	16/06/21	
12	N8	5.3	15/06/21	
13	N9	2.83	15/06/21	
14	PUMP	3.45	15/06/21	
15	W1D	10.38	16/06/21	
16	W1S	2.41	16/06/21	
17	W2D	6.36	15/06/21 15/06/21 Potentially damaged (unable to be sampled March 2021) unable to 16/06/21 destroyed	
18	W2S	2.37	15/05/21	4
19	W3D	10.08	Potentially damaged (unable to be sampled March 2021)	be
20	W3S	2.55	16/05/21 Sampled	0000
21	W3SA	0.5	destroyed	2021
22	W4D	10	destroyed	,
23	W4S	1.12	16/06/21	
24	W5D	10.54	16/06/21	
25	W5S	1.7	Dry	
26	W6D	8.8	15/06/21	
27	W6S	3.1	Dry	
28	W7M	3.72	15/06/21	
29	W7S	2.3	15/06/21	

4

a.

Daily Field Report

Project Name: Quarterly GW Monitoring 2021 Ramboll Personnel: J Bourke

Project No: 318001103

Date: 15/06/21

Start time: 7.00 am Subcontractors:

Finish time: 2.15pm

Weather: Fine /sunny - top of 17°C

Field Report:

7.00am JAB arrives onsite and meets Glenn. Both transfer sampling gear into Glenn's cite.

7.25am Commence Gew sampling of wells W25, W2D, PUMP, W75, WTM, E5, E5D, G2, N9, W6D, W65, N8 and E11

2.00pm Completed GW sampling for today. Travel back to site office. Transfer gear off Glenn's Lite.

2.15pm JAB leaves site

BoM

Low Flow Groundwater Sampling Field Parameter Form Well ID: W25 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 15/05/21 Date: Start time: 7.26am Subcontractors: Finish time: 8.00am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 194 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 2.38 Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: □ Micro-Purge □ Peristalic □ Bailer 7.34am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% ±10% +10% unit TEMP flowrate Drawdow Redox Turbidity Comments (Appearance, colour and SPEC, COND. TDS Vol (L) На (L/min) n (m) (mg/L) (mg/L) (°C) (NTU) (mV) odour) (µS/cm) 7.09 Slightly turbid, pale 7.43 0.5 2.17 3420 2.48 180 2170 121 cellow/grey, 8.44 7.30 3830 9.06 55 2470 160 ddour 7.49 0.5 238 823 7.32 4100 9.15 16 11 2690 177 11 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well purged dry. Sampled from flow cell Well Head Integrity: Final water level 2.38 mbToc Samples Filtered: Metals Weather Conditions: Sunny /Fine Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: W2D Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 15/06/21 Start time: 8.01am Subcontractors: Finish time: 8.30am Field Measurements Organic Vapours in Well: ppm Measurement device: 1.80 Depth to Groundwater IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer 8.08 am Start Sampling: End Sampling: Sample Appearance: +0.1 pH Stability Parameters ±0.1°C <0.1m ±10% +0.1mg/L +10% ±10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. Turbidity Comments (Appearance, colour and TDS Vol (L) рН (L/min) n (m) (mg/L) (mg/L) (°C) (mV) (NTU) odour) (µS/cm) clear to slightly 8.11 0.5 47 18600 30.4 turbid, dark chocolate 2.15 7.38 10.12 29900 0.0 brown, no adour 8140.5 2.29 9.49 10.13 25200 0.0 -84 17600 37.4 13 2.58 11.53 10.10 27300 0.0 -116 17100 38.3 8.17 0.5 h 4 8.25 0.5 2.79 10.20 10.11 28500 0.0 -146 17600 37.5 N n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: Final woter level 3.05 mbtoc Samples Filtered: Metals Weather Conditions: Fine/Sunny Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form

Project	Name:	Llvd	ro Ouard	tonly Cu		nu Bánniha u	2024		D. 1	U. D.	Well ID:	1011
roject			001103	terly Gro	ounawate	er Monitor	ing 2021		Rambo	ll Personi	nel: J Bo	urke
Date:	. 1401		/06/z	1								
Start ti	me:		33a						Subcon	tractors:		
inish t	time:	8	. 56a	ha					o a b c c i i	ci decei 5.		
ield M	easuren	nents										
rganio	c Vapoui	rs in We							ppm	Measure	ment device	
	to Grour	ndwater	1.	70					m		106	robe
orrect									m		14- 4	TODE
	lwater E								m	Measure	ment device	
	to Immis								m			
	ess to In	nmiscibl		15					m			
ell De				45					m	Measure	ment device:	
HCKITE	ess to Gr	ounawa	ter Colu	mn:					m			
دع الما	mpling											
ethod					□ Micro	o-Purge			Peris	talic		Bailer
	ampling:		9.3	6am		ruige			End Sar		Ц	baller
	Appear		8.2	dean					Liiu Jai	ripinig.		
	ity Parar		<0.1m	+0.1°C	±0.1 pH	±10%	±0.1mg/L	+10%	+109	6 <u>+</u> 10%		
					unit	_	_	_	-			
TIME	Vol (L)	flowrate (L/min)	Drawdow n (m)	TEMP (°C)	pН	SPEC. COND. (µS/cm)	DO (mg/L)	Redox (mV)	100	-) (NTU)	ty Comments (A	odour)
98.	0.5		1.72	9.78	7.01	719	0.78	-33	45	8 1000	Slightly	turbid, soi
. \\	0.5					634					grey, r	
75	0.5		1.76	9.82	6.72	564	6.33	15	350	639	ч	h
. 2 &	0.5		1.79	9.99	6.63	523	0.48	41	336	341	4	4
57	0.5		1.81	10.13	6.61	512	0.47	47	320	310	h	h
									-			
1												
		•										
			1	/)								
Nega scellar	i tive Re neous Fie	eld Com	d >2mg ments	/L DO. 000	MECALI	BRATE a	nd chec	k agai	n. For	turb	idity or	wam
	d Integr	_	Fina	1 4	ate	- le	æl	1.8	3 m	ьтос		
	Filtered Condition		meto -ine	/5cm	nny				-			

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004

Ph: 08 9225 5199

SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Sulte 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 15/06/21 Date: Start time: 9.01am Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: Peristalic □ Micro-Purge □ Bailer 9.10am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters ±0.1°C <0.1m ±10% ±0.1mg/L +10% <u>+</u>10% +10% unit TEMP flowrate Drawdow Redox SPEC, COND. DO Turbidity Comments (Appearance, colour and TDS Vol (L) рΗ (L/min) n (m) (°C) (ma/L)(mV) (mg/L) (NTU) odour) (µS/cm) Very turbid, pale brown, no adour 2.21 10.53 7.32 4850 7.95 1000 12.377.24 4840 6.51-33 M IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments * 1000 NTV max reading for turbidity on Wam Well purged dry. Sampled from flow cell

PERTH

Well Head Integrity:

Samples Filtered: Weather Conditions:

Other:

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100

water kup!

HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

2.32 mbToc

Low Flow Groundwater Sampling Field Parameter Form

Project Name: Project No: Date: Start time: Finish time: Field Measurem Organic Vapour: Correction: Groundwater Ele Depth to Immis Thickness to Im Well Depth Thickness to Gro Well Sampling Method: Start Sampling:	318001 IS/O 9.32 ents s in Well: dwater evation: cible Layer miscible la	103 6/2 29h 39h	-1		er Monitori			Subcont	Personne	el: J Bourke
Start time: Finish time: Field Measurem Organic Vapour Depth to Ground Correction: Groundwater Ele Depth to Immis Thickness to Im Well Depth Thickness to Gro Well Sampling Method:	ents ents s in Well: dwater evation: cible Layer miscible la	6/2 29h 30h	2				:	Subcont	ractors:	
Finish time: Field Measurem Organic Vapour Depth to Groun Correction: Groundwater Ele Depth to Immis Thickness to Im Well Depth Thickness to Gro Well Sampling Method:	ents ents s in Well: dwater evation: cible Layer miscible la	on John 2	2					Subcont	ractors:	
Field Measurem Organic Vapour Depth to Groun Correction: Groundwater Ele Depth to Immis Thickness to Im Well Depth Thickness to Gro Well Sampling Method:	s in Well: dwater evation: cible Layer miscible la		.19							
Organic Vapour. Depth to Ground Correction: Groundwater Ele Depth to Immis Thickness to Im Well Depth Thickness to Gro Well Sampling Method:	s in Well: dwater evation: cible Layer miscible la		.19							
Depth to Ground Correction: Groundwater Electric Immission of the Immissio	dwater evation: cible Layer miscible la		.19							
Correction: Groundwater Ele Depth to Immis Thickness to Im Well Depth Thickness to Gro Well Sampling Method:	evation: cible Layer miscible la		.19					ppm	Measuren	nent device:
Groundwater Electric Electric Immission Frickness to Imm Well Depth Frickness to Growell Sampling Method:	cible Layer miscible la							m		IP Probe
Depth to Immis Thickness to Im Well Depth Thickness to Gro Well Sampling Method:	cible Layer miscible la							m		11 LIOBE
Thickness to Im Well Depth Thickness to Gro Well Sampling Method:	miscible la							m I	Measuren	nent device:
Well Depth Thickness to Gro Well Sampling Method:								m		
Thickness to Gro Well Sampling Method:			81					m		
Vell Sampling 1ethod:		Colum	01						Measurem	ent device:
1ethod:	Juliawatel	Colui	1111.					m		
1ethod:										
Start Sampling:				□ Micro	o-Purge		1	Perista	alic	□ Bailer
		9:	35a					nd Sam		L Ballel
Sample Appeara	nce:		- 500					ina Sain	paring.	
Stability Param	neters <).1m	±0.1°C	±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	<u>+</u> 10%	<u>+</u> 10%	
TIME Vol (L)		wdow (m)	TEMP (°C)	pН	SPEC. COND.	DO (mg/L)	Redox (mV)	TDS (mg/L)		Comments (Appearance, colour as odour)
0.5	2.	53	11.45	9.92	21200	0.0	-220	13100	223	slightly turbid,
.710.5					19200			1		no odour
1. R. O. S					17900					и ч
		-								
						**				
		_								
	-	-								
Negative Red scellaneous Fie	lox and >	2mg/	/L DO.	RECALI	BRATE ar	nd chec	k agair	1.		

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004

Ph: 08 9225 5199

SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 15/06/21 Date: Start time: 9.53 am Subcontractors: Finish time: 10.13 am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m 10 Probe Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2 58 m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purae Peristalic □ Bailer 9.57am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L +10% +10% +10% flowrate Drawdow TEMP Redox SPEC. COND. DΩ Turbidity Comments (Appearance, colour and Vol (L) рΗ (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) odour) (µS/cm) 10.000.5 dank 2.06 13.81 9.23 18000 0.0 245 11200 0.1 ckan no octour brow 2.17 14.209.20 14200 0.0 246 1200 0.0 h 2.23 14.58 9.15 18200 0.0 245 11300 0.0 n n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water kiel 2.32 mbtoc Samples Filtered:

Weather Conditions:

Other:

Low Flow Groundwater Sampling Field Parameter Form

											Well ID:	EED
Projec	t Name:	Hvd	ro Ouarl	erly Gr	าแทสเพอ+	er Monitor	ing 202	1	Damb - 11	Daussin		レンソ
Projec			001103	erry Gre	Junawat	er Monitor	ing 202.	L	Ramboll	Personne	el: J Bou	ırke
Date:	e NO.		106/2	1								
Start t	ime:		.15ah						Subcont	ractors:		
Finish	time:		1.02						Jubcont	iactors.		
Field N	1easuren											
	ic Vapou		11:	7.7					ppm	Measuren	nent device:	
Depth	to Groun	ndwater	2	25					m			
Correc	tion:			4					m		14 A	robe
	dwater E								m	Measuren	nent device:	
	to Immi								m			
	ess to In	nmiscible		- 40					m			
Well D				5.43					m I	Measurem	nent device:	
Inickn	ess to G	roundwa	ter Colu	mn:					m			
Well S	ampling											
Method					□ Micr	o-Purge			Perista	alic		Dailor
	ampling	:		10.1	8an	o raige			End Sam			Bailer
	e Appear			10.1	OCON			1	IIIU Saiii	iping:		
	lity Para		<0.1m	+0.1°C	±0.1 pH	1400/	10.4	1400/		1001		
Japi	True Tarai	ileters	\0.1 111		unit	<u>+</u> 10%	<u>+</u> 0.1mg/l	<u>+</u> 10%	<u>+</u> 10%	±10%		
TIME	Vol (L)		Drawdow		рН	SPEC. COND.	DO	Redox	103	Turbidity	Comments (A	ppearance, colour as
	1	(L/min)	n (m)	(°C)		(µS/cm)	(mg/L)	(mV)	(mg/L)	(NTU)	verce	odour)
0.≥3	0.5		2.4 ₆	15.39	8.97	10900	0.04	65	6410	1000	bidrust	odour,
0,52			2.49	15.57	8.58	9930	6.0	78	6220	1000		Ŋ
	0.5		≥.60	16.11	8.20	9480	0.0	71	6000	921	n	N
034	0.5		2.67	16.98	8.20	9250	0.0	53	5850	179	tumbid bo od	yellow,
0.30			2.68	17.26	8.30	9200	0.0	45	5790	110	h	n
0.37			2.71	17.82	7.09	14000	0.0	-55	8670	149	h	W
0.42	0.5		273	17.90	7.08	19000	0.0	-66	8170	54.6	h	v
O. 26	0.5		2.72	18.09	8.07	9390	0.0	-71	5870	63.3	ч	n
7.79	0.5		2.75	18.30	8.35	9260	0.0	-19	7020	73.6	4	4
0.51	0.5					9660					clear	yellow,
2.55	0.5					9490					И	u
0.58	0.5		2.84	8.95	8.32	9460	0.0	-66	5970	9.1	n	r
F Nega	ative Re	dox and	d >2mg	/L DO.	RECAL	IBRATE a	nd chec	k agair	n			
iscella	neous Fie	eld Comi	ments	eld	bash	inas r	x rec	adiva	be	turbi	dity on	WQM down en as possible
			- (MOG	tor	からし	sell.	Sta	balis	ed d	s well	as possible
011 1100	ad atticogi	icy.	CIVI	A C	north	er le	rel'	2.	88	MOTO)C	7
amples	ad Integr Filtered Condition	. /	reta	A C	2001	er ki	m.	2.	88	mbte	oc .	

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: G-2 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 15/06/21 Date: Start time: 11.12am Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 4.21 Depth to Groundwater m IP Proble Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 13.42 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method:' ☐ Micro-Purge □ Bailer 11.18am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L +10% +10% ±10% unit TEMP flowrate Drawdow Redox Turbidity Comments (Appearance, colour and SPEC. COND. DΩ TDS TIME Vol (L) (L/min) n (m) (ma/L)(mg/L) (NTU) odour) (mV) (µS/cm) 11.20.5 clear to slightly turbid 8.28 19.05 6.63 8170 11.31 24.7 colourless to pale g 11.27 0.5 8.28 17.98 6.15 8210 0.0 no odow 10 5170 18.1 11.30 0.5 8.27/8.03 6.13 8240 0.0 11 V 11.33 0.5 8.29 18.036.12 82700.012 5210 23.6 LA 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments DOI-20210615 and TO1-20210615 taken here Well Head Integrity: Final water keel 8.32 mbtoc Samples Filtered: Metals Weather Conditions: Fine /Sunny Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 15/06/21 Start time: 11.54am Subcontractors: Finish time: 14pm Field Measurements ppm Measurement device: Organic Vapours in Well: Depth to Groundwater 2.03 m 1P Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2.86 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters +0.1°C <0.1m +10% ±0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. DO TIME TDS Turbidity Comments (Appearance, colour and Vol (L) (L/min) n (m) (mg/L) (mg/L) (NTU) odour) (mV) (µS/cm) turbid, pate yellow, strong odour 0.5 2.34 16.22 8.659850 2.79-164 6230280 2.48 16.42 8.66 9680 2.89 -155 6100264 2.5016.48 8.67 9746 273-140 6140 239 h 5 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 2.39 mbTOC water Leve 1 Samples Filtered: Weather Conditions:

PERTH

Other:

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form WED Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 15/06/21 Start time: .21pm Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 5.61 m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 8.80 Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: Peristalic ☐ Micro-Purge □ Bailer Start Sampling: 12.25pm End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L +10% +10% +10% TEMP Drawdow Redox SPEC. COND. DO TIME Vol (L) TDS Turbidity Comments (Appearance, colour and рΗ (L/min) n (m) (°C) (mq/L)(mg/L) (NTU) (mV) (uS/cm) 12.280.5 pade blowy 5.88 16.24 9.27 894 turbid, 3 580 346 no odour 2.32 0.5 5.92 16.79 5.96 1060 1.12 37 659 458 5.96 | 6.93 | 6.03 | 793 | 0.0 - 17 | 507 | 459 N 11 VERY turbid, 5.99 17.185.66 1610 0.0 49 1030 1000 parte brown no adour 2. RZ 0. 6.05 17.23 6.15 1400 0.0 53 893 1000 U 6.12 17.36 6.02 1390 0.0 11 71 L 6.18 17.436.16 1510 0.0 12:49 0.5 4 LI IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments & 1000 NTU max reading for turbiolity on wan Well Head Integrity: mater kupi 6.26 mbTOC Samples Filtered: Weather Conditions: Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway

North Sydney NSW 2060

Ph: 02 9954 8100

HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103												Well ID:	W65
Project No: 318001103 Date: 15/06/2. Start time: 1.032	Duedeet	NI	r to a d	. 0	1			- 2021		D 1			
Subcontractors: Subcontrac					eriy Gro	unawate	r Monitori	ng 2021	_	Kambo	n Personn	el: J Bou	rke
Subcontractors:	Date:	140.			2_1								
Finish time: Inish time:		ne:	-							Subco	ntractors:		
Depart Vapours in Well: Depth to Groundwater 3, 09 m Measurement device: Depth to Immiscible Layer Thickness to Immiscible layer: Mell Depth Mell Sampling Method: Sampling: Method: Mel Depth device: Mell Sampling: Mell Sampling: Method: Mell Sampling: Measurement device: Measurement devic	Finish ti	me:		-	^								
Depth to Groundwater State Sampling: Start Sampling: Time Vol (L) Coverate Drawdow TEMP PH Serec coveration Cury (unif unif unif unif unif unif unif unif	Field Me	asurem	ents										
Measurement device: m Measurement devi					^					ppm	Measurer	ment device:	
Measurement device: m Measurement devi			dwater	3.0	MM							IP Pr	nhe.
Depth to Immiscible Layer Mell Depth 3.1\w m Measurement device: Mell Sampling Method:		-	a ation								Managemen		
Time Vol (L) flowrate Drawdow (CC) pH section (mg/L) (mg/											Measurer	nent device:	
Mel Depth Mel Sampling Well Sampling: Start Sampling: Start Sampling: Start Sampling: Starbility Parameters Vol (L) If Nowate Drawdow ("C") If Nowate Drawdow ("C"													
Mell Sampling Method:			imiscible		11 m						Measurer	ment device:	
Well Sampling Micro-Purge			oundwa								Treasure.	none device.	
Method:													
Start Sampling: Sample Appearance: Stability Parameters < 0.1 m ±0.1°C 10 pH 10 mit 10													
Sample Appearance: Stability Parameters						☐ Micro	-Purge		_				Bailer
Stability Parameters Co.1m 20.1c 20.1 pH unit 20.1 pH 20.										End Sa	mpling:		
TIME Vol (L) flowards (L/min) Drawdow (eC) pH spec. cond. (mg/L) (mg/L) Turbidity Comments (Appearance, colour a odour) F Negative Redox and >2mg/L Do. RECALIBRATE and check again. liscellaneous Field Comments Well dyr. Not sampled						40.1 nH						T	
TIME Vol (L) (Umin) n (m) (eC) pH (us/cm) (mg/L) (mV) (mg/L) (MTU) odour) F Negative Redox and >2mg/L DO. RECALIBRATE and check again. Iscellaneous Field Comments Well dry. Not sampled	Stabilit	y Parar	neters	<0.1m	<u>+</u> 0.1°C		<u>+</u> 10%	±0.1mg/L	±10%	±10	% <u>+</u> 10%		
F Negative Redox and >2mg/L DO. RECALIBRATE and check again. Iscellaneous Field Comments Well dm. Not sampled (rell Head Integrity:	TIME	Vol (L)				рН				1.10		Comments (Ap	
Vell Head Integrity:		7.[]											
Vell Head Integrity:												/	
Vell Head Integrity:													
Vell Head Integrity:													
Vell Head Integrity:													
Vell Head Integrity:	-								/				
Vell Head Integrity:	-									+			
Vell Head Integrity:										1			
Vell Head Integrity:										-			
Vell Head Integrity:													
Vell Head Integrity:													
Vell Head Integrity:													
Vell Head Integrity:		/										4 1 1	
Vell Head Integrity:													
Vell Head Integrity:	F Nega	tive Re	dox an	d >2mg	/L DO.	RECAL	BRATE a	nd chec	k aga	in.			
/ell Head Integrity:											amo	red	
/eii nead Integrity:	W - 11 - 1	1.7.	· han				-71				V		
amniec Filteren. V VI			rity:	27.1	+								

PERTH
Level 2, 200 Adelaide Terrace

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Ramboll Personnel: Project Name: Hydro Quarterly Groundwater Monitoring 2021 J Bourke 318001103 Project No: 15/06/21 Date: Subcontractors: Start time: 1.07pm Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: 2.88 Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Le,... Thickness to Immiscible layer: m m Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic ☐ Micro-Purge □ Bailer Method: 1.08pm End Sampling: Start Sampling: Sample Appearance: ±0.1 pH <0.1m ±0.1°C Stability Parameters ±10% ±0.1mg/L ±10% ±10% +10% unit TEMP flowrate Drawdow Redox Turbidity Comments (Appearance, colour and SPEC. COND. TIME рН Vol (L) (L/min) (mg/L) n (m) (mg/L) (°C) (mV) (µS/cm) 3.06 16.91 6.89 1,100 0.0 -130 6870 66.6 5119 htly turbid) 1.11 0.5 no odowr 3.18 16.92 6.89 11200 6.0 -130 6940 56.2 N 3.29/6.99 6.85 11300 0.0 -130 6990 109 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments level 3.51 mbTOC Well Head Integrity: water Samples Filtered: Metal 5 Sunny/ Fine Weather Conditions: Other:

Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: =11Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 5/06/2 Date: 35pm Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: 1.38 pm End Sampling: Sample Appearance: <u>+</u>0.1 pH <0.1m ±0.1°C Stability Parameters +10% +0.1mg/L ±10% ±10% ±10% TEMP flowrate Drawdow Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and TDS TIME Vol (L) (L/min) n (m) (mg/L) (°C) (mg/L) (NTU) (µS/cm) (mV) odour) 1.920.5 2.76 19.00 9.11 12100 0.0 -143 75101000 · 75 0.5 2.77 19.029.17 11800 0.0 -19473501000+ 1.480.5 2.76 19.09 9.19 11500 0.0 -195 7135 502 1.51 0.5 2.76 19.12 9.21 11200 0.0 -1946960365 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments + 1000 NTU max reading for turbidity on wam Well Head Integrity: 2.75 noter level motoc Samples Filtered: Weather Conditions: /Sunny Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Daily Field Report

Project Name: Quarterly GW Monitoring 2021 Ramboll Personnel: J Bourke

318001103 Project No:

16/06/21 Date:

Subcontractors: Start time: 7.000m

Finish time:

Fine, Sunny - top of 19°C Weather:

Field Report:

JAB curves onsite to meet Glenn. Both transfer gear to Glenn's lite.

7.35am Commence Glu sampling of wells - W55, W5D, NZ, F6, G6, G5, F5, W3D, W35, A7, W15, W1D and E4.

Rinsate RO1 - 20210616 taken on flexi-tubing to peri-pump.

Sampling complete and travel back to site office to from ter gear of & Glenn:

2.00pm JAB koups site.

Low Flow Groundwater Sampling Field Parameter Form Well ID: W5S Hydro Quarterly Groundwater Monitoring 2021 Project Name: Ramboll Personnel: J Bourke Project No: 318001103 Date: 16/06/21 Start time: 7.35am Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 1.64 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 1.70 Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: □ Micro-Purge ☐ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L +10% ±10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. TDS Turbidity TIME Vol (L) Comments (Appearance, colour and рΗ (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) odour) (µS/cm) IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Dry/insufficient water to sample Well Head Integrity: Samples Filtered: Weather Conditions: Other:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Sulte 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form W50 Well ID: J Bourke Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: 318001103 Project No: 6/06/21 Date: 7.39am Start time: Subcontractors: Finish time: 8.13am Field Measurements ppm Measurement device: Organic Vapours in Well: 5.69 Depth to Groundwater m IP Probe Correction: m Measurement device: Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 10.53 Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling ✓ Peristalic Method: ☐ Micro-Purge □ Bailer 7.49am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L ±10% +10% +10% unit TEMP Redox Turbidity Comments (Appearance, colour and flowrate Drawdow DΩ SPEC, COND. TDS TIME Vol (L) (NTU) (L/min) n (m) (mg/L) (mV) (ma/L) odour) (µS/cm) very turbid, grey brown, no adour 6250 807 -24 7.35 6.17 10500 6.35 9.03 6.14 9050 0.0 11 -16 5830 592 6.59 9.28 6.19 8540 0.0 -16 5270376 in IN Slightly turbid, 7.80 6.20 8170 0.0 -17 5170 175 grey brown, no odow 9.95 6.21 7900 0.0 11 17 -17 5160 98.4 IF Negative Redox and >2mg/L DO, RECALIBRATE and check again. Miscellaneous Field Comments 7.06 mbTOC Well Head Integrity: uater leve! Final Metals Samples Filtered: Weather Conditions: Fine

Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 16/06/2 Start time: 8. 5am Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 4.43 m IP Probe Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 5.61 m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purae □ Bailer Start Sampling: 8.20am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L ±10% +10% +10% TEMP flowrate Drawdow Redox SPEC, COND. DO TIME Vol (L) TDS Turbidity Comments (Appearance, colour and рΗ (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) odour) (µS/cm) very turbid, 6.21 4.33 11700 1.25 249 7240 1000 brown, no oc 6.614.21 11500 0.0 268 7110 874 n 6.71 7.22 121000.0 267 7510 830 5 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments 1000 NTU max reading for turbidity on Well Head Integrity: Final water kevel 5.29 mbtor Samples Filtered: Metals Weather Conditions: Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: F6' Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 16/06/21 Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: 8.48am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C +10% ±0.1mg/L ±10% ±10% ±10% TEMP flowrate Drawdow Redox SPEC, COND. DΩ TIME Vol (L) TDS Turbidity Comments (Appearance, colour and (L/min) n (m) (°C) (mg/L) (mV) (mg/L) (NTU) (µS/cm) odour) 4.806.97 6.54 12500 0.91 -41 7750 15.1 clear to sightly turbid, colourly ×.88 7.18 6.53 12500 0.04 -44 7.84 6.51 12400 0.0 -50 7690 2.8 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments taken here DOZ_20210616 keel 5.60 mbTOC Well Head Integrity:

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

Samples Filtered: Weather Conditions:

Other:

SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100

vater

Suite 18, 50 Glebe Road Ph: 02 4962 5444

Ramboll Australia Pty Ltd ABN 49 095 437 442

												Well ID:	G6
roject	Name:	Hydr	o Quarte	erly Gro	undwate	r Monitorii	na 2021		Rambol	l Pers	onne	l: J Bour	
roject			001103	orly Cro	anawace		ig LULI						
Date:	1101		06/21										
tart ti	me:		040						Subcon	tracto	rs:		
inish t			36au										
	easurem		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	и									
	Vapour		1.						nnm	Meas	ıren	nent device:	
	o Groun		4	56					m	11000	u. 0		1
Correct		arracei	- 1.	-					m			IPP	obe
	water El	evation							m	Meas	urem	nent device:	
	o Immis								m				
	ess to Im								m				
Vell De				PC					m	Meas	ırem	nent device:	
		oundwa	ter Colu	-					m				
			25. 30.01										
Vell Sa	mpling								,				
1ethoc					□ Micro	o-Purge			Peris	talic		□В	ailer
	ampling:		-	1/20		J-			End Sar		:		
	Appear			1									
	ity Parar		<0.1m	±0.1°C	<u>+</u> 0.1 pH	+10%	±0.1mg/L	<u>+</u> 10%	+10	% +	10%		
Stabi	icy raidi	i i CtGI 3			unit	_			-				
TIME	Vol (L)	flowrate		TEMP	pН	SPEC. COND.	DO	Redox			bidity		pearance, colour an
	(-/	(L/min)	n (m)	(°C)		(µS/cm)	(mg/L)	(mV)	(mg/	r) (µ	ITU)		odour)
7.15	0.5		4.1-	900	500	13300	0.0	-4	823	29	7	clear	colourless
1.12	.2.		7.67	1.00	2.02	12200		T	025	0 1	/	strong	sulphidic
7.1-	0.5		40	10.43	5m	13300	00		1 820	109	~	odow	15light she
17	3		1.08	, 0 3	00	טטנגו	0.0	/	02	0	2	N	-
1.10	0.5		9.K-	120	490	12200	0.0	-10	762	07	2	ч	и
. 7	3		0 /	, Z. 50	57		5.0	,0	-02	,			
5.20	0.5		40-	1197	470	12200	0.0	-18	759	x 3	9	ч	4
40	7		07		1.14	1220	-		-	9 -			
7 -	0.5	9	46	1172	460	12300	0.0	-70	764	03	.5	h	4
</td <td>.3</td> <td></td> <td></td> <td>11.1-</td> <td>"01</td> <td>12500</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	.3			11.1-	"01	12500	0.0						
7-2	0.5		400	12 05	401	12200	0.0	-21	754	73	2	n	~
य													
777	0.5		4.69	11.87	4.59	12500	0.0	-40	77	502	3	h	
3	- 3		, , , , ,		1.30		1		1	1			ч
.20	0.5		4.70	13.60	4.50	12000	0.0	-52	746	50	5.	h	n
-3	3		.,0		22						3		
									1				
										3			1
F Neg	ative R	edox ar	id >2mg	1/L DO	RECAL	IBRATE a	nd che	ck aga	in.				_
1iscella	neous F	eld Con	nments	Stre	9, par	dour.	wa	ter	trov	n u	jes	1 char	ged trom
COL	surk-	ss to	dar	p b	1	ace inst	antly	up	on c	FNO	ac	t with	ged from sodium on due to f
hur	noxid	e pr	2550X	worth	e in	cyar	ride	bo	He.	Poss	ibl	e reacti	on due to f
Vell He	ad Inted	rity: -	inal	w	ater	- leve	1 4	60	mb	TO	_		
	s Filtere	1: /	Meto	15			1						
				~ . ~									
	r Conditi	ons:	Fine	1500	010:								

Low Flow Groundwater Sampling Field Parameter Form Well ID: Ramboll Personnel: J Bourke Hydro Quarterly Groundwater Monitoring 2021 Project Name: Project No: 318001103 16/06/21 Date: 1. 40am Subcontractors: Start time: 10.00an Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: Depth to Groundwater m m Correction: Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 11.34 m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic □ Bailer □ Micro-Purge Method: 9.49 End Sampling: Start Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L +10% +10% ±10% unit TEMP Redox flowrate Drawdow Turbidity Comments (Appearance, colour and SPEC, COND. TDS TIME рΗ Vol (L) (L/min) (mg/L) (mg/L) (NTU) odour) n (m) (mV) clear, colourtess, 9. 27 0.5 3.22 12.96 5.58 10100 0.49-69 6290 6.4 slight sulphible 3.33 12.765.53 10300 0.0 -64 6390 3.7 3. 45 1303 5.51 10300 0.0 -67 6400 1.8 3.54 13.43 5.50 10300 0.0 -69 6260 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. ged from colourless to pake black bottle. Potentially due to reaction with Miscellaneous Field Comments Gw changed and still clear in cyanish Sodium hydroxide bot bottle. keel Well Head Integrity: Samples Filtered: Weather Conditions: Other:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 16/06/21 10.03am Date: Start time: Subcontractors: Finish time: 10.25am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.91 m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: Well Depth 7.37 m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: 10.07am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters ±0.1°C <0.1m ±10% ±0.1mg/L ±10% ±10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. TDS Turbidity Comments (Appearance, colour and Vol (L) рΗ (L/min) n (m) (NTU) (mg/L) (mg/L) (°C) (mV) odour) (µS/cm) 10:10 Clean, colourless, slight supplied 0.5 3.18 15.11 4.63 12000 0.0 39 7590 11.6 3.22 14.63 4.67 12000 0.0 37 7410 10.7 10:16 0.5 3.27 14.20 4.69 12400 33 7680 5.8 0.0 u IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: woter level 3.27 mbtoc Samples Filtered: Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 16/06/21 10.35am Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m IP Proba Correction: m Measurement device: Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: □ Micro-Purge □ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L +10% ±10% ±10% unit TEMP flowrate Drawdow SPEC. COND. DO Redox Turbidity Comments (Appearance, colour and TIME Vol (L) рН (L/min) n (m) (mg/L) (mg/L) (NTU) odour) (°C) (mV) (µS/cm) IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. neous Field Comments unable to be sampled. IP Probe would not reach 7 4.64 m. Assumed to be damaged unable to be sampled alwing previous GME in March 2021 Miscellaneous Field Comments Well Head Integrity: Samples Filtered: Weather Conditions: Fine/Summ Other:

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph. 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: W35 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 16/06/21 Date: 39am Start time: Subcontractors: 59am Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m 2.52 Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: □ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH <0.1m ±0.1°C Stability Parameters ±10% ±0.1mg/L ±10% ±10% ±10% unit flowrate Drawdow Redox SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and Vol (L) (L/min) n (m) (mg/L) (mg/L) (NTU) odour) (°C) (mV) (µS/cm) 13.44 7.60 12600 1.41 248 7820 67.5 turbid, yellow brown, 0.450.5 no adolor 13.43 7.58 12600 1.08 265 7830 66.6 13.54 7.57 12600 0.69 282 7820 66.8 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water level 1.75 mbtoc Samples Filtered: Weather Conditions: Other:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke 318001103 Project No: Date: 16/06/21 Start time: 11.06am Subcontractors: 11.36am Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 1.90 Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 4.32 Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: 11.08am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and Vol (L) pН TDS (L/min) n (m) (ma/L)(mV) (mg/L) (NTU) (µS/cm) 11.11 0.5 1.99 14.96 9.53 14300 0.15 - 291 8880 15.9 clear to slightly turbibly dark yellow 11.12 0.5 3.03 15.15 9.52 13900 0.0 -383 8600 18.8 brown, slight adow 2.09 15.33 9.51 13100 0.0 -905 8060 19.6 h 2.16 15.939.99 122000.0 -902 7900 20.4 11.230.5 2.22 15:73 9.45 11300 0.0 -415 702020.4 h 2.2.15.769.42 10800 0.0 -408 6710 19.7 4 2.31 15.94 9.36 11300 h 0.0 -4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 2.39 motoc nator kul Samples Filtered: Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form W15 Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboli Personnel: J Bourke Project No: 318001103 16/06/21 Date: Start time: 11.46am Subcontractors: Finish time: 2.06pm Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 1.76 IP Probe m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2.42 m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: Peristalic ☐ Micro-Purge □ Bailer Start Sampling: 11.50am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C +10% +0.1mg/L +10% +10% ±10% unit TEMP Drawdow Redox flowrate SPEC. COND. DO Turbidity Comments (Appearance, colour and TDS Vol (L) рΗ (L/min) n (m) (ma/L)(mV) (mg/L) (NTU) (µS/cm) 1.86 16.34 8.03 13900 3.25-117 8600 209 yellow, no odow 11:500.5 2.02 15.81 8.01 14100 1.43 -105 8150 89.9 u 11:59 0.5 16.447.99 14000 0.60 -83 8620 154 h IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. well purged dry. Sampled from flow cell. Miscellaneous Field Comments Well Head Integrity: worden level 2.42 mbTOC Samples Filtered:

PERTH

Weather Conditions:

Other:

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form W1D Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 16/06/21 12.08pm Start time: Subcontractors: Finish time: Om Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 1.90 IP Probe m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 10.43 Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: Peristalic ☐ Micro-Purae □ Bailer Start Sampling: 12.14pm End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C <u>+</u>10% +0.1mg/L +10% +10% +10% TEMP flowrate Drawdow Redox SPEC, COND. DO Comments (Appearance, colour and Vol (L) Turbidity (L/min) n (m) (mg/L) (mg/L) (NTU) (mV) odour) (µS/cm) clean yellow/brown, 8610 6.9 2. ×9/6.87 7.80 14100 0.00 -23 8740 6.1 N n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: rater level 3.19 mbTOC Samples Filtered: Weather Conditions: Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 6/06/21 2.32pm Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 189 Depth to Groundwater IP Probe m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge ✓ Peristalic □ Bailer 12.35pm Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L ±10% +10% +10% TEMP flowrate Drawdow Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and Vol (L) рΗ (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) odour) (µS/cm) brown 1.99 16.56 9.91 26500 0.0 -353 16400 1000 turbid 2.03 16.55 9.91 26600 0.0 -370 16500 642 1/ 3 2.07 1654 9.9126800 0.0 -381 16600 511 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again, Miscellaneous Field Comments & 1000 NTU max reading for turbidity on war mater Rue! Well Head Integrity: 2.10 mbToc Samples Filtered: Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form W45 Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 16/06/21 .26pm Start time: Subcontractors: 1.40pm Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 0.89 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Laver m Thickness to Immiscible layer: m Well Depth 1.12 m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: Peristalic ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +0.1mg/L ±10% ±10% +10% ±10% unit TEMP flowrate Drawdow Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and TDS TIME Vol (L) рΗ (L/min) n (m) (ma/L)(mV) (mg/L) (NTU) odour) (µS/cm) 941 1.32 1.06 14.20 7.91 very turbid, gray/black/ 0.5 10600 4.85 -304 6570 brown, organic IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments purged dry. Sampled from forcell fevel 1.12 motoc Well Head Integrity: retown tinal Samples Filtered: Weather Conditions: Other:

Level 2, 200 Adelaide Terrace East Perth WA 6004

Ph: 08 9225 5199

SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

No.	Well ID	Well Depth (m)	Notes (June) 2021
1	A7	4.32	21/09/21
2	E11	4.82	20/09/21
3	E4	3.4	21/09/21
4	E5	2.57	20/09/21
5	E5D	5.44	20/09/21
6	F5	7.37	21/09/21
7	F6	15.48	21/09/21
8	G2	13.42	20/09/21
9	G5	11.31	21/09/21
10	G6	7.14	21/09/21
11	N2	5.62	20/09/21
12	N8	5.3	20/09/21
13	N9	2.83	20/09/21
14	PUMP	3.45	20/09/21
15	W1D	10.38	21/09/21
16	W1S	2.41	21/09/21
17	W2D	6.36	20/09/21
18	W2S	2.37	DM/Insufficient Woder
19	W3D	10.08	Potentially damaged (unable to be sampled June 2021)
20	W3S	2.55	21/09/21
21	W3SA	0.5	destroyed
22	W4D	10	destroyed
23	W4S	1.12	Insufficient woder/Dry
24	W5D	10.54	21/09/21
25	W5S	1.7	DM
26	W6D	8.8	20/09/21
27	W6S	3.1	Dry
28	W7M	3.72	20109/21
29	W7S	2.3	Dry

, år

91

Daily Field Report

Project Name: Quarterly GW Monitoring 2021

Ramboll Personnel: J Bourke

Project No:

318001103

Date:

20/09/21 7.00am

Start time:

Subcontractors:

Finish time:

Weather:

Fire Sunny / Windy

Field Report:

7.00am JAB arries onsite and meets Glenn for escort

7.30am Commence sampling of Gw wells wzD, w25, pump, w75, E3, w7m, E5D, GZ, N9, w65, w6D, E11 and NZ.

1.45pm Finish sampling for the day and pack up gear.
2.00pm JAB kowes site and heads to office

QA/ac:

Primary: E5D Duplicate: D01-20210920 Triplicate: T01-20210920

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 20/09/21 Start time: 7.27am Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.27 Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge □ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C <u>+</u>10% ±0.1mg/L +10% ±10% ±10% unit TEMP flowrate Drawdow SPEC. COND. DO Redox Turbidity Comments (Appearance, colour and TDS TIME Vol (L) рΗ (L/min) n (m) (mg/L) (°C) (mg/L) (mV) (NTU) odour) (µS/cm) IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Insufficient water to sample Well Head Integrity: Samples Filtered: Weather Conditions: Other:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: WZD Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 20/09/21 Date: 7.30am Start time: Subcontractors: Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: 2.11 Depth to Groundwater m IP Probe Correction: m Measurement device: Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 6.38 Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling ✓ Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: 7.40 End Sampling: Sample Appearance: ±0.1 pH +0.1mg/L ±10% Stability Parameters <0.1m ±0.1°C +10% +10% +10% unit TEMP Redox flowrate Drawdow DO Turbidity Comments (Appearance, colour and SPEC. COND. TDS TIME Vol (L) рΗ (L/min) n (m) (mg/L) (mg/L) (NTU) (°C) (mV) odour) (µS/cm) clear to sliphtly 0.5 2.26 7.69 10.37 28500 0.93 17700 30.9 turbid, dark brown, no odour 2.57 13.55 10.37 28000 0.0 -31 11 2.72 14.14 10.37 2T100 0.0 -56 17200 37.6 n M 3.18 14.37 10.37 27600 0.0 -63 17100 35.8 (1 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments worten level 3.32 mbTOC Final Well Head Integrity:

Weather Conditions: Five

Samples Filtered:

Other:

Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form

Project Name												Well ID:	PUMP		
Project No: 318001103 Date: 20/09/21 Start time: Field Measurements Subcontractors: Field Measurements Subcontractors: Field Measurements Subcontractors: Field Measurement Subcontractors: Field Me	Project	Name:	Hvd	ro Quart	terly Gro	undwate	er Monitor	ing 2021		Pambol	Dorconne	i I Roy			
Date: 20/5/21 Start time: 8-19 Subcontractors: Firish time: 8-19 Periode Organic Vapours in Well: Depth to Groundwater 12.09 Periode Organic Vapours in Well: Depth to Groundwater Flevation: Depth to Groundwater Flevation: Bepth to Groundwater Flevation: Well Depth 13.45 Periode Thickness to Groundwater Column: Well Sampling Method: Start Sampling: Start Samplin					cerry or e	anavac	CI MOINCOI	ing ZUZI		Karriboi	i reisoille	51. J DU	ii ke		
Subcontractors: Finish time: Subcontractors: Subcontractors: Finish time: Subcontractors: Subcontractors: Finish time: Subcontractors: Subc	Date:				21										
Finish time: \$.46am Field Measurements	Start ti	me:								Subcontractors:					
Depart Vapours in Well: Depth to Groundwater Z.09	Finish 1	ime:	8												
Depth to Groundwater Z.O9 Groundwater Elevation: Groundwater Elevation: Bepth to Immiscible Layer Well Depth 3. 4.5 Measurement device: Measurement de	Field M	easuren	nents												
Correction: Corre										ppm	Measuren	nent device:			
Measurement device:	Depth	to Grour	ndwater	2.0	PC					m		0	1		
Depth to Immiscible Layer: m m Measurement device: m Measurement device: m m Measurement device:										m		r rr	be		
Thickness to Immiscible layer: Mel Depth										m	Measurem	nent device:			
Measurement device:										m					
Micro-Purge			nmiscible		4.5					m					
Well Sampling Method:										m	Measurem	nent device:			
Method:	Inickne	ess to Gi	roundwa	ter Colu	mn:					m					
Method:	Moll Co	malina													
Start Sampling: Stability Parameters CO.1m						m Mien	. D			/					
Sample Appearance: Stability Parameters				17		LI MICH	o-Purge						Bailer		
Stability Parameters				>1/					1	na Sar	npiing:				
TIME Vol (L) flowrate Drawdow TEMP PH SPEC. CND. DO Red No. (L/min) n (m) (°C) PH SPEC. CND. DO Red No. (L/min) N (NTU) Comments (Appearance, colour and odour) n (m) (°C) PH SPEC. CND. DO RECALIBRATE and check again. 3. 2. 18 13.42 9.22 2.13 0.0 11.9 17.6 70.6 Slightly trubbly page of the second state of						+0.1 pH		T							
No. Co. PH (us/em) (my) (Stabil	ity Parai	meters	<0.1m	±0.1°C		±10%	±0.1mg/L	<u>+</u> 10%	<u>+</u> 109	6 <u>+</u> 10%				
F Negative Redox and >2mg/L DO. RECALIBRATE and check again. Filed Integrity: Final water level 2.47 mbtoc amples Filtered: Metals leather Conditions: Five Scanny		Vol (L)				pН		1		100		Comments (A			
F Negative Redox and >2mg/L DO. RECALIBRATE and check again. Sellaneous Field Comments Scurphy Scur	15.8	0.5		2.18	13.42	9.22	273	0.0	119	176	70.6		turbid, pak		
3 3 9 0.5	8.52	0.5	- 1	5.25	13.59	7.07	268	0.0	119	174		•	И		
F Negative Redox and >2mg/L DO. RECALIBRATE and check again. Second Se	65 ³	0.5		5.57	13.83	8.84	763	0.0		171	62.8	ч	u		
F Negative Redox and >2mg/L DO. RECALIBRATE and check again. Second Se	8.33	0.5		5.35	14:37	8.41	241	0.0	160	160	51.4		44		
F Negative Redox and >2mg/L DO. RECALIBRATE and check again. Color Final water Part	S	0.5		<.9>	14.43	8.37	234	6.0	162	50		ц	ч		
F Negative Redox and >2mg/L DO. RECALIBRATE and check again. liscellaneous Field Comments Sell Head Integrity: Final water evel 2.47 mbtoc amples Filtered: Metals Metal	8. 40	0.5		5. 4x	18.52	8.32	221		164	164	49.7	1.5	u		
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny											1				
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny															
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny															
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny										-					
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny										1	1				
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny															
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny															
Vell Head Integrity: Final water Evel 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny															
Vell Head Integrity: Final water level 2.47 mbtoc amples Filtered: Metals Veather Conditions: Fine Scanny	F Nega	tive Re	dox an	d >2mg	/L DO.	RECALI	BRATE a	nd chec	k agai	n.					
Amples Filtered: Metals Veather Conditions: Five Scanny	1iscellar	neous Fi	eld Com	ments											
Veather Conditions: Fine /Scupry	Vell Hea Samples	d Integi Filtered	ity: Fi	hal	wat	er 1	evel	2.4	7 h	1510	С				
ther:	Veather Other:	Condition	ons: F	ne /	Scene	ny									

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100

HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: WIS Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboli Personnel: J Bourke Project No: 318001103 Date: 20/09/21 Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.32 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2.32 m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge □ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L +10% +10% +10% unit TEMP flowrate Drawdow SPEC. COND. Redox TDS Turbidity Comments (Appearance, colour and TIME Vol (L) рΗ (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) odour) (mV) (µS/cm) IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Dry - unable to be sounded Well Head Integrity: Samples Filtered: Weather Conditions: Other:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100

HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: WTM Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 20/09/21 Date: Start time: 8.58am Subcontractors: Finish time: 9.20am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.47 Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 3.72 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: □ Micro-Purge □ Bailer 9.00am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% ±10% +10% TEMP Redox flowrate Drawdow SPEC. COND. TDS Turbidity Comments (Appearance, colour and TIME Vol (L) рΗ (L/min) n (m) (mg/L) (mg/L) (NTU) odour) (°C) (mV) (µS/cm) clear dank yellow, 237 4740 33.4 2.73 16.37 9.39 7570 0.0 2.78 16.47 9.42 7540 0.0 240 4750 22.7 LA M 2.82 16.759.42 7660 0.0 229 4820 21.0 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments 2.81 mbTOC Well Head Integrity: final water keel

Samples Filtered:

Other:

Weather Conditions:

Metaus

Fire /Sunny

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 20/09/21 Date: Start time: 1.23am Subcontractors: Finish time: 43am Field Measurements Organic Vapours in Well: ppm Measurement device: 2.24 Depth to Groundwater m IP Probe Correction: m Measurement device: Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2.57 Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge □ Peristalic □ Bailer 9.26am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L +10% +10% +10% TEMP Redox Turbidity Comments (Appearance, colour and flowrate Drawdow DO TDS SPEC, COND. TIME Vol (L) (L/min) n (m) (mg/L) (ma/L)(NTU) odour) (°C) (mV) (uS/cm) clear, yellow brown no odout W IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments hard reton Well Head Integrity: 2.45 mbtoc Samples Filtered: Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form

											Well ID:	E5D
Project	Name:	Hyd	ro Quart	erly Gro	undwate	r Monitori	ng 2021		Rambol	Personne	el: J Bou	ırke
Project			001103				5				5 200	
Date:		20	>109/	21								
Start ti	me:	9	.450	em					Subcont	ractors:		
Finish t	ime:	iÒ	1140	m								
Field M	easuren	nents										
Organic	C Vapou	rs in We							ppm	Measuren	nent device:	
Depth t	to Grour	ndwater	2	.52					m	16	PPro	40
Correct									m	. 1	<i>/ / u</i>	20
		levation							m	Measurem	nent device:	
		scible La							m			
		nmiscible							m			
Well De				5.43	\$				m	Measurem	nent device:	
Thickne	ess to Gr	roundwa	ter Colu	mn:					m			
Well Sa Method					m Miana	Duna			1	- 1.	_	D !!
			0	1.500		o-Purge			Perist			Bailer
_	ampling Appear			, 500	011			E	nd San	npling:		
					40.1 nH		1		_			
Stabil	ity Parai	1	<0.1m		±0.1 pH unit	<u>+</u> 10%	±0.1mg/L	±10% Redox	-	-		
TIME	Vol (L)	(L/min)	n (m)	(°C)	pН	SPEC. COND. (µS/cm)	DO (mg/L)	(mV)	(mg/L		ì.	ppearance, colour and odour)
7.54	0.5		2.70	19.00	7.33	13000	4.96	-48	812	52.6	turbid	, dank
9.58	0.5		2.75	19.60	7.32	12700	5.59	-39	794	038.2	yellow	Slight
10.02	0.5		2.78	19.48	7.31	12900	4.90	-41	799	36.5	4	И
									-	-		
F Nega	tive Re	edox an	d >2mc	/L DO.	RECALI	BRATE a	nd chec	k agai	n.			
		eld Com		DOI		2109=				202	10920	
				wa	ter k	isus	2.8	Z m	ЬТО	C		
Veather	Condition	ons: F	tals	ann	1(Wi	ndy						
Other:						ı						

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke 318001103 Project No: 20/09/21 10.25am 10.52am Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 8.21 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 13.43 Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: □ Micro-Purge □ Bailer 10.32am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L ±10% ±10% unit TEMP flowrate Drawdow Redox Turbidity Comments (Appearance, colour and SPEC, COND. TIME Vol (L) рΗ (L/min) n (m) (mg/L) (mg/L) (°C) (mV) slightly turbid, 8.29 20.14 6.40 5120 0.0 10.36 0.5 14 323065.1 8.26 20.52 6.39 5130 0.0 odow 10.40 0.5 16 5 19 8.28 20.51 6.36 5120 10.4405 3230 60.1 h n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments

PERTH

Well Head Integrity: Samples Filtered:

Other:

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

Weather Conditions: Fine / Sunny / Windy

SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

water keel 8.29 mbTOC

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: N9 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboli Personnel: J Bourke Project No: 318001103 Date: 20/09/21 Start time: 11.00am Subcontractors: Finish time: 11. 21am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.25 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge □ Peristalic □ Bailer Start Sampling: 11.05am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1ma/L +10% <u>+</u>10% ±10% unit TEMP flowrate Drawdow TIME SPEC. COND. DO Redox Vol (L) TDS Turbidity Comments (Appearance, colour and рΗ (1/min) n (m) (°C) (mg/L) (mg/L) (µS/cm) (mV) (NTU) 11.09 0.5 turbial, poule yellow brown, no adow 2.4023.26 8.64 7270 -222 4610 407 0.59 11.13 0.5 2.48 22.19 8.68 7100 0.24 -323 4470198 11 И 2.56 21.25 8.68 7250 0.85 -339 4566 182 11.16 0.5 4 b IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Sampled from flow Cell as well run almost dry with sediment at bottom water level 2.69 mbToC Well Head Integrity: Samples Filtered: Weather Conditions: Scunny Other:

PERIM

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form W65 Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke 318001103 Project No: 20/09/21 11.23am Date: Start time: Subcontractors: Finish time: 11.240mm Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 3.09 m IP Propo Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L +10% ±10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and TIME Vol (L) рН TDS (L/min) n (m) (°C) (mg/L) (mV) (mg/L) (NTU) (µS/cm) odour) IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Dry-unable to be sampled Well Head Integrity: Samples Filtered: Weather Conditions: Other:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form

											Well ID:	W6D
	Name:		ro Quar	terly Gro	oundwat	er Monitor	ing 2021	1	Rambo	II Personne	el: J Bo	urke
Project	i No:		001103	, .								
Date: Start ti	ima	20	2/09	/21								
Finish t		10	24	m					Subcon	tractors:		
	leasuren	nentc	.07p	M								
		rs in We	11 -							1		
	to Grour			.59							nent device	
Correct		awater	3	. 5					m	- 1	PPR	96
		levation	:						m m	-		
Depth t	to Immi	scible La	ver						m	incasuren	nent device:	
		nmiscibl							m			
Well De				8.8	6				m	Measurem	ent device:	
Thickne	ess to G	roundwa	ter Colu	mn:					m	· · · · · · · · · · · · · · · · · · ·	ione acvice,	
Well Sa									/			
Method						o-Purge		1	Peris	talic		Bailer
	ampling		- 1	410	am			E	End Sar	mpling:		
Sample	Appear	ance:					7					
Stabil	ity Parar	meters	<0.1m	±0.1°C	±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	±109	6 <u>+</u> 10%		
TIME	Vol (L)	flowrate	Drawdow	TEMP		SPEC. COND.	DO	Redox	TDS	Turbidity	Comments (A	ppearance, colour ar
TIME	VOI (L)	(L/min)	n (m)	(°C)	pН	(µS/cm)	(mg/L)	(mV)	(mg/L	-) (NTU)	Comments (A	odour)
1.44	0.5			29:86	6.67	742	3.4	37	48	230	turbio Yellow	brown,
1.47	0.5			24.64	6.07	701	5.1	63	44	7226		odour
11.50	0.5			24:65	5.96	688	4.2	31	44	1-216	W	ч
1.53	0.5			24.79	5.81	610	5.6	16	431	206	4	Ч
1.56	0.5					660		12	422	2 210	h	ч
1.59	0.5					659		9	423	206	ч	4
2.02	0.5						5.1	7	41-	1197	и	4
F Nega	tive Re	dox and	t >2mg	/L DO.	RECALI	BRATE a	nd chec	k agair	n.			
iscellan	eous Fie	eld Comi	nents									
	d Integr		nal	م	uter	leve	1 6	.00	mbic	OC.		
	Filtered Condition		ne/	Sunn	4							

Low Flow Groundwater Sampling Field Parameter Form 18 Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 20/09/21 Date: 12.23cm 12.43pm Start time: Subcontractors: Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: Depth to Groundwater 3.72 IP Probo Correction: m Measurement device: Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 5.30 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: □ Micro-Purge □ Bailer Start Sampling: 12.27pm End Sampling: Sample Appearance: <u>+</u>0.1 pH <0.1m ±0.1°C Stability Parameters +10% +0.1mg/L +10% +10% +10% unit TEMP Redox flowrate Drawdow SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and TIME Vol (L) рΗ (L/min) n (m) (mg/L) (mg/L) (NTU) (°C) (mV) odour) (µS/cm) turbid yellow/ 3.50 24.10 7.22 8630 6.46 34 5440 116 orange brown. 12.31 0.5 3.66 22.40 7.19 8860 645 58 5580 115 Slight adour 3.74 2.17 1.19 4680 6.27 28 5600 116 12.37 0.5 11 11 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 3.83 mbTOC uster level

Samples Filtered:

Weather Conditions:

Other:

Low Flow Groundwater Sampling Field Parameter Form

Project Date:	t Name:					ar Monitor	na 2021	11	3 n maha	11 Dawaa	.I. 2 D.	1
Date:	LINO;		001103	erry Gre	unuwati	er Monitor	ing 2021		kambo	ll Personne	el: J Bo	ourke
C1 - 1 -			1091	21								
Start t	ime:		500						Subcon	tractors:		
Finish	time:	1.	PW	1					Jubcon	tractors.		
Field M	leasuren	nents	4									
Organi	c Vapou	rs in We	ll:	111					ppm	Measuren	nent device	7.
Depth	to Grour	ndwater		2.96					m	1	-	
Correc	tion:								m	1	P Pr	300
Ground	lwater E	levation							m	Measuren	nent device	1:
	to Immis								m			
	ess to In	nmiscible	e layer:						m			
Well De				48	2				m	Measurem	ent device	:
Thickne	ess to Gr	oundwa	ter Colu	mn:					m			
Well Sa	mpling								/			
Method	l:				☐ Micro	o-Purge			Perisi	talic	П	Bailer
Start S	ampling:	:		12.	53pm					npling:		
ample	Appear	ance:			,					,		
Stabil	ity Parar	meters	<0.1m	±0.1°C	±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	<u>+</u> 10%	6 <u>+</u> 10%		
TIME	Vol (L)	flowrate (L/min)	Drawdow n (m)	TEMP (°C)	рН	SPEC. COND. (µS/cm)	DO (mg/L)	Redox (mV)	TDS (mg/L		Comments (Appearance, colour a odour)
2.56	0.5		2.96	26.82	9.53	10500	0.9	-163	645	0226	turbic yellow	y pale brown
	0.5		2.97	-		-	8.0	208	684	0218	'Slight	- odour
	0.5					10900				0 174	V)	n
.05	0.5		2.98	2233	q.48	9860	1.90	-195	628	0128	h	ч
Nega iscellar	i tive Re neous Fie	dox and	d >2mg ments	/L DO.	RECALI	BRATE a	nd chec	k again	l			
		1										
ell Hea	d Integr	ity:	Fino	w	eter	level	2	77	mb	toc		
	Filtered Condition	1	Meta Fine/	15		246.74				4777		

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form

Projec	t Name:	Нус	iro Quar	terly Gr	oundwa	ter Monito	ring 202	1	Rambo	ll Personn	ol· 1	ID: N2	_
Projec	t No:	318	3001103				mig LUL		Kambo	ii reisoiin	cı. J	bourke	
Date:			1991										
Start			16pm	•					Subcon	tractors:			
Finish			4.50	om									
	Measurer												
	ic Vapou								ppm	Measurer	nent dev	rice:	
	to Grou	ndwater	-	44	5				m				
Correc									m		IP	Probe	
	dwater E								m	Measuren	nent dev	ice:	
	to Immi					/			m				
	ess to Ir	nmiscibl		_ 1		,			m				
Well D				5.6V					m	Measuren	nent dev	ice:	
i hickn	ess to G	roundwa	iter Colu	mn:					m				
Well S	ampling												
Method	d:				□ Micr	o-Purge		F	Perist	alic		□ Bailer	
	ampling			1	20ph				nd San			L Danei	
Sample	e Appear	ance:							5011	ipinig.			
Stabi	lity Parai	meters	<0.1m	±0.1°C	<u>+</u> 0.1 pH	<u>+</u> 10%	+0.1mg/L	<u>+10%</u>	±10%	+10%			
				TEMP	unit		_0	-	110%	±10%			
TIME	Vol (L)	(L/min)	Drawdow n (m)	(°C)	pH	SPEC. COND. (µS/cm)	DO (mg/L)	Redox (mV)	TDS (mg/L)	Turbidity) (NTU)	Comment	s (Appearance, colo odour)	ur and
.24	0.5		4.64	12.60	5.11	5850	2.26	211	371	0117	turb	id, pare	
27	0.5		478	21.58	4.64	5980	4.14	263	315	301	no c	dour	
30	0.5		4.86	21.14	4.30	6000	3.28	351	3800	83.5	N	7	
.33	0.5		4.95	20.80	4:08	6010	390	386	3800	72.5	· P	4	
36	0.5					6040					'n	h	
39	0.5					6050					4	v	
						000		113	3010	20.5			
		-											
													_
Noss	tive D-	dau -	1.0	41. 7. 2									
scellar	eous Fie	ld Comr	ı > ∠mg nents	/ L DO.	RECALI	BRATE ar	nd chec	k again		-			
			incires.										
	d Integri	ty: Fi	nal	wal	er k	QUP I	ES	2 10-6	TO				
mples	Filtered:	~	letal.	5		evel	2.	, MI					
	Conditio												

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100

Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Daily Field Report

Project Name: Quarterly GW Monitoring 2021

Ramboll Personnel:

J Bourke

Project No:

318001103

Date:

21/09/21

Start time:

6.30 am

Subcontractors:

Finish time:

Weather:

BoM

Field Report:

6.30am

JAB annues onsite to meet Glenn, transfer sampling gear to Grenn's lite and be escorted to sampling locations.

6.50am Commence sampling of remaining wells w55, w5D, F6, G6, F5, G5, W3D, W35, A7, W45, W15, W10 F5.

Rinsate taken at end of sampling

1.30pm JAB leaves site to head to office

NOTE: W3D Still whable to be sampled. Highly likely it is damaged as IP won't surpass 4.63 moto C

QA/ac:

Primary: W5D

Duplicate: 002-20210921

Rinsate collected on flexi-tubing: ROI_20210921

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004

Ph: 08 9225 5199

SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060

Ph: 02 9954 8100

HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291

Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form Well ID: 1~55 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 21/09/21 652am Date: Start time: Subcontractors: 6.59am Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: 1.68 Depth to Groundwater Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 1.71 m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge □ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: Stability Parameters <u>+</u>0.1 pH <0.1m ±0.1°C <u>+</u>10% ±0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow Redox SPEC, COND. DO Turbidity Comments (Appearance, colour and TIME Vol (L) рΗ (L/min) n (m) (°C) (µS/cm) (mg/L) (mg/L) (NTU) (mV) odour) IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Dry/Insufficient water to sample Well Head Integrity: Samples Filtered: Weather Conditions: Other:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100

Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Low Flow Groundwater Sampling Field Parameter Form W5D Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 21/09/21 6.54am Start time: Subcontractors: Finish time: 7.200m Field Measurements Organic Vapours in Well: ppm Measurement device: 5.67 Depth to Groundwater m 1P Proba Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 10.53 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: 7.01am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L <u>+</u>10% +10% +10% unit TEMP flowrate Drawdow Redox Turbidity Comments (Appearance, colour and SPEC. COND. DO TDS TIME Vol (L) (I/min) n (m) (mg/L) (mV) (mg/L) (NTU) (µS/cm) 1.04 dear-to slanth 6.19 4.07 6.56 5660 2.0 -56 3570 119 0.5 turbid, colour 6.42 4.90 6.36 5-150 0.0 -31 3620 88.1 1.08 No adour 6.56 15.00 6.36 5150 0.0 -23 3610 41.5 1.12 0.5 4 6.64 5.14 6.31 5770 0.0 -21 363046.0 1.15 0.5 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments taken here DOZ 20210921 water buel Well Head Integrity: 7.04 mbTOC Samples Filtered: Weather Conditions: /samy Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: F6 Hydro Quarterly Groundwater Monitoring 2021 Project Name: Ramboll Personnel: J Bourke Project No: 318001103 21/09/21 7.55am Date: Start time: Subcontractors: 8.15am Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 4.56 Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 15.47 m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer 758am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L +10% ±10% unit TEMP flowrate Drawdow Redox Turbidity Comments (Appearance, colour and TIME SPEC. COND. DO Vol (L) (I/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) odour) (µS/cm) ckar to slightly 4.78 14.79 6.89 4680 0.70 -62 5460 15.9 no odow 5.06,490685 8740 0.0 -69 5500 21.0 い 4 5.23 496 6.84 8730 0.0 -71 5500 19.6 い 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 5.46mbtoc water eve! Samples Filtered: Weather Conditions: Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444 Ramboli Australia Pty Ltd ACN 095 437 442 ABN 49 095 437 442 www.ramboli.com

											Well ID:	G	6
Project	Name:	Hyd	ro Quart	erly Gro	undwate	er Monitori	ng 2021		Rambo	l Personne	el: J Bour		0
Project	No:		001103										
Date:			109/										
Start ti			·160i						Subcon	tractors:			
inish t			470	M									
	easuren												
		rs in We		46						Measuren	nent device:		
Correct	o Grour	idwater		76	1				m		IP Pro	de	
		levation							m	Manayuan			
		scible La							m m	Measurem	nent device:		
		nmiscible							m				
Vell De			-	7.06	5				m	Measurem	nent device:		
		oundwa	ter Colu						m		ione dovicor		
	mpling								/				
1ethod						o-Purge		,	Peris	talic		Bailer	
	mpling:		•	8.30	Down	`			End Sar	npling:			
ample	Appear	ance:			104-11					_			
Stabili	ty Parar	neters	<0.1m	±0.1°C	±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	±109	6 <u>+</u> 10%			
77145		flowrate	Drawdow	TEMP		SPEC. COND.	DO	Redox	TDS	Turhidity	Comments (Ap	nearance	colour a
TIME	Voi (L)	(L/min)	n (m)	(°C)	pH	(µS/cm)	(mg/L)	(mV)				odour)	, colour u
34	0.5		4.76	14.52	5.03	6690	0.0	75	421	030.2	clear	with	Flocen
-0	-										65.5 T	رد ر اگر	igni
,31	0.5		4.78	14.57	4.98	6800	0.0	38	429	3021.1	n		4
,40	. 5		171	1412	1.01	6800					• •		1
,.40	0.		1./4	17.65	7:14	900	0.0	23	429	021.0	n		
									-				
- 1													
												_	
		-											
-													
-									-				
		2 1											
											-		
- Nega	tive Re	dox an	d >2ma	/L DO.	RECAL	IBRATE a	nd chec	k agai	in.				
		eld Com											
									/				
	d Integ	rity:	ma	w	ater	m ki	el	4-	74	moto	5C		
	Filtered	: /	Meto	US	1	,	W.S.		212	21/12			
	Condition	ons:	Fine	2/54	my	Lwin	dy			mbto			

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Ramboll Australia Pty Ltd ACN 095 437 442 ABN 49 095 437 442 www.ramboll.com

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 21/09/21 Start time: Subcontractors: Finish time: 269 h Field Measurements ppm Measurement device: Organic Vapours in Well: 3.08 Depth to Groundwater IP Propo m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 7.38 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer 9.03an Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters ±0.1°C <0.1m +10% ±0.1mg/L ±10% +10% +10% unit TEMP Redox flowrate Drawdow Turbidity Comments (Appearance, colour and SPEC. COND. DO TDS TIME Vol (L) (L/min) n (m) (mg/L) (mg/L) (NTU) odour) (°C) (mV) (µS/cm) 9.01 0.5 4.67 0.0 6260 9 0.5 20 0.0 -25627012.3 M 9.13 0.5 0.0 14.78 4.68 10100 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 3.37 mptoc rater level Samples Filtered: Weather Conditions: Cloudy Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 21/09/21 Start time: 9.27am Subcontractors: Finish time: 10.00 am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 3.15 m 1 Prote Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 1134 m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Deristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L +10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. Turbidity Comments (Appearance, colour and TIME DO Vol (L) (L/min) n (m) (mg/L) (mg/L) (mV) (NTU) odour) (µS/cm) 14:21 5:87 6380 9.380.5 0.0 7 colourless, slight 3.28 14.22 5.87 6420 0.0 9.420.5 10 3.39 14.54 5.68 6470 0.0 9.460.5 41 4 407020.0 \$3.9414.88 5.63 6410 9.50 0.5 3. Ax 14.92 5.59 6390 0.0 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 3.53 mbroc Samples Filtered: Weather Conditions: loudy Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 YDNEY

tevel 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444 Ramboll Australia Pty Ltd ACN 095 437 442 ABN 49 095 437 442 www.ramboll.com

Low Flow Groundwater Sampling Field Parameter Form Well ID: W35 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 21/09/21 Start time: 10.21am Subcontractors: Finish time: 10.45am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 1.58 m 1P Probe Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2.52 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: □ Micro-Purge □ Bailer 10.31am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% +10% ±10% TEMP flowrate Drawdow Redox SPEC, COND. DO Turbidity Comments (Appearance, colour and TIME TDS Vol (L) (L/min) n (m) (°C) (mg/L) (mV) (mg/L) (NTU) (µS/cm) slightly turbid, molow 10.400.5 5 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 2.10 mbroc water level Samples Filtered:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

Weather Conditions:

Other:

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER
Suite 18, 50 Glebe Road
The Junction NSW 2291
Ph: 02 4962 5444

Ramboll Australia Pty Ltd ACN 095 437 442 ABN 49 095 437 442 www.ramboll.com

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 109/21 11.03am Date: Start time: Subcontractors: 11.26am Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.07 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 4.37 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer 11.08am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±0.1mg/L ±10% +10% +10% +10% unit TEMP Redox flowrate Drawdow SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and TIME Vol (L) рΗ (L/min) n (m) (mg/L) (mg/L) (NTU) (°C) (mV) (µS/cm) slightly turbidy dank brown 16400 6.72 11.13 0.5 10100 strong 2.16 19.34 9.73 16300 6.61 -43, 10100 61.3 odown 11.16 0.5 2.19 19.31 9.78 16300 6.46 -437 10100 52.8 11.18 0.5 X IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments nater level Well Head Integrity: 2.22 mbtoc tina Samples Filtered: Weather Conditions: Other:

			Low F	low G	roundy	water Sa	amplin	g Fie	ld Par	ameter	Form	
											Well ID:	W45
Project	Name:	Hyd	ro Quart	erly Gro	undwate	er Monitori	ng 2021		Rambo	I Personne	i: J Bou	
Project			001103									
Date:		21	1091	21								
Start ti	me:	l)	:3100	m					Subcon	tractors:		
Finish t	ime:	1	1320	m								
	easuren											
		rs in We							ppm	Measurem	ent device:	
	to Grour	idwater		06					m		IP Pro	000
Correct									m		10 01	
		levation							m	Measurem	ent device:	
		scible La							m			
		nmiscible	e layer:	1.0					m			
Well De		,		1.12					m	Measurem	ent device:	
Inickne	ess to Gr	oundwa	ter Colur	nn:					m			
Well Sa	mpling											
Method					□ Micro	o-Purge			□ Peris	talic		Bailer
Start S	ampling								End Sar	npling:		
	Appear											
Stabil	ity Parai	meters	<0.1m		±0.1 pH unit	<u>+</u> 10%	<u>+</u> 0.1mg/L	<u>+</u> 10%	±10%	% <u>±</u> 10%		
TIME	Vol (L)	flowrate (L/min)	Drawdow n (m)	TEMP (°C)	рН	SPEC. COND. (µS/cm)	DO (mg/L)	Redox (mV)	1 , 100	, , , , , ,	Comments (A	odour)
Miscellar		eld Com				IBRATE a				to so	əmpl	e
	Filterec											
									-	++		
weatner Other:	Conditi	ons:										

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 YDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444 Ramboli Australia Pty Ltd ACN 095 437 442 ABN 49 095 437 442 www.ramboll.com

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 21/09/21 Date: 11.45am Start time: Subcontractors: Finish time: 12.00pm Field Measurements ppm Measurement device: Organic Vapours in Well: 1.88 Depth to Groundwater m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 2.41 Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: □ Micro-Purge □ Peristalic □ Bailer 11. 48am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L +10% +10% +10% unit TEMP Redox flowrate Drawdow SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and TIME Vol (L) (L/min) n (m) (mg/L) (mg/L) (NTU) (°C) (mV) odour) (µS/cm) turbid yellow 166 brown, no odow M 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments water Reel 2.40 mbtoc Well Head Integrity:

PERTH

Samples Filtered: Weather Conditions:

Other:

Level 2, 200 Adelaide Terrace East Perth WA 6004 Phr 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444 Ramboll Australia Pty Ltd ACN 095 437 442 ABN 49 095 437 442 www.ramboll.com

Low Flow Groundwater Sampling Field Parameter Form WID Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: 1 Bourke Project No: 318001103 Date: 21/09/21 12.35pm Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.39 IP Probe Correction: Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 10.40 Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: Peristalic □ Micro-Purge □ Bailer 12.09 Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C <u>+</u>10% +0.1mg/L +10% +10% +10% unit TEMP flowrate Drawdow Redox Turbidity Comments (Appearance, colour and SPEC. COND. TDS TIME Vol (L) рΗ (L/min) n (m) (mq/L)(mg/L) (NTU) (°C) (mV) odour) (µS/cm) 2.54 9.80 8.12 13800 0.0 cker, dark yellow, 12.19 0.5 36 ho odowa 12,22 0.5 12.250.5 h 8500 22.0 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments water level Well Head Integrity: 3.22 mbTOC Samples Filtered: Weather Conditions: Other:

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY

Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 MUNTER

Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444 Ramboll Australia Pty Ltd ACN 095 437 442 ABN 49 095 437 442 www.ramboll.com

Low Flow Groundwater Sampling Field Parameter Form Well ID: F4 Project Name: Hydro Quarterly Groundwater Monitoring 2021 J Bourke Ramboll Personnel: Project No: 318001103 Date: 21/09/21 Start time: 1238pm Subcontractors: Finish time: 1.02 pm Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.20 m 18 Probo Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: eristalic ☐ Micro-Purge □ Bailer Start Sampling: 3-100 HOUMON 3. 47 End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L ±10% +10% +10% unit Drawdow TEMP Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and TDS Vol (L) рΗ (L/min) n (m) (mg/L) (°C) (mV) (ma/L)(NTU) odour) (µS/cm) very turbid, dork 0.5 336 22.33 10.09 22700 0.0 10.09 23000 -321 2.20 21.61 143003333 0.0 23700 10.10 323 14290366 4 6.0 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. 1000 NTU is maximum turbiolity reading on Miscellaneous Field Comments WOM water kue! Well Head Integrity: 2.3 ImpToc Final Samples Filtered: Weather Conditions: Other:

No.	Well ID	Well Depth (m)	Notes (December) 2021
1	A7	4.32	2/12/21
2	E11	4.82	1/12/21
3	E4	3.4	2/12/21
4	E5	2.57	1/12/21
5	E5D	5.44	1/12/21
6	F5	7.37	2/12/21
7	F6	15.48	2/12/21
8	G2	13.42	1/12/21
9	G5	11.31	2/12/21
10	G6	7.14	2/12/21
11	N2	5.62	1/12/21
12	N8	5.3	1/12/21
13	N9	2.83	1/12/21
14	PUMP	3.45	1/12/21
15	W1D	10.38	2/12/21
16	W1S	2.41	2/12/21
17	W2D	6.36	1/12/21
18	W2S	2.37	1/12/21
19	W3D	10.08	damaged (unable to be sampled since December 2020)
20	W3S	2.55	2/12/21
21	W3SA	0.5	destroyed
22	W4D	10	destroyed
23	W4S	1.12	Insufficient water to sample
24	W5D	10.54	1/12/21
25	W5S	1.7	1/12/21
26	W6D	8.8	1/12/21
27	W6S	3.1	dry
28	W7M	3.72	1/12/21
29	W7S	2.3	1/12/21

-

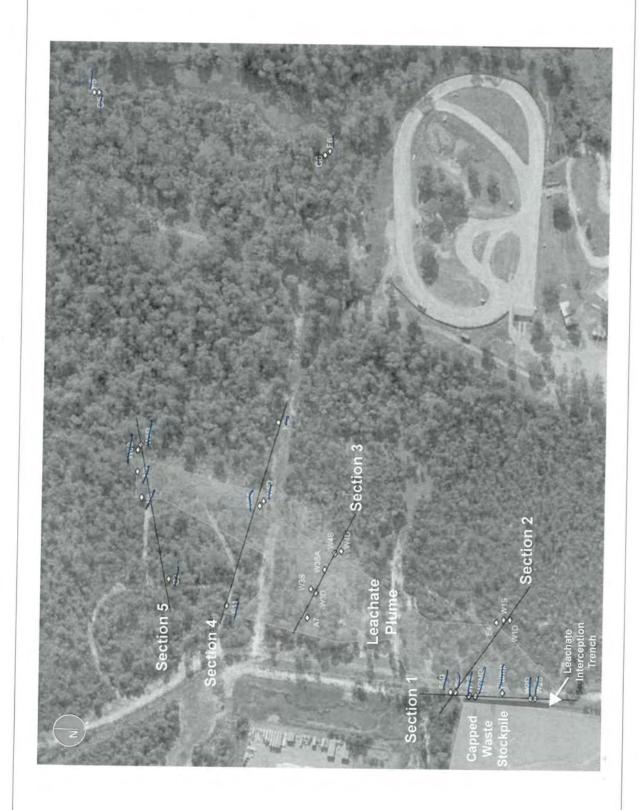


Figure 2 | Groundwater Monitoring Well Network, 2019 Annual Groundwater Monitoring Report

Daily Field Report

Project Name: Quarterly GW Monitoring 2021 Ramboll Personnel: J Bourke

Project No: 318001103 Date: 1/12/21

Start time: 7.300 Subcontractors:

Finish time: 3.30pm

Weather:

Field Report:

7.30am JAB annes onsite to commence December

Wells sampled: WZS, WZD, PUMP, W7S, W7M, E5, E5D, GZ, N8, N9, W65, E11, W55, W5D and NZ

3.30pm JAB leaves site to head to office

QA/QC

Primary: W5D Duptrip: DOI_20211201

TOI - 20211201

BoM

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m IP Probe Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Laver m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: 7.37am End Sampling: Sample Appearance: Stability Parameters ±0.1 pH <0.1m ±0.1°C +10% ±0.1mg/L ±10% ±10% +10% TEMP flowrate Drawdow SPEC. COND. Redox DO TIME Vol (L) TDS Turbidity Comments (Appearance, colour and (L/min) n (m) (mg/L) (mg/L) (NTU) (mV) (µS/cm) odour) 3. >/ ZO.14 turbid, pale yellow 1200 7.400.5 139 762 brown, no odaw 194 0.5 L 0.5 4 LA 3.10 4 11 L 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: Final water keel 1.48 mbtoc Samples Filtered: Metal 5

Weather Conditions: Ocercas

Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: WID Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboli Personnel: J Bourke Project No: 318001103 Date: 1/12/21 Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 1.35 IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer 8.07am Start Sampling: End Sampling: Sample Appearance: +0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L +10% ±10% ±10% unit flowrate Drawdow SPEC. COND. DO Redox TIME TDS Vol (L) Turbidity Comments (Appearance, colour and (L/min) n (m) (mg/L) (mg/L) (µS/cm) (mV) (NTU) 8.10 0.5 31000 0.00 Clear, dark brown sulphidic odown 263/9000 7.6 0.04 0.5 10.1930800 0.01 18800 F.O IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: Final water keel 2.10 mbTOC Samples Filtered: Metals Weather Conditions: Overcast Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: PUMP Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 12/2 Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater .45 m 1P Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer 8.29am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C +10% ±0.1mg/L ±10% <u>+</u>10% TEMP flowrate Drawdow Redox SPEC. COND. TIME DO TDS Turbidity Comments (Appearance, colour and Vol (L) (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) odour) (µS/cm) 8.320.5 38.3 Clear colowness 21.37 2.55 777 81 58x no odowr 95 8.3 < 0.5 34.4 P.51 V 0.5 30.0 M 0.5 ≥6. > 4 N 52.1 4 W €6.0 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water keel 1.62 mbroc Samples Filtered: Metals Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: W7S Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 1/12/21 Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 2.0% Depth to Groundwater m 1P Proba Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer 9.00am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L ±10% ±10% ±10% unit TEMP flowrate Drawdow Redox SPEC, COND. DO TDS Turbidity Comments (Appearance, colour and TIME Vol (L) рΗ (L/min) n (m) (mg/L) (mg/L) (NTU) (°C) (mV) odour) (µS/cm) 200 Very turbid, pake IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments & new reading for turbidity on wam Sampled from flow cell, well purged almost dry Well Head Integrity: Final Water fevel 2.31 mbTOS Samples Filtered: Metals averaget Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: Start time: 26an Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater .80 m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Laver m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer 9. 40 am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C +10% +0.1mg/L ±10% ±10% ±10% unit TEMP flowrate Drawdow Redox SPEC. COND. DO TIME Vol (L) TDS Turbidity Comments (Appearance, colour and (L/min) n (m) (°C) (mg/L) (mg/L) (mV) (NTU) (µS/cm) 5.00 turbid pale 8570 540 112 Slightly 131 Jeflow brown, no U IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: final water kuel 30 MBTOC Samples Filtered: Meta 15 Weather Conditions: overcast Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboli Personnel: J Bourke Project No: 318001103 Date: 1/12/2 Start time: 0.02am Subcontractors: Finish time: 0.30am Field Measurements Organic Vapours in Well: ppm Measurement device: 1.80 Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: Peristalic ☐ Micro-Purge □ Bailer Start Sampling: 10.11am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C ±10% ±0.1mg/L ±10% ±10% +10% TEMP Drawdow Redox flowrate SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and TIME Vol (L) (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) (µS/cm) 1.92 10.120.5 183 12000 6.5 21.54 4.30 clear dark brown no odown 6.3 4) 10.20 0.5 6.0 16 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water tevel 2.10 mbt 00 sna Samples Filtered: Metal5 Weather Conditions: Over Cas-Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: E 5D Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: Start time: Ian Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater IP Probe m Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: 10.33am End Sampling: Sample Appearance: +0.1 pH Stability Parameters <0.1m ±0.1°C +10% +0.1mg/L <u>+</u>10% ±10% ±10% TEMP flowrate Drawdow Redox SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and TIME Vol (L) (L/min) n (m) (mg/L) (mV) (mg/L) (NTU) (µS/cm) 0.65 21.5 clear, park brown 10-36 7.05 -105 11 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: inal water keel 2.63 mbtoc Samples Filtered: Metals Weather Conditions: Overcast Other:

Low Flow Groundwater Sampling Field Parameter Form G2 Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 180011 1/12/21 10.59am Date: Start time: Subcontractors: Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: Depth to Groundwater m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible laver: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer End Sampling: Start Sampling: Sample Appearance: ±0.1 pH ±0.1°C Stability Parameters <0.1m <u>+</u>10% ±0.1mg/L ±10% ±10% ±10% unit TEMP Redox flowrate Drawdow SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and Vol (L) рΗ (L/min) n (m) (mg/L) (mg/L) (NTU) odour) (mV) (°C) (µS/cm) 1.5, turbid grey 261 0.5 strong landic adown 0.5 166 2 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments level 8.29 mbTOC Well Head Integrity: water Samples Filtered: Metals Weather Conditions: ALCON S Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 112/21 Start time: 11.40am Subcontractors: Finish time: 12.12pm Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m 1 Probo Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge □ Peristalic □ Bailer Start Sampling: 11. 46am End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and TDS TIME Vol (L) рH (L/min) n (m) (°C) (mg/L) (mV) (mg/L) (NTU) odour) (µS/cm) 1.86 3.32 11.49 0.5 750 brown, ho odour 0.5 4 n U 4 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water level Samples Filtered: Motals Weather Conditions: Overcas-Other:

			Low F	low G	round	water Sa	amplin	g Fie	eld Pai	ameter	Form	
											Well ID:	W65
_	Name:			erly Gro	undwate	er Monitori	ng 2021		Rambo	II Personne	el: J Bour	
Project	L NO:	318	001103	V				-				
Date: Start t	ima	- [/	2/2	2.			_	-	0 1			
Finish			250	200				-	Subcon	tractors:		
			-25pv	n								
	leasuren		11.									
		rs in We		10							nent device:	
Correc	to Grour	lawater		0).3					m	11	Probe	
		Tanaktan.		_					m			
		levation		_					m	Measuren	nent device:	
		scible La							m			
Well De		nmiscible	e layer:	11					m			
									m	Measuren	ent device:	
THICKH	ess to Gi	rounawa	ter Colu	mn:					m			
Wall Ca												
Method	mpling				C Minu	- D						
					□ МІСГО	o-Purge			□ Peris			Sailer
	ampling								End Sar	npling:		
	Appear				<u>+</u> 0.1 pH				1		1	
Stabil	ity Parai		<0.1m	±0.1°C	unit	<u>+</u> 10%	<u>+</u> 0.1mg/L		+			
TIME	Vol (L)	(L/min)	Drawdow n (m)	(°C)	pН	SPEC. COND. (µS/cm)	DO (mg/L)	Redo: (mV)		,		pearance, colour and odour)
							*					
								/				
IC Non	ntine D	adam an	4 > 2	// 50	DECALL					-		
Miscella	neous Fi	eld Com	a >2mg ments			mab				5am	pled	
	ad Integ	1	-									
	Condition	ons:	Sun	Λ. 4								
Other:	Contaith	01131		1								

Low Flow Groundwater Sampling Field Parameter Form Well ID: W6D Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 1/12/21 Start time: 12.26pm Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 5.63 m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m 8.86 Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge ☑ Peristalic □ Bailer 12.35pm Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L +10% +10% +10% unit TEMP flowrate Drawdow SPEC. COND. Redox TDS Turbidity Comments (Appearance, colour and Vol (L) (L/min) n (m) (°C) (mg/L) (mg/L) (mV) (NTU) (µS/cm) odour) 12.38 0.5 Tembibl, pale brown 1280 7.85 30 814 hoodow 2.36 771 1210 4 1160 2.05 745 4 1.67 n n 1.78 12.50 11 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: level 5.89 mbTOC Samples Filtered: Motals Weather Conditions: Overcast Sunny Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: NB Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: Start time: 3pm Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 3.16 m IP Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C +10% +0.1mg/L +10% +10% +10% unit flowrate Drawdow SPEC. COND. Redox TDS Turbidity Comments (Appearance, colour and Vol (L) (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) (µS/cm) odour) Tarbid, pale yellow 0.5 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments cater Well Head Integrity: Samples Filtered: Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboli Personnel: J Bourke Project No: 318001103 Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater Probe m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: □ Micro-Purge □ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L ±10% +10% +10% unit TEMP flowrate Drawdow Redox Comments (Appearance, colour and odour) SPEC. COND. TDS Turbidity TIME Vol (L) (L/min) n (m) (NTU) (°C) (mg/L) (mg/L) (mV) (µS/cm) Trubidy pak brown 38 010 151 139 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: 2.42 MOTOC water level Samples Filtered: Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 1.42 IP Probe Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Laver m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m +0.1°C ±10% +0.1mg/L ±10% +10% +10% TEMP flowrate Drawdow SPEC. COND. Redox DO Turbidity TDS Comments (Appearance, colour and TIME рΗ (L/min) (mg/L) (°C) (mg/L) (NTU) (mV) odour) (µS/cm) Very turbed, grey brown, no oclower 1.48 22.15 6.83 070 71000 0.27 -134 921 550 0.3× 860 2.21 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments V VV turbidity readily Samoled cell - well punged dr trom tion Well Head Integrity: worker Samples Filtered: Weather Conditions: Other:

Ph: 02 9954 8100

Low Flow Groundwater Sampling Field Parameter Form W5D Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 1/12/2 Start time: John Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 5.66 Depth to Groundwater m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L ±10% ±10% +10% TEMP Redox flowrate Drawdow SPEC. COND. DO Turbidity TDS Comments (Appearance, colour and TIME Vol (L) (L/min) n (m) (mg/L) (mg/L) (NTU) odour) (mV) (µS/cm) Turbid, grey brown 61700.58 234 6.28 19.92 6.00 0.5 -11 no od our 19.76 6.00 6220 0.38 0.5 LA -12 M 6.64 19.65 6.00 6180 0.32 2.47 4 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. 201-20211201 and TOL20211201 taken here Miscellaneous Field Comments Well Head Integrity: Final Later ene Samples Filtered: Metals Overcast Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: Start time: 3.08pm Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 4.38 Depth to Groundwater m Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth 5.64 Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: □ Micro-Purge □ Bailer Start Sampling: 3.ZIPM End Sampling: Sample Appearance: ±0.1 pH <u>+</u>10% Stability Parameters <0.1m ±0.1°C +10% ±0.1mg/L +10% +10% flowrate Drawdow TEMP Redox Turbidity Comments (Appearance, colour and (NTU) odour) SPEC. COND. DO TDS TIME Vol (L) (L/min) n (m) (mg/L) (mg/L) (mV) (µS/cm) turbid, pale gray 20.823.77 3650 176 3.24 0.5 134 422 no odour 4 3.27 0.5 20.22 3.68 6340 3.30 0.5 1.46 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water level 6.02 mbtor Samples Filtered: neta Weather Conditions: Other:

RAMBOLL

Daily Field Report

Project Name: Quarterly GW Monitoring 2021 Ramboll Personnel: J Bourke

Project No: 318001103

Date: 2/12/21

7.30am Start time: Subcontractors:

12.45pm Finish time:

Weather: Sunm / Fine

Field Report:

7.30am JAB armes onsite to complete GW mointoining.

Wells Sampled: F6, F5, G6, G5

9.30am Green assists JAB with replacing monument for G6 after it has been sampled as to not affect SWL for 2021. New monument, however sits at same stickip as old monument for TOC measurements.

wells Jampled: W45, W35, A7, E4,WID and W15.

12.45pm JAB leaves site to head to office

aNac

Primary: G5

Dup: DO2-2021/202

Rinsote: ROI-20211202

								1			Well ID:	45	
	Name:			terly Gro	oundwate	er Monitor	ing 2021		Rambol	l Personne	el: J Bour		
Project	No:		001103										
Date:			1				•						
Start ti			·32a	~					Subcon	tractors:			
Finish t			2.100	CVV									
	easuren		11										
	to Grour	rs in We		2.6	7					Measuren	nent device:		
Correct		iuwater	-	2.0	0				m		1P Prop	e	
		levation							m				
		scible La								Measurem	nent device:		
		nmiscible							m		:		
Vell De		IIIISCIDI	e layer.	11:	34				m	M			
		าแบปพล	ter Colu		J 1					measurem	ent device:		
	(0 01	Juliuwa	CCI COIU					- 1	m				
Vell Sa	mpling								1				
1ethod					□ Micro	o-Purge			Perist	alic	□ Ba	ailer	
Start Sa	ampling:		7.	51		, ui ge			End San			illei	
	Appear								Liid Saii	ipinig.			
Stabili	ity Parar	neters	<0.1m	+0.1°C	±0.1 pH	+10%	±0.1mg/L	+10%	+10%	±10%			
TIME	Vol (L)		Drawdow	TEMP	unit	SPEC. COND.	DO	Redox	TDS	Turbidity			and
7.54	0~	(C/IIIII)	n (m)	(°C) 18.58	5.47	(h2/cm)	(mg/L)	(mV)	(mg/L)			colowie	55,
7.6.	0.5		3.16	18.53	77	-					Sulphid	oculor	*
> 7	2 -		5.16	10.23	5.39		0.56	55	¥37(- 11	Li	
.00	0.5		3,18	8X.0.	.39	6890	0.73	2,X	34	8.0	LV		
									1		i		
									-				
			-					-		-			-
-													
-									-				_
	Maria B												
Nega scellan	tive Re eous Fie	dox and	i >2mg ments	/L DO.	RECALI	BRATE ar	nd check	k agai	n.				
	d Integr		inal			leve							

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 1/12/2 Start time: 8. Ilam Subcontractors: Finish time: 8.49am Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.70 IP Probe m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: □ Micro-Purge Peristalic □ Bailer 8.23an Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +10% ±0.1mg/L ±10% ±10% unit TEMP flowrate Drawdow Redox SPEC. COND. DO Turbidity Comments (Appearance, colour and TDS TIME Vol (L) рΗ (L/min) n (m) (°C) (mg/L) (mg/L) (mV) (NTU) odour) (µS/cm) 7.5 3.03 0.86 6830 clear, colouress, black flocalants, sulphidit 11000 0.5 71 0.⁴⁵ 6850 11100 odour 68 U 6860 11100 16.1 0.33 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water 3.13 mbTOC tinal Samples Filtered: Meta Weather Conditions: Overcast Other:

Project Name: Hydro Quarterly Groundwater Monitoring 2021 Project No: 318001103 Date: 2/12/21 Start time: 8.55244 Subcontractors: Finish time: 9.19244 Organic Vapours in Well: ppm Measurement device: mm Correction: mm Measurement device: mm Measurem	95
Date: 2/12/21 Start time: 8.550m Finish time: 9.190m Field Measurements Organic Vapours in Well: ppm Measurement device:	
Start time: Finish device: Finish time: Finish device: Finish time: Finish device: Finish time: Finish time	
Finish time: Field Measurements Organic Vapours in Well: Depth to Groundwater Correction: Groundwater Elevation: Depth to Immiscible Layer Thickness to Immiscible layer: Well Depth Thickness to Groundwater Column: Mell Sampling Method: Start Sampling: Start Sampling: Start Sampling: Start Sampling: Start Sampling: TIME Vol (L) Flowrate Drawdow (L/min) In (m) Floso Floso	
Field Measurements Organic Vapours in Well: Depth to Groundwater Correction: Groundwater Elevation: Depth to Immiscible Layer Thickness to Immiscible layer: Well Depth Finickness to Groundwater Column: Measurement device: Measurement devi	
Organic Vapours in Well: Depth to Groundwater Correction: Groundwater Elevation: Depth to Immiscible Layer Thickness to Immiscible layer: Well Depth Finickness to Groundwater Column: Measurement device: Measurement de	
Depth to Groundwater Correction: Groundwater Elevation: Depth to Immiscible Layer Thickness to Immiscible layer: Well Depth Thickness to Groundwater Column: Well Sampling Method: Immiscible Appearance: Stability Parameters Vol (L) Indicate Drawdow TEMP (L/min) In (m) In (c)	
Correction: Groundwater Elevation: Depth to Immiscible Layer Mell Depth Thickness to Groundwater Column: Well Sampling Method: Depth Groundwater Column: Measurement device:	
Depth to Immiscible Layer Thickness to Immiscible layer: Well Depth Measurement device: Well Sampling Method: Indicate Sampling: Measurement device: M	2
Depth to Immiscible Layer Well Depth Well Sampling Method: Image: Stability Parameters Vol (L) Iflowrate (L/min) Image: Thickness to Immiscible layer: Image: Measurement device: Image: Meas	
Well Sampling Method: Micro-Purge Peristalic Bailer	
Thickness to Groundwater Column: Well Sampling Method: Description: Micro-Purge Description: End Sampling: End Sampling: Stability Parameters Co.1m	
Vell Sampling Method: Ital Sampling: Start Sampling: Micro-Purge	
Method: Italy Sampling: Italy Parameters Ital	
Micro-Purge Peristalic Bailer	
Stability Parameters	
ample Appearance: Stability Parameters	iler
Stability Parameters	
TIME Vol (L) flowrate (L/min) n (m) TEMP (°C) pH SPEC. COND. (mg/L) (mg/L) TIDS (mg/L) Turbidity (NTU) Comments (Appeara odour n (m) n (m) (°C) pH SPEC. COND. (mg/L) (mg/L) TDS (mg/L) Turbidity (NTU) Comments (Appeara n n n n n n n n n n n n n n n n n n	- 4
11 0.5	_
11 0.5 7.64 8.90 7.19 7780 0.50 31 7900 76.3 11 17 0.5 7.65 (8.97 7.20 770 (.30 29 79/0 73.2 11	our)
17 0.5 8.97 ×30 770 1.30 29 9910 83.2 11	
17 5 F65 8.97 7.20 170 1.30 29 4910 83.2 M	ч
	h
Negative Redox and >2mg/L DO. RECALIBRATE and check again.	
cellaneous Field Comments	

Low Flow Groundwater Sampling Field Parameter Form Well ID: F6 Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 2/12/21 Start time: 1.27am Subcontractors: Finish time: 10.07am Field Measurements Organic Vapours in Well: ppm Measurement device: 4.62 Depth to Groundwater 1P Probe Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Method: Peristalic □ Micro-Purge □ Bailer 9.31am Start Sampling: End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters <0.1m ±0.1°C ±10% +0.1mg/L +10% <u>+</u>10% ±10% unit TEMP flowrate Drawdow SPEC. COND. Redox TDS Turbidity Comments (Appearance, colour and TIME Vol (L) рΗ (L/min) n (m) (°C) (mg/L) (mg/L) (µS/cm) (mV) (NTU) odour) 20.88 2.74 clear, colourless, 7.10 9010 5680 4.67 85 sulphidic odour 2.31 9100 63 505 n IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water leve! Metals Samples Filtered: Weather Conditions: overcost Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 2/12/2 Start time: 10.160m Subcontractors: Finish time: 10.170m Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater IP Probe Measurement device: Correction: m Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge □ Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m ±0.1°C ±10% ±0.1mg/L ±10% +10% ±10% unit TEMP flowrate Drawdow TIME SPEC. COND. DO Redox Vol (L) TDS Turbidity Comments (Appearance, colour and (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) (µS/cm) odour) IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Insufficient water to sample Well Head Integrity: Samples Filtered: Weather Conditions: Overcost Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 2/12/21 Start time: 10.17am Subcontractors: Finish time: 10.5Zan Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m. Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purae Peristalic □ Bailer Start Sampling: End Sampling: Sample Appearance: ±0.1 pH Stability Parameters <0.1m +0.1°C +10% ±0.1mg/L ±10% ±10% +10% unit TEMP flowrate Drawdow Redox TIME SPEC. COND. DO Vol (L) рΗ Turbidity Comments (Appearance, colour and (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) (µS/cm) odour) 0.5 1.35 clear, donk yellow brown, no odlow 7.32 21.60 6110 267 9.0 3850 0.5 21.30 7.31 7.9 4 6.70 256 21.68 7.8 4370 4 u 6.52 4 7.1 IA IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: worter timal level Samples Filtered: tals Weather Conditions: Overcoust Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 2/12/21 10.57am 10.23am Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater m Correction: m Groundwater Elevation: m Measurement device: Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer Start Sampling: 11.00am End Sampling: Sample Appearance: <u>+</u>0.1 pH Stability Parameters ±0.1°C <0.1m +10% ±0.1mg/L +10% +10% unit TEMP flowrate Drawdow SPEC. COND. Redox Turbidity Comments (Appearance, colour and TDS TIME (L/min) n (m) (NTU) (°C) (mg/L) (mg/L) (µS/cm) (mV) odour) Clear to SIA Htly turble 11.03 39.8 0.06 1.73 384 15000 9310 dark brown, sulphit 11.06 157 9310 0.00 15000 U 11.09 0.5 417 914020.2 и IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: water level Samples Filtered: Overroust Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form FA Well ID: Project Name: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project No: 318001103 Date: 2/12/21 1131am Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: 1.50 Depth to Groundwater m Correction: m Groundwater Elevation: Measurement device: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Method: ☐ Micro-Purge Peristalic □ Bailer 11.35am Start Sampling: End Sampling: Sample Appearance: ±0.1 pH ±0.1°C Stability Parameters <0.1m ±10% ±0.1mg/L +10% +10% +10% TEMP Redox flowrate Drawdow SPEC. COND. DO TDS Turbidity Comments (Appearance, colour and TIME Vol (L) (L/min) n (m) (°C) (mg/L) (mg/L) (NTU) (mV) (µS/cm) Slightly turbid, yellow brown, sulpholic Odlow 24.70 16200 32.7 337 1.56 0.01 26100 26300 358 0.0 16300 30. A 56800 6600 23.4 362 0.0 n ti IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments Well Head Integrity: noter eve) Metals Samples Filtered: Overcoist Weather Conditions: Other:

Low Flow Groundwater Sampling Field Parameter Form Well ID: (N)15 Ramboll Personnel: J Bourke Hydro Quarterly Groundwater Monitoring 2021 Project Name: Project No: 318001103 Date: 2/12/21 Start time: Subcontractors: Finish time: Field Measurements ppm Measurement device: Organic Vapours in Well: 1.70 Depth to Groundwater m 1P Probe Correction: Measurement device: Groundwater Elevation: Depth to Immiscible Layer m Thickness to Immiscible layer: m Measurement device: m Thickness to Groundwater Column: m Well Sampling Peristalic ☐ Micro-Purge □ Bailer Method: 1.5-End Sampling: Start Sampling: Sample Appearance: +0.1 pH <u>+</u>0.1°C +0.1mg/L ±10% +10% Stability Parameters ±10% +10% <0.1m unit TEMP Redox Turbidity Comments (Appearance, colour and flowrate Drawdow SPEC. COND. DO TDS TIME Vol (L) (NTU) odour) (mg/L) (L/min) n (m) (mg/L) (mV) (µS/cm) turbidy yellow brown 9170 75.1 -46 12.00 0.5 0.00 24.40 7.5ho odout 15000 0.38 9320 58.6 12.03 0.5 25.11 7.61 68.7 4 12.060.5 9380 2.13 15100 0.56 23 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments water level Well Head Integrity: Final Samples Filtered: Weather Conditions: / Cloude Other:

Low Flow Groundwater Sampling Field Parameter Form WID Well ID: Hydro Quarterly Groundwater Monitoring 2021 Ramboll Personnel: J Bourke Project Name: Project No: 318001103 Date: Start time: Subcontractors: Finish time: Field Measurements Organic Vapours in Well: ppm Measurement device: Depth to Groundwater 2.09 m IP Probe Correction: Groundwater Elevation: m Depth to Immiscible Layer m Thickness to Immiscible layer: m Well Depth m Measurement device: Thickness to Groundwater Column: m Well Sampling Peristalic Method: ☐ Micro-Purge □ Bailer 12.33pm End Sampling: Start Sampling: Sample Appearance: +0.1 pH Stability Parameters <0.1m ±0.1°C +0.1mg/L ±10% +10% +10% +10% unit TEMP Redox DO flowrate Drawdow SPEC. COND. TDS Turbidity Comments (Appearance, colour and TIME (mg/L) (mg/L) (NTU) (L/min) n (m) (°C) (mV) odour) (µS/cm) cleary brown, no 12.26 0.5 20 8680 0.23 2.44 27.66 7.72 14000 adoura 2.58 26.87 7.71 8880 0.17 10.7 n 2.6326.93 7.71 8970 13.4 12.32 0.5 11 0.13 IF Negative Redox and >2mg/L DO. RECALIBRATE and check again. Miscellaneous Field Comments water level 2.68 mbtoc Well Head Integrity: Samples Filtered: Weather Conditions: Sunny Other:

APPENDIX 5 LABORATORY REPORTS

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264673

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>Hydro Groundwater Plume Monitoring - 318001103</u>
Number of Samples	18 Water
Date samples received	19/03/2021
Date completed instructions received	19/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	26/03/2021					
Date of Issue	26/03/2021					
NATA Accreditation Number 2901. Thi	NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Hannah Nguyen, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		264673-1	264673-2	264673-3	264673-4	264673-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	E5
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Fluoride, F	mg/L	72	1,000	24	630	300
Total Cyanide	mg/L	1.5	120	0.23	75	54
Free Cyanide in Water	mg/L	<0.004	0.005	<0.004	0.005	<0.004

Miscellaneous Inorganics							
Our Reference		264673-6	264673-7	264673-8	264673-9	264673-10	
Your Reference	UNITS	E5D	G2	N8	N9	W6D	
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021	
Type of sample		Water	Water	Water	Water	Water	
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021	
Date analysed	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021	
Fluoride, F	mg/L	9.1	0.4	0.5	110	0.1	
Total Cyanide	mg/L	0.38	<0.004	0.10	2.3	<0.004	
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004	

Miscellaneous Inorganics							
Our Reference		264673-11	264673-12	264673-13	264673-14	264673-15	
Your Reference	UNITS	E11	W5S	W5D	N2	D01_20210317	
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021	
Type of sample		Water	Water	Water	Water	Water	
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021	
Date analysed	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021	
Fluoride, F	mg/L	74	39	0.4	0.8	920	
Total Cyanide	mg/L	1.9	2.5	<0.004	0.005	120	
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	0.005	

Miscellaneous Inorganics				
Our Reference		264673-16	264673-17	264673-18
Your Reference	UNITS	T01_20210317	F6	G6
Date Sampled		17/03/2021	18/03/2021	18/03/2021
Type of sample		Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	22/03/2021	22/03/2021	22/03/2021
Fluoride, F	mg/L	930	0.5	0.4
Total Cyanide	mg/L	100	<0.004	<0.004
Free Cyanide in Water	mg/L	0.006	<0.004	<0.004

HM in water - dissolved						
Our Reference		264673-1	264673-2	264673-3	264673-4	264673-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	E 5
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	23/03/2021	23/03/2021	23/03/2021	23/03/2021	23/03/2021
Aluminium-Dissolved	μg/L	5,200	730	15,000	350	130

HM in water - dissolved						
Our Reference		264673-6	264673-7	264673-8	264673-9	264673-10
Your Reference	UNITS	E5D	G2	N8	N9	W6D
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	23/03/2021	23/03/2021	23/03/2021	23/03/2021	23/03/2021
Aluminium-Dissolved	μg/L	30	10	60	60	980

HM in water - dissolved						
Our Reference		264673-11	264673-12	264673-13	264673-14	264673-15
Your Reference	UNITS	E11	W5S	W5D	N2	D01_20210317
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	23/03/2021	23/03/2021	23/03/2021	23/03/2021	23/03/2021
Aluminium-Dissolved	μg/L	50	5,000	<10	2,400	690

HM in water - dissolved								
Our Reference		264673-16	264673-17	264673-18				
Your Reference	UNITS	T01_20210317	F6	G6				
Date Sampled		17/03/2021	18/03/2021	18/03/2021				
Type of sample		Water	Water	Water				
Date prepared	-	22/03/2021	22/03/2021	22/03/2021				
Date analysed	-	23/03/2021	23/03/2021	23/03/2021				
Aluminium-Dissolved	μg/L	720	<10	8,000				

HM in water - total								
Our Reference		264673-1	264673-2	264673-3	264673-4	264673-5		
Your Reference	UNITS	W2S	W2D	PUMP	W7M	E 5		
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021		
Type of sample		Water	Water	Water	Water	Water		
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021		
Date analysed	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021		
Aluminium-Total	μg/L	43,000	1,600	23,000	2,100	9,000		
HM in water - total	HM in water - total							
Our Reference		264673-6	264673-7	264673-8	264673-9	264673-10		
V 5 (LINUTO		00			I I I I I I I I I I I I I I I I I I I		

HM in water - total						
Our Reference		264673-6	264673-7	264673-8	264673-9	264673-10
Your Reference	UNITS	E5D	G2	N8	N9	W6D
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Aluminium-Total	μg/L	1,600	620	700	520	7,100

HM in water - total						
Our Reference		264673-11	264673-12	264673-13	264673-14	264673-15
Your Reference	UNITS	E11	W5S	W5D	N2	D01_20210317
Date Sampled		17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Aluminium-Total	μg/L	1,100	42,000	330	12,000	1,400

HM in water - total				
Our Reference		264673-16	264673-17	264673-18
Your Reference	UNITS	T01_20210317	F6	G6
Date Sampled		17/03/2021	18/03/2021	18/03/2021
Type of sample		Water	Water	Water
Date prepared	-	22/03/2021	22/03/2021	22/03/2021
Date analysed	-	22/03/2021	22/03/2021	22/03/2021
Aluminium-Total	μg/L	1,100	50	8,000

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hyperchlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Metals-022	Determination of various metals by ICP-MS.

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	264673-8
Date prepared	-			22/03/2021	1	22/03/2021	22/03/2021		22/03/2021	22/03/2021
Date analysed	-			22/03/2021	1	22/03/2021	22/03/2021		22/03/2021	22/03/2021
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	72	73	1	96	103
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	1.5	1.5	0	99	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	98	[NT]

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	264673-13	
Date prepared	-			[NT]	10	22/03/2021	22/03/2021		[NT]	22/03/2021	
Date analysed	-			[NT]	10	22/03/2021	22/03/2021		[NT]	22/03/2021	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	10	0.1	[NT]		[NT]	[NT]	
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	10	<0.004	<0.004	0	[NT]	92	
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	10	<0.004	<0.004	0	[NT]	98	

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics	QUALITY CONTROL: Miscellaneous Inorganics						Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	11	22/03/2021	22/03/2021			[NT]	
Date analysed	-			[NT]	11	22/03/2021	22/03/2021			[NT]	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	74	72	3		[NT]	
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	1.9	[NT]			[NT]	
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	[NT]			[NT]	

QUALITY CO	NTROL: HM	l in water	- dissolved			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	264673-2
Date prepared	-			22/03/2021	1	22/03/2021	22/03/2021		22/03/2021	22/03/2021
Date analysed	-			23/03/2021	1	23/03/2021	23/03/2021		23/03/2021	23/03/2021
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	5200	5200	0	102	#

QUALITY CO	NTROL: HN	/l in water	- dissolved			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	22/03/2021	22/03/2021		[NT]	[NT]
Date analysed	-			[NT]	11	23/03/2021	23/03/2021		[NT]	[NT]
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	11	50	60	18	[NT]	[NT]

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	264673-2
Date prepared	-			22/03/2021	1	22/03/2021	22/03/2021		22/03/2021	22/03/2021
Date analysed	-			22/03/2021	1	22/03/2021	22/03/2021		22/03/2021	22/03/2021
Aluminium-Total	μg/L	10	Metals-022	<10	1	43000	43000	0	100	#

QUALITY	CONTROL:	HM in wa	ter - total			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	22/03/2021	22/03/2021		[NT]	[NT]
Date analysed	-			[NT]	11	22/03/2021	22/03/2021		[NT]	[NT]
Aluminium-Total	μg/L	10	Metals-022	[NT]	11	1100	1100	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - dissolved - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - total - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP

			<u> </u>	LIAAT	_										T		<u> </u>				
Client: Ramb			<u> </u>		Client Project Name / Number / Site etc (ie report title):										Envirolab Services						
Contact pers	on: JK				Hydro Groundwater Plume Monitoring - 318001103										12 Ashley St, Chatswood, NSW 2067						
Project Mgr:	Jordyn Kirsch				PO No.:										Phone: 02 9910 6200 Fax :02 9910 6201						
Sampler: JB					Envirolab Quote No. :										E-mail: ahie@envirolabservices.com.au						
Address: Lev	el 2 Suite 18, 50 Glebe Ro	ad,			Date r	esults	requir	ed:							_	act: A					
The Junction		· · · · · · · · · · · · · · · · · · ·													Envi	rolab	Serv	/ices	WA	t/a MPL	
		-			Or cho	ose: s	standa	rd / sa	me da	y / 1 d	day / 2	day / 3	3 day			-		-	-	e WA 6154	
Phone:	(02) 49625444	Mob:	04	67580473							is requir	ed - surc	harge ap	oplies	Phor	ne: 08	9317	250	5	Fax :08 9317 4163	
Fax:				·	Lab co	mmen	ıts: Hig	hly co	ntami	nated					E-ma	ail: la	b@m∣	pl.cor	m.au		
Email:	jkirsch@ramboll.com; jboı	ırke@ramboll.co	m												Cont	act: J	oshua	a Lim			
2.2	Sam	ple information	<u>-</u>								Tes	ts Req	uired							Comments	
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium									٠	ì	Provide as much information about the sample as you can	
1	W2S		17/03/2021	WATER	х	х	х	х	Х												
2	W2D c		17/03/2021	WATER	X	х	х	х	х												
3	PUMP 1		17/03/2021	WATER	х	х	х	х	X											Envirolati Services	
1	W7M ·		17/03/2021	WATER	Х	х	х	х	х							_				ENVIROLAB 12 Ashley S	
۲.,Σ	E5 .		17/03/2021	WATER	Х	х	х	х	х										l′	Ph: (02) 991012	
	E5D 2		17/03/2021	WATER	Х	х	х	· x	х											Job No:	
1	G2 -		17/03/2021	WATER	х	х	х	X	х					-						269673	
R	N8 /	-	17/03/2021	WATER	X	х	х	х	х											Date Received: 19-03-2021	
9	N9 ·		17/03/2021	WATER	X	х	х	X	х											Received By: TS 47 W	
10	W6D -		17/03/2021	WATER	X	х	х	X	х											Temp: Coal/Ambient	
11	E11 /		17/03/2021	WATER	x	х	х	х	х											Cooling: Ce/Icepack	
12	W5S. ^		17/03/2021	WATER	Х	X.	х	х	х	1	1,		\prod	Τ						Security: I Ac Broken/None	
13	~ W5D _*		17/03/2021	WATER	х	X	х	x	×			·									
11	N2		17/03/2021	WATER	X	X	Х	х	х												
Relinquished	l by (company):	Ramboll			•						ιγ	5				se only		<i>→</i>			
Print Name:		Jake Bourke			Print Name: TS HAW								1		•			ient (circle one)			
Date & Time		18/03/2021			Date & Time: (9 '03 202 / 1020) Signature:								1					(if applicable)			
Signature:					Signa	ture:	4/1				_				Trans	ported	by: H	and de	liver <u>e</u> c	d / Courier	

				ENVI	ROL	AB (GRO	UP												— ENVIROLAB
Client: Ramb	ooil				Client	Projec	t Nam	e / Nu	mber /	/ Site (etc (ie ı	report	title):	E	Envirolab Services					
Contact pers	on: JK				Hydro Groundwater Plume Monitoring - 318001103									ji	12 Ashley St, Chatswood, NSW 2067					
Project Mgr: Jordyn Kirsch Sampler: Jake Bourke					PO No.: Envirolab Quote No. :									P	Phone: 02 9910 6200 Fax :02 9910 6201					
														E	-ma	iil: al	hie@e	enviro	olabse	ervices.com.au
Address: Lev	el 2 Suite 18, 50 Glebe Roa				Date i	results	requir	ed:							Cont	act: A	lileen	Hie		
The Junction	The Junction													E	nvi	rolat	Ser	vices	WA	t/a MPL
					Or cho	ose: s	standa	rd / sa	me da	y / 1 d	lay / 2	day / 3	day	1	.6-1	8 Hay	den (Crt, M	iyaree	e WA 6154
Phone:	(02) 49625444	Mob:	040	67580473	Note: II	nform lab	b in adva	ance if ur	gent tun	naround	is require	ed - surc	harge appl	ies P	hon	e: 08	9317	7 250	5	Fax :08 9317 4163
Fax:								hly co						_			b@m			
	jkirsch@ramboll.com; jbou	rke@ramboll.com			1												oshu	-		
		ple information									Test	ts Requ	ired	1						Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium											Provide as much information about the sample as you can
15	D01_20210317 ′		17/03/2021	WATER	x	x	x	X	x											
16	T01_20210317 '		17/03/2021	WATER	X	X	X	X	X	<u> </u>										
17	F6		18/03/2021	WATER	х	х	х	х	х											
18	G6 /		18/03/2021	WATER	х	X	X	X	X		 									
													-							
																_				
				 -	 	 	 				1		 	$\overline{}$	\dashv		├──		 - 	
Relinguished	l by (company):	Ramboll	<u> </u>	·	Received by (company): ELS SYO										ab us	se only	! /:		ı .	
Print Name:		Jake Bourke						_			- /					_		Cool	or Ambi	ient (circle one)
Date & Time		18/03/2021			Print Name: +3 #/ Date & Time; (9.0). 202/ 1020									Samples Received: cool or Ambient (circle one) Temperature Received at: (if applicable)						
Signature:			-		1		Signature: 1616									Transported by: Hand delivered / courier				

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001103
Envirolab Reference	264673
Date Sample Received	19/03/2021
Date Instructions Received	19/03/2021
Date Results Expected to be Reported	26/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	18 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total
W2S	✓	✓	✓	✓	✓
W2D	✓	✓	✓	✓	✓
PUMP	✓	✓	✓	✓	✓ ✓ ✓
W7M	✓	✓	✓	✓	✓
E5	✓	✓	✓	✓	
E5D	✓	✓	✓	✓	✓
G2	✓	✓	✓	✓	✓ ✓ ✓
N8	✓	✓	✓	✓	✓
N9	✓	✓	✓	✓	✓
W6D	✓	✓	✓	✓	✓
E11	✓	✓	✓	✓	✓
W5S	✓	✓	✓	✓	✓
W5D	✓	✓	✓	✓	√
N2	✓	✓	✓	✓	✓
D01_20210317	✓	✓	✓	✓	✓
T01_20210317	✓	✓	✓	✓	✓
F6	✓	✓	✓	✓	✓
G6	✓	✓	✓	✓	✓

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP

Client: Ramboll					Client Project Name / Number / Site etc (ie report title):										Envirolab Services							
Contact pers	on: JK				Hydro Groundwater Plume Monitoring - 318001103										12 Ashley St, Chatswood, NSW 2067							
Project Mgr:	Jordyn Kirsch				PO No.:										Phone: 02 9910 6200 Fax :02 9910 6201							
Sampler: JB	+ JK	 -			Envirolab Quote No.:										E-mail: ahie@envirolabservices.com.au							
Address: Lev	el 2 Suite 18, 50 Glebe Roa	ad,													Cont	act: /	Aileen	Hie				
The Junction		<u> </u>			1										Envi	rolal	Ser	vices	WA	t/a MPL		
					-										16-18 Hayden Crt, Myaree WA 6154							
Phone: (02) 49625444 Mob: 0467580473				67580473	Note: In	nform lab	in adva	nce if un	gent tur	narouno	' is require	ed - surci	harge app	olies	Phor	e: 08	9317	7 250	5	Fax :08 9317 4163		
Fax:					Lab co	mmen	ts: Hig	hly co	ntami	nated					E-ma	nil: la	ıb@m	pl.co	m.au			
	jkirsch@ramboll.com; jbou	urke@ramboll.com		-	1 .										Cont	act: J	Ioshu	a Lim	1			
		ple information								•	Test	s Requ	ired					4	1.	Comments		
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium											Provide as much information about the sample as you can		
)	A7		25/03/2021	WATER	Х	Х	Х	х	X													
2	E4		25/03/2021	WATER	х	х	х	х	х										IVIRO	Envirolab Services		
3	F5		25/03/2021	WATER	х	х	X	х	х									,	IVIRU	N Custamong Main Tool		
4	G5		25/03/2021	WATER	х	х	X	х	х					-					lab Al	Ph: (02) 9910 6200		
5	W1D		25/03/2021	WATER	х	Х	X	х	х									-	lob N	265714		
6	W1S		25/03/2021	WATER	х	х	х	х	х									1	ate R	ceived: 26/3/2021		
7	W3S		25/03/2021	WATER	х	х	х	х	х											eceived: 1040		
8	W4S	_	25/03/2021	WATER	х	х	х	х	х										Receiv	ed By:		
9	D02 20210325		25/03/2021	WATER	х	х	Х	х	х										empt	CollAmbient // / / / / / / / / / / / / / / / / /		
10	R01 20210325		25/03/2021	WATER	х	х	Х	х	х										Securi	In Interes Brokenittons		
			25/03/2021	WATER	х	х	х	х	х		;			-								
							-															
Relinquished by (company): Ramboll				Received by (company):										Lab u	se onl	y:						
Print Name:		Jake Bourke		-		Print Name: From									Samp	les Re	ceived	Cool	Amb	ient (circle one)		
Date & Time:		25/03/2021			Date & Time: 26/3/2021 1040										Temperature Received at: 42 (if applicable)							
Signature:					Signat	ture:			1		-1	2			Trans	ported	by: H	and de	elivere	d / courier		

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll (Newcastle) Australia Pty Ltd
Attention	J Kirsch

Sample Login Details	
Your reference	Hydro GW Plume Monitoring - 318001103
Envirolab Reference	265214
Date Sample Received	26/03/2021
Date Instructions Received	26/03/2021
Date Results Expected to be Reported	02/04/2021

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	10 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	All metals in water - total	All metals in water-dissolved
A7	✓	✓	✓	✓	✓
E4	✓	✓	✓	✓	✓
F5	✓	✓	✓	✓	✓
G5	✓	✓	✓	✓	✓
W1D	✓	✓	✓	✓	✓
W1S	✓	✓	✓	✓	✓
W3S	✓	✓	✓	✓	✓
W4S	✓	✓	✓	✓	✓
D02_20210325	✓	✓	✓	✓	✓
R01_20210325	✓	✓	✓	✓	✓

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP

Client: Ramb	oll				Client	Proje	ct Nam	e / Nu	mber	/ Site e	tc (ie r	eport 1	title):	Envi	irolat	Serv	ices			
Contact perso	on: Jake Bourke				Hydro Groundwater Plume Monitoring - 318001103									12 Ashley St, Chatswood, NSW 2067						
Project Mgr:	Jordyn Kirsch				PO No.: 318001103									Phone: 02 9910 6200 Fax :02 9910 6201						
Sampler: Jak	e Bourke						ote N							_		_		labse	ervices.com.au	
Address: Leve	el 2 Suite 18, 50 Glebe Ro	ad,			Date r	esults	requir	ed:						Cont	act: A	ileen	Hie			
The Junction		 												Envi	irolat	Serv	ices	WA	t/a MPL	
					Or cho	ose:	standa	rd / sa	me da	y / 1 da	ay / 2 d	lay / 3	3 day	16-1	8 Hay	den C	rt, M	yaree	e WA 6154	
Phone:	(02) 49625444	Mob:	04	67580473							is required	d - surci	harge applies	Phor	ne: 08	9317	2505	5	Fax :08 9317 4163	
Fax:					Lab co	ommer	nts: Hig	jhly co	ntami	nated						b@mլ				
Email: j	kirsch@ramboll.com; jbou	ırke@ramboll.com		·										Cont	act: J	oshua	Lim			
	Samı	le information		i						<u> </u>	Test	Requ	ired						Comments	
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium							-			Provide as much information about the sample as you can	
1	W2S		15/06/2021	WATER	х	X	Х	х	х											
2	W2D		15/06/2021	WATER	Х	Х	X	X	X										merchanic a harring	
3	PUMP		15/06/2021	WATER	Х	х	х	X	X									Ė	กับเลือนกอ	
4	W7M		15/06/2021	WATER	Х	X	X	X	X										Ph: (02)_9310(.)	
	<u> </u>		15/06/2021	WATER	X	х	X	X	х										lob No: 27/928	
6	E5		15/06/2021	WATER	X	Х	Х	X	X										Pate Received: 17/6/21	
7	E5D		15/06/2021	WATER	Х	х	X	X	X										Time Received: 1116	
8	N9		15/06/2021	WATER	X	Х	X	x	х	<u>L</u>									Received By: 30	
9	<u> W6D</u>		15/06/2021	WATER	X	X	X	X	X										emp: @007Ambient	
10	W6S		15/06/2021	WATER	X	х	X	Χ.	x										coling ce/lcepack	
11	N8		15/06/2021	WATER	X	Х	X	X	X									`	Security (miso procent):	
12	G2		15/06/2021	WATER	X	х	X	X	X											
13	D01_20210615		15/06/2021	WATER	x	x	x	x	x											
14.	T01_20210615		15/06/2021	WATER	х	Х	х	х	x											
Relinquished	by (company):	Ramboll			Receiv	ed by	(comp	any):			6	ės	STA	Lab u	se only	;				
Print Name:		Jake Bourke				Name:				7500							Cool o	r Ambi	ent (circle one)	
Date & Time:		16/06/2021			Date 8	k Time	:	17:	7/61	21			1116						(if applicable)	
Signature:					Signat	ture:				1/	HL			_				_	/ courier	

Envirolab Sampler: Jake Bourke	EŲVIROLAI			-		1								UP	iRO	AB G	KOL/	ENVI				
Contact person: Jake Bourke	GROUP		ices	Servic	irolab	Envi		itle):	ort titl	ie rep	etc (/ Site	nber /	e / Nur	t Nam	Projec	Client		•		oli	Client: Ramh
Project Mgr: Jordyn Kirsch	2067	ood, N	atsw	St, Chai	shlev	12 A															_·	
Email: a hie@emirloabservices.com Contact: Allee Hie Emirloab Contact: Alle	02 9910 6201				_	1																
Date 2 Suite 18, 50 Glebe Road, Date Contact: Alleen Hie Envirolab Services WA t/a MPL 16-18 Hayden Crt, Myaree WA 6154 Phone: (0.2) 49625444 Mob:	s.com.au	abserv	virol	hie@env	ail: al	E-ma		_			_). :	ote No	lab Qu	Enviro					
16-18 18 18 18 18 18 18 18				_		-			_				-					-		ad,		
16-18	IPL	WA t/	ices	Servic	irolab	Env											1					The Junction
Phone		_						day	y / 3 da	2 day	day /	y / 1	me da	rd / saı	tanda	ose: s	Or cho				· · · · · · · · · · · · · · · · · · ·	
Column Fax: Sample Information Depth Date sample Type of sam	08 9317 4163				_			narge applie.	- - <i>surchard</i>	uired -	d is red	naroun	ent tun	nce if ura	in adva	nform lab	Note: Ir	67580473	046	Moh:	(02) 49625444	Phone:
Contact: Joshua Lim						-	_														(02) 13023111	-
Client Sample ID Client Sample Date Sa				_										-			1			ırke@ramboll.com	ikirsch@ramboll.com: ibo	
Client Sample ID Client Samp	Comments	,	,					ired	Require	ests R	T	,			1	n 163.4	ļ —	9 8 1				
N2	Provide as much ormation about th omple as you can												Dissolved Aluminium	Total Aluminium	Free Cyanide	Total Cyanide	Soluble Fluoride	Type of sample		Depth		
F6													X	х	X		х	WATER	16/06/2021		W5D	
4 G6 16/06/2021 WATER X		$-\!\!\perp$				<u> </u>					<u> </u>	<u> </u>	х	х	x	Х	х	WATER	16/06/2021			
G5									_			<u> </u>	Х	Х	Х	Х	х	WATER	16/06/2021			
F5	· .					<u> </u>				_ _			Х	х	X	X	х	WATER	16/06/2021		G6	ч
W3D				<u> </u>							\perp	<u> </u>	Х	Х	X	X	Х	WATER	16/06/2021			
A7	12.7.1.1.	`	′		<u>.</u>	<u> </u>						<u> </u>	Х	х	Х	Х	х	WATER	16/06/2021		F5	6_
Co W1D 16/06/2021 WATER X X X X X X X X X	good NSW 3		- \	-				_	_			<u> </u>	х	х	Х	X	х	WATER	16/06/2021		W3D	7
16/06/2021 WATER X X X X X X X X X	1 979	No: "				<u></u>			[_			<u>L</u>	Х	х	Х	X	х	WATER	16/06/2021		A7	8
[] E4 16/06/2021 WATER X X X X X X X X X X X X X X X X X X X	1/21	2 شونند											х	х	Х	X	х	WATER	16/06/2021		<u>W1S</u>	9
16/06/2021 WATER X X X X X X X X X	146/21	Roceive	OSID	<u> </u>									Х	Х	X	X	х	WATER	16/06/2021			ιò
V R01 20210616 16/06/2021 WATER X X X X X X X X X										\perp	\perp		х	Х	Х	X	X	WATER	16/06/2021			
\(\begin{array}{ c c c c c c c c c c c c c c c c c c c)() ent	*Cody	1715 1717	$oxed{oxed}$		 				\perp	\perp		Х	Х	X	X	X	WATER	16/06/2021			12
Relinquished by (company): Ramboll Received by (company): Tab use only:	1. mark	no Col	- <	<u> </u>						\perp	\perp	<u> </u>		-			+			<u> </u>		13
Relinquished by (company): Ramboll Received by (company): CLS STO Lab use only:	oken/No	rity li te	Sec	<u> </u>	<u> </u>					\perp	\perp	_	X	X	X	X	X	WATER	16/06/2021		R01_20210616	
Relinquished by (company): Ramboll Received by (company): CLS STO Lab use only:		\dashv			 					_	+	├					$\vdash \vdash$		 	 		
	 			<u> </u>	ise only	Lah u		 _	5/2	605	L			anv):	(com	red hv	Recei	<u> </u>	J	Ramboll	l by (company).	Relinguished
Print Name: Jake Bourke Print Name: JCCS Day Samples Received Cool or Ambient (circle of	rcle one)	· Amhier	Cool or		-	-			<u>، ب .</u> ا	12:00	21	Sas			/ comb		-				/ (company).	
Date & Time: 16/06/2021 Date & Time: 17/6/21 Temperature Received at: 8°C (if applic	=			_		-		ال	1110	J		21	7/6/	17								

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001103
Envirolab Reference	271928
Date Sample Received	17/06/2021
Date Instructions Received	17/06/2021
Date Results Expected to be Reported	24/06/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	14 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total
W2S	✓	✓	✓	✓	✓
W2D	✓	✓	✓	✓	✓
PUMP	✓	✓	✓	✓	✓
W7M	✓	✓	✓	✓	✓
W7S	✓	✓	✓	✓	✓
E5	✓	✓	✓	✓	✓
E5D	✓	✓	✓	✓	✓
N9	✓	✓	✓	✓	✓
W6D	✓	✓	✓	✓	✓
W6S	✓	✓	✓	✓	✓
N8	✓	✓	✓	✓	✓
G2	✓	✓	✓	✓	✓
D01 20210615	✓	√	√	✓	✓
D01_20210615					

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001103
Envirolab Reference	271929
Date Sample Received	17/06/2021
Date Instructions Received	17/06/2021
Date Results Expected to be Reported	24/06/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	14 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst		
Phone: 02 9910 6200	Phone: 02 9910 6200		
Fax: 02 9910 6201	Fax: 02 9910 6201		
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au		

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total
W5D	✓	✓	✓	✓	✓
N2	✓	✓	✓	✓	✓
F6	✓	✓	✓	✓	✓
G6	✓	✓	✓	✓	✓
G5	✓	✓	✓	✓	✓
F5	✓	✓	✓	✓	✓
W3D	✓	✓	✓	✓	✓
A7	✓	✓	✓	✓	✓
W1S	✓	✓	✓	✓	✓
W1D	✓	✓	✓	✓	✓
E4	✓	✓	✓	✓	✓
W4S	✓	✓	✓	✓	✓
	1	✓	✓	1	1
D02_20210616	~	Ψ	V	Ľ	L

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 271928

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	Hydro Groundwater Plume Monitoring - 318001103
Number of Samples	14 Water
Date samples received	17/06/2021
Date completed instructions received	17/06/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	24/06/2021
Date of Issue	24/06/2021
Reissue Details	This report replaces R00 created on 23/06/2021 due to: Sample ID Amended (Client Request)
NATA Accreditation Number 2901. T	his document shall not be reproduced except in full.
Accredited for compliance with ISO/II	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Giovanni Agosti, Group Technical Manager Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		271928-1	271928-2	271928-3	271928-4	271928-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	W7S
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Fluoride, F	mg/L	57	860	17	490	24
Total Cyanide	mg/L	0.44	100	0.056	48	1.2
Free Cyanide in Water	mg/L	0.005	0.008	<0.004	0.006	<0.004

Miscellaneous Inorganics						
Our Reference		271928-6	271928-7	271928-8	271928-9	271928-10
Your Reference	UNITS	E5	E5D	N9	W6D	E11
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Fluoride, F	mg/L	310	8.3	110	<0.1	120
Total Cyanide	mg/L	50	0.61	1.1	0.028	3.1
Free Cyanide in Water	mg/L	0.011	<0.004	<0.004	<0.004	<0.004

Miscellaneous Inorganics					
Our Reference		271928-11	271928-12	271928-13	271928-14
Your Reference	UNITS	N8	G2	D01_20210615	T01_20210615
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Fluoride, F	mg/L	0.6	0.3	0.3	0.3
Total Cyanide	mg/L	0.20	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004

HM in water - dissolved						
Our Reference		271928-1	271928-2	271928-3	271928-4	271928-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	W7S
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Dissolved	μg/L	4,500	600	6,400	510	20,000

HM in water - dissolved						
Our Reference		271928-6	271928-7	271928-8	271928-9	271928-10
Your Reference	UNITS	E5	E5D	N9	W6D	E11
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Dissolved	μg/L	80	10	840	50	230

HM in water - dissolved					
Our Reference		271928-11	271928-12	271928-13	271928-14
Your Reference	UNITS	N8	G2	D01_20210615	T01_20210615
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Dissolved	μg/L	50	<10	<10	<10

HM in water - total						
Our Reference		271928-1	271928-2	271928-3	271928-4	271928-5
Your Reference	UNITS	W2S	W2D	PUMP	W7M	W7S
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Total	μg/L	6,900	2,000	12,000	8,100	410,000

HM in water - total						
Our Reference		271928-6	271928-7	271928-8	271928-9	271928-10
Your Reference	UNITS	E5	E5D	N9	W6D	E11
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Total	μg/L	490	330	15,000	8,400	50,000

HM in water - total					
Our Reference		271928-11	271928-12	271928-13	271928-14
Your Reference	UNITS	N8	G2	D01_20210615	T01_20210615
Date Sampled		15/06/2021	15/06/2021	15/06/2021	15/06/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Total	μg/L	5,100	730	1,900	1,300

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hyperchlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Metals-022	Determination of various metals by ICP-MS.

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	271928-3	
Date prepared	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021	
Date analysed	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021	
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	57	58	2	103	[NT]	
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	0.44	0.44	0	111	99	
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	0.005	0.005	0	99	95	

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	271928-12
Date prepared	-			[NT]	11	18/06/2021	18/06/2021			18/06/2021
Date analysed	-			[NT]	11	18/06/2021	18/06/2021			18/06/2021
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	0.6	0.5	18		89
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	0.20	[NT]			[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	[NT]			[NT]

QUALITY CON	QUALITY CONTROL: Miscellaneous Inorganics						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	14	18/06/2021	18/06/2021			
Date analysed	-			[NT]	14	18/06/2021	18/06/2021			
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	14	0.3	[NT]			
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	14	<0.004	<0.004	0		
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	14	<0.004	<0.004	0		

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	271928-3
Date prepared	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Date analysed	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	4500	4100	9	100	#

QUALITY CONTROL: HM in water - dissolved						Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date prepared	-			[NT]	9	18/06/2021	18/06/2021		[NT]	[NT]		
Date analysed	-			[NT]	9	18/06/2021	18/06/2021		[NT]	[NT]		
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	9	50	50	0	[NT]	[NT]		

QUALITY	QUALITY CONTROL: HM in water - total					Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	271928-2
Date prepared	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Date analysed	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Aluminium-Total	μg/L	10	Metals-022	<10	1	6900	6600	4	97	#

QUALITY CONTROL: HM in water - total					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	18/06/2021	18/06/2021		[NT]	[NT]
Date analysed	-			[NT]	11	18/06/2021	18/06/2021		[NT]	[NT]
Aluminium-Total	μg/L	10	Metals-022	[NT]	11	5100	4200	19	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 271928 Page | 11 of 11

Revision No: R01

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 271929

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	Hydro Groundwater Plume Monitoring - 318001103
Number of Samples	14 Water
Date samples received	17/06/2021
Date completed instructions received	17/06/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	24/06/2021				
Date of Issue	24/06/2021				
Reissue Details	This report replaces R00 created on 23/06/2021 due to: Sample ID Amended (Client Request)				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Giovanni Agosti, Group Technical Manager Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		271929-1	271929-2	271929-3	271929-4	271929-5
Your Reference	UNITS	W5D	N2	F6	G6	G5
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021	16/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Fluoride, F	mg/L	0.7	1.1	0.6	0.6	0.2
Total Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004

Miscellaneous Inorganics						
Our Reference		271929-6	271929-7	271929-8	271929-9	271929-10
Your Reference	UNITS	F5	W3S	A7	W1S	W1D
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021	16/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Fluoride, F	mg/L	0.3	130	110	14	11
Total Cyanide	mg/L	<0.004	17	9.2	0.45	0.19
Free Cyanide in Water	mg/L	<0.004	0.016	<0.004	<0.004	<0.004

Miscellaneous Inorganics									
Our Reference		271929-11	271929-12	271929-13	271929-14				
Your Reference	UNITS	E4	W4S	D02_20210616	R01_20210616				
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021				
Type of sample		Water	Water	Water	Water				
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021				
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021				
Fluoride, F	mg/L	760	120	0.6	<0.1				
Total Cyanide	mg/L	120	1.7	<0.004	<0.004				
Free Cyanide in Water	mg/L	0.006	<0.004	<0.004	<0.004				

HM in water - dissolved								
Our Reference		271929-1	271929-2	271929-3	271929-4	271929-5		
Your Reference	UNITS	W5D	N2	F6	G6	G5		
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021	16/06/2021		
Type of sample		Water	Water	Water	Water	Water		
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021		
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021		
Aluminium-Dissolved	μg/L	10	2,100	<10	2,800	30		

HM in water - dissolved									
Our Reference		271929-6	271929-7	271929-8	271929-9	271929-10			
Your Reference	UNITS	F5	W3S	A7	W1S	W1D			
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021	16/06/2021			
Type of sample		Water	Water	Water	Water	Water			
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021			
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021			
Aluminium-Dissolved	μg/L	2,000	580	110	220	50			

HM in water - dissolved					
Our Reference		271929-11	271929-12	271929-13	271929-14
Your Reference	UNITS	E4	W4S	D02_20210616	R01_20210616
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Dissolved	μg/L	450	2,300	<10	<10

HM in water - total						
Our Reference		271929-1	271929-2	271929-3	271929-4	271929-5
Your Reference	UNITS	W5D	N2	F6	G6	G5
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021	16/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Total	μg/L	330	12,000	80	3,500	150

HM in water - total						
Our Reference		271929-6	271929-7	271929-8	271929-9	271929-10
Your Reference	UNITS	F5	W3S	A7	W1S	W1D
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021	16/06/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Total	μg/L	2,700	4,000	160	56,000	290

HM in water - total					
Our Reference		271929-11	271929-12	271929-13	271929-14
Your Reference	UNITS	E4	W4S	D02_20210616	R01_20210616
Date Sampled		16/06/2021	16/06/2021	16/06/2021	16/06/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Date analysed	-	18/06/2021	18/06/2021	18/06/2021	18/06/2021
Aluminium-Total	μg/L	9,400	170,000	80	<10

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hyperchlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Metals-022	Determination of various metals by ICP-MS.

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Base Dup. RPD LCS-W1 18/06/2021 18/06/2021 18/06/202 18/06/2021 18/06/2021 18/06/202 0.7 0.6 15 112 <0.004 <0.004 0 104		Spike Re	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	271929-2
Date prepared	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Date analysed	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	0.7	0.6	15	112	108
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	104	89
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	98	95

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	11	18/06/2021	18/06/2021		[NT]	[NT]	
Date analysed	-			[NT]	11	18/06/2021	18/06/2021		[NT]	[NT]	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	760	[NT]		[NT]	[NT]	
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	120	[NT]		[NT]	[NT]	
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	0.006	[NT]		[NT]	[NT]	

QUALITY CO	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	14	18/06/2021	18/06/2021			[NT]
Date analysed	-			[NT]	14	18/06/2021	18/06/2021			[NT]
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	14	<0.1	[NT]			[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	14	<0.004	<0.004	0		[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	14	<0.004	<0.004	0		[NT]

QUALITY CO	NTROL: HM	l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	271929-5
Date prepared	-			18/06/2021	4	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Date analysed	-			18/06/2021	4	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Aluminium-Dissolved	μg/L	10	Metals-022	<10	4	2800	2800	0	100	92

QUALITY CO	NTROL: HN	/l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	10	18/06/2021	18/06/2021		[NT]	[NT]
Date analysed	-			[NT]	10	18/06/2021	18/06/2021		[NT]	[NT]
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	10	50	40	22	[NT]	[NT]

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	271929-2
Date prepared	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Date analysed	-			18/06/2021	1	18/06/2021	18/06/2021		18/06/2021	18/06/2021
Aluminium-Total	μg/L	10	Metals-022	<10	1	330	260	24	102	#

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	18/06/2021	18/06/2021		[NT]	[NT]
Date analysed	-			[NT]	11	18/06/2021	18/06/2021		[NT]	[NT]
Aluminium-Total	μg/L	10	Metals-022	[NT]	11	9400	8700	8	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 271929 Page | 11 of 11 R01

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP

Client: Ramb	oll				Client	Projec	t Nam	ie / Nu	ımber	/ Site	etc (ie	report	title):		Env	irolal	b Ser	vices	3	
Contact pers	on: JAB					<u>Hydro</u>	Groun	dwate	r Plun	ne Moi	nitoring	<u> - 318</u>	001103	3	-	-	-			, NSW 2067
Project Mgr:	Jordyn Kirsch				PO No	.:									-		2 9910			Fax :02 9910 6201
Sampler: JAE	3				Enviro								<u>.</u>		E-ma	ail: a	hie@e	enviro	olabs	ervices.com.au
Address: Lev	el 2 Suite 18, 50 Glebe	Road,			Date r	esults	requi	red:							Cont	tact: /	Aileen	Hie		
The Junction															Env	irolal	b Ser	vices	WA	t/a MPL
					Or cho	ose: s	standa	rd / sa	me da	ay / 1	day / 2	day / :	3 day		16-1	.8 Ha	yden (Crt, M	lyare	e WA 6154
Phone:	(02) 49625444	Mob:	04	67580473							l is requii	red - surc	tharge ap	plies	Pho	ne: 01	3 9317	7 250	5	Fax :08 9317 4163
Fax:					Lab co	mmer	ıts: Hiç	ghly co	ontami	inated		,	`				ab@m	-		
	jkirsch@ramboll.com; ji														Cont	tact: .	Joshu	a Lim	1	
	Sa - Sa	mple information		4 "	• • • • • • • • • • • • • • • • • • • •	124				-1	Tes	ts Req	uired							Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free.Cyanide	Total Aluminium	Dissolved Aluminium		ı			-	_	_		<u>-</u>		Provide as much information about the sample as you can
\	W2D		20/09/2021		X	X	X	X	X		<u> </u>			<u></u>	<u> </u>					
2	PUMP		20/09/2021	WATER	X	Х	x	X	X		<u> </u>				<u> </u>	<u> </u>				· · · · · · · ·
3 ~-	W7M -		20/09/2021	WATER	X	Х	Х	X	X											
4	E5		20/09/2021	<u>c⊾</u> WATER	X	Х	х	X	X									<u> </u>		Envirals Services
5	<u>E5D</u>		20/09/2021	WATER	Х	Х	Х	X	X			<u> </u>	ļ							12 Ashley St
6	G2		20/09/2021	WATER	Х	Х	X	X	X	<u> </u>	<u> </u>				<u> </u>	<u> </u>				Chatswood NSW 2067 Ph: (02) 9910 6200
7	<u>N8</u>		20/09/2021	WATER	Х	Х	Х	X	X			<u> </u>					·			<u>lab Na: 279030</u>
8	<u>N9</u>		20/09/2021	WATER	Х	Х	X	_ X	X						<u> </u>					271000
9	W6D		20/09/2021	WATER	X	Х	Х	X	X		<u> </u>				<u> </u>	<u> </u>				Date-Received: 24 9 21
10	E11		20/09/2021	WÄTER	Х	Х	х	X	X											Time Received: (040
11	<u> </u>		20/09/2021	WATER	X	Х	X	X	X		<u> </u>				<u> </u>					Received By: Tempy Cool/Ambient
12	W5D		21/09/2021	WATER	X	X	Х	X	X				<u></u>							Cooling: Ice/jepack
13 PHR E.	F6		21/09/2021	WATER	х	х	x	х	х	<u> </u> -									<u> </u>	Security Intact/Broken/None
14 L.	G6		21/09/2021	WATER	x	X	X	_x	X				<u>l</u>		<u> </u>					*
	by (company):	Ramboll		<u> </u>	Receiv	ed by	(comp	any):			SA				Lab u	se onl	y:			production of the second
Print Name:		Jake Bourke			Print I	Name:					EGA				Samp	les Re	ceived:	Cool	or Amb	pient (circle one)
Date & Time	<u> </u>	21/09/2021			Date 8	k Time	: 2	4/9	121	<u> </u>	10	40	_		Temp	eratur	e Rece	ived at	:: 13°	(f) (if applicable)
Signature:			•		Signal	ure:		'_	<u>' </u>	آ۔									-	d / courier

N H TOI (EXTRA)

2nd esky received on 27/9/21 C 1020

ENVIROLAB GROUP Envirolab Services Client Project Name / Number / Site etc (ie report title): Client: Ramboll 12 Ashlev St. Chatswood, NSW 2067 Hydro Groundwater Plume Monitoring - 318001103 Contact person: JAB Fax:0299106201 Phone: 02 9910 6200 PO No.: Project Mgr: Jordyn Kirsch Envirolab Ouote No.: E-mail: ahie@envirolabservices.com.au Sampler: JAB Date results required: Contact: Aileen Hie Address: Level 2 Suite 18, 50 Glebe Road, Envirolab Services WA t/a MPL The Junction 16-18 Hayden Crt, Myaree WA 6154 Or choose: standard / same day / 1 day / 2 day / 3 day . . -Phone: 08 9317 2505 Fax:08 9317 4163 0467580473 Note: Inform lab in advance if urgent turnaround is required - surcharge applies Phone: (02) 49625444 Mob: Lab comments: Highly contaminated E-mail: lab@mpl.com.au Fax: Contact: Joshua Lim Email: ikirsch@ramboll.com; ibourke@ramboll.com Sample information **Tests Required** Comments Aluminium Soluble Fluoride Aluminium Cyanide Cyanide Provide as much Client Sample ID or Date Envirolab information about the Depth Type of sample information sampled Dissolved Sample ID Total Free sample as you can Total, 15 WATER Х X X X F5 21/09/2021 Х G5 lo 21/09/2021 WATER X X X X X X X X W3S 21/09/2021 WATER X Х 17 Х Х X X Х **A7** 21/09/2021 WATER 18 21/09/2021 X X X Х W₁S WATER 19 2n W₁D 21/09/2021 WATER X X X X X - F4 21/09/2021 X X X X X 21 WATER D01 20210920 20/09/2021 WATER X X X X X 22 T01 20210920 X X Please forward to ALS 20/09/2021 WATER X X X X D02 20210921 21/09/2021 WATER X X 22 R01 20210921 21/09/2021 WATER X X X X X ELS-SYD Relinguished by (company): Ramboll Received by (company): Lab use only: Y. VEGA Print Name: Print Name: Samples Received: Cool or Ambient (circle one) **Jake Bourke** 1040 24/9/21 Temperature Received at: $(3)^{\circ}$ (if applicable) Date & Time: 18/03/2021 Date & Time: Signature: Signature: Transported by: Hand delivered / courier

			ENVIROLAB GROUP	ROLA	B G	R O	F						<u>></u>
										1			— ENVIROLAB
Client: Ramboll				Client P	roject	Name	/ Nur	nber/	Site el	ie r	Client Project Name / Number / Site etc (ie report title):	Envirolab Services	
Contact person: JAB				I	lydro 6	sround	lwater	Hydro Groundwater Plume		oring	Monitoring - 318001103	12 Ashley St, Chatswood, NSW 2067	NSW 2067
Project Mgr: Jordyn Kirsch				PO No.:			i					Phone: 02 9910 6200	Fax :02 9910 6201
Sampler: JAB				Envirolab Quote No. :	ab Quo	ote No.	:					E-mail: ahie@envirolabservices.com.au	ervices.com.au
Address: Level 2 Suite 18, 50 Glebe Road,)ad,			Date results required:	sults r	equire	<u></u>					Contact: Aileen Hie	
The Junction												Envirolab Services WA t/a MPL	t/a MPL
				Or choose: standard / same day /	se: st	andan	d / sar	ne day		y/20	1 day / 2 day / 3 day	16-18 Hayden Crt, Myaree WA 6154	WA 6154
Phone: (02) 49625444	Mob:	046	0467580473	Note: Info	om lab ı	in advan	ce if urg	ent turna	iound is	require	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	Phone: 08 9317 2505	Fax :08 9317 4163
Fax:				Lab comments: Highly contaminated	nment	s: Higi	nly cor	stamin	ted			E-mail: lab@mpl.com.au	1
Email: jkirsch@ramboll.com; jbourke@ramboll.com	urke@ramboll.com											Contact: Joshua Lim	
	Sample information			9 E						Test	Tests Required		Commence
				ride	de	de	ium	inium					
Clie	Depth	Date	Type of sample	Fluorie	Cyanid	Cyanide	luminiu	Alumir			Environ	Environmental Division Sydnev	Provide as much
		2		Solubl	Total	Free	Total A	Dissolved		 	∏ Sor COr	Work Order Reference	sample as you can
)S F5		21/09/2021	WATER	×	×	×	×	×					
<i>lω</i> G5		21/09/2021	WATER	×	×	×	×	×					
(7 W3S		21/09/2021	WATER	×	×	×	×	×					
18 A7		21/09/2021	WATER	×	×	×	×	×					
19 W1S		21/09/2021	WATER	×	×	×	×	×			Tolonhone	R1.9.0794 9556	
) V		21/09/2021	WATER	×	×	×	×	×			9190	- dispulsie — or zeo of nous	
21 E4		21/09/2021	WATER	×	×	×	×	×	<u></u>				
22 D01_20210920		20/09/2021	WATER	×	×	×	×	×					
701 20210920		20/09/2021	WATER	×	×	×	×	×					Please forward to ALS
23 D02 20210921		21/09/2021	WATER	×	×	×	×	×					
2 2 R01 20210921		21/09/2021	WATER	×	×	×	×	×					
						ļ.			_				
					_	_			\perp				
Relinguished by (company):	Ramboll	ELS SYD	D	Received by (company):	d by (compa	<u>.</u>	ŪΨ	52	C 75		Lab use only:	
Print Name:	Jake Bourke			Print Name:	me:				· VEGA	60		Samples Received: Cool or Ambient (circle one)	ent (circle one)
Date & Time:	18/03/2021	27/91	1310	Date & Time	Time:		نځ	19/2	-	2	040	Temperature Received at: (3°C) (if applicable)) (if applicable)
Signature:		DO	U	Signature:	re:			,		7		Transported by: Hand delivered / courier	/ courier

RC - SCH 27/9/21 1645 279030

Δ	
=	
=	3
7	Š
L	ı
	ø
-	
C	7
•	_
ď	١
	•
•	Ľ
	ī
=	•
C	1
=	2
	_
-	d
-	
7	,
ш	ı
	_

Client Embods Client Embod					ENVIR	OLAI	OLAB GROUP	OUP						
Propertion 19 Propertion	Cliont: Damp		-			Client Pr	piect Na	me / Nu	ımber / S	ite etc (ie report	title):	Envirolab Services	GROUP
Property of the Read, Property Propert	Contact perse	on: JAB				H	dro Grot	Indwate	r Plume	Monitori	ng - 318	901103	12 Ashley St, Chatswood,	, NSW 2067
Contacts along the Read Contacts along t	Project Mgr:	Jordyn Kirsch				PO No.:		7		,			Phone: 02 9910 6200	Fax :02 9910 6201
Contact Name Cont	Sampler: JAB					Envirola	o Quote	No.:					E-mail: ahie@envirolabs	ervices.com.au
Contact Sample information Contact Sample Contact Sample information Contact Sample Contact Sample	Address: Lev	el 2 Suite 18, 50 Glebe Ro	ad,			Date res	ults requ	ıired:		٠			Contact: Aileen Hie	
Contact Cont	The Junction								•				Envirolab Services WA	t/a MPL
Point Poin						Or choos	e: stanı	dard / s	ame day	/ 1 day /	2 day /	3 day	Lo-18 nayden Crt, Myare	e wa olo4
First-binarioticom; Sample information Sample	Phone:	(02) 49625444	Mob:	04(57580473	Note: Infor	m lab in ac	ivance if u	rgent turnar	ound is rec	quired - sur,	harge applies	Phone: 08 9317 2505	Fax :08 9317 4163
Signification bourtees and boartes in the marker of sample Type of sam	Fax:					Lab com	ments: I	lighly a	ontamina	ted			E-mail: lab@mpl.com.au	
Color Colo		jkirsch@ramboll.com; jbo	urke@ramboll.com										Contact: Joshua Lim	
Client Sample ID or Date Important Date Important Date Important Date Important Im		Sam	iple information					- E			ests Req	uired		Comments
F5	Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample				muinimulA bevlossiQ			Sydne Work	nmental Division Order Reference	Provide as much information about the sample as you can
G5 \$ \$ \$ \$ \$ \$ \$ \$ \$	Ū	F5		21/09/2021	WATER		-		×					
W3S 21/09/2021 WATER X	ę	G5	Meson of the second of the sec	21/09/2021	WATER	_	<u> </u>		×					-
MATE	17	W3S		21/09/2021	WATER				×	-				
W1S 21/09/2021 WATER X	Ś	A7	Signal Control of the	71/09/2021	WATER			\dashv	×			-		
W1D 21/09/2021 WATER X	0	W1S		21/09/2021	WATER		-	\dashv	×		_	Telephone		
E4	20	W1D		21/09/2021	WATER			\dashv	×	-		; 		
D01 20210920 20/09/2021 WATER X X X X X X X X X	17.	E4		21/09/2021	WATER			-	×	-	-			
T01 20210920 20/09/2021 WATER X X X X X X X X X	22			20/09/2021	WATER	×	_	_	×	\dashv				
D02_20210921		1 H		20/09/2021	WATER	-	-	-	×					Please forward to ALS
Roll 20210921 VATER X X X X X X X X X	22	Q		21/09/2021	WATER	+	_	+	×		_			
ed by (company): Ramboll FL f f f l Received by (company): E C S S F D Lab use only: si Jake Bourke A & A Print Name: V VE 6 A Samples Received: Cool or Ambient si: 18/03/2021 17/1/1/1 (3 (0) Date & Time: 24/0/2 (0) Cot Temperature Received at: (3 C) ne; 18/03/2021 17/1/1/1 Signature: Transported by: Hand delivered / C	3 7			21/09/2021	WATER	×	\dashv	\dashv	×					
ed by (company): Ramboll ELS (A) Received by (company): ELS SYD Lab use only: e.j. Jake Bourke A &A Print Name: V VECA Samples Received: Cool or Ambient e.j. 18/03/2021 17/4/124 (3 to Date & Time: 24/4/2 to Opto Temperature Received at: (3 Cool or Ambient hei: 18/03/2021 17/4/124 Signature: A Signature: Transported by: Hand delivered / Cool or Ambient	•						4	-		+	+			
ed by (company): Ramboll								+		+	1			
ed by (company): Ramboll Eしらが (Company): ことら・らy (Company): ことら・らy (Company): ことら・らy (Company): ことら・らy (Company): ことら・らy (Company): ことらいる (Cool or Ambient Samples Received 3 (Cool or Ambient (+			-				
ed by (company): Ramboll FLS S4D Lab use only: ed by (company): ELS S4D Lab use only: 3. Jake Bourke A & 1 1 1 1 1 1 1 1 1 1														
b: Jake Bourke A 310 Print Name: 749121 310 Date & Time: 349121 31040 Temperature Received at: 310111 Signature: 310111 A 310111 Signature: 310111 A 310111	Relinquished	1 by (company):	Ramboll	I ELS S	10	Receive	1 by (cor	npany):		2 .	20		Lab use only:	
ne: $18/03/2021$ 27/4/24 (310 Date & Time: $24/9/2$! (σ PO ϕ C) Temperature Received at: (31C) Signature: (31C)	Print Name:		Jake Bourke	1		Print Na	me:		ļ.	1	ا ۲		Samples Received: Cool or Amb	bient (circle one)
Signature: Signature: Transported by: Hand delivered / c	Date & Time		18/03/2021	7	13:0	Date & 1	ime:	6 14	0	2	50		Temperature Received at: (3	(if applicable)
	:Signature:	-		Y	Q	Signatui	ë;						Transported by: Hand delivere	\sim

Rec. 808th 2719121 lbys 217000

NORTH SYDNEY 2060

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2134801

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : JORDYN KIRSCH Contact : Olivia Barbato

Address : 100 Pacific Hwy Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

 Telephone
 : --- Telephone
 : +61-2-8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : Hydro Groundwater Plume Monitoring - Page : 1 of 2

318001103

 Order number
 : -- Quote number
 : EB2017ENVIAUS0001 (EN/222)

 C-O-C number
 : -- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : JAB

Dates

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 4.4'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 28-Sep-2021 Issue Date

Page

2 of 2 ES2134801 Amendment 0 Work Order

Client : RAMBOLL AUSTRALIA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such VATER - EG020T otal Metals by ICP/MS (including digestion) as the determination of moisture content and preparation otal Cyanide by Segmented Flow Analyser tasks, that are included in the package. VATER - EK025SF ree CN By Segmented Flow Analyser If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date issolved Metals by ICP/MS is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Matrix: WATER Sample ID Laboratory sample Sampling date / ID time ES2134801-001 20-Sep-2021 00:00 T01_20210920

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

- A4 - AU Tax Invoice (INV)	Email	AsiaPac-Accounts@Ramboll.com
JAKE BOURKE		
- *AU Certificate of Analysis - NATA (COA)	Email	JBOURKE@ramboll.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	JBOURKE@ramboll.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	JBOURKE@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	JBOURKE@ramboll.com
- Chain of Custody (CoC) (COC)	Email	JBOURKE@ramboll.com
- EDI Format - SRAENV (SRAENV)	Email	JBOURKE@ramboll.com
- EDI Format - XTab (XTAB)	Email	JBOURKE@ramboll.com
JORDYN KIRSCH		
- *AU Certificate of Analysis - NATA (COA)	Email	jkirsch@ramboll.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jkirsch@ramboll.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jkirsch@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jkirsch@ramboll.com
- Chain of Custody (CoC) (COC)	Email	jkirsch@ramboll.com
- EDI Format - SRAENV (SRAENV)	Email	jkirsch@ramboll.com
- EDI Format - XTab (XTAB)	Email	jkirsch@ramboll.com

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 279030

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>Hydro Groundwater Plume Monitoring - 318001103</u>
Number of Samples	24 Water
Date samples received	24/09/2021
Date completed instructions received	24/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	01/10/2021
Date of Issue	01/10/2021
NATA Accreditation Number 2901. The	nis document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Giovanni Agosti, Group Technical Manager Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Mincellana and Incurrent						
Miscellaneous Inorganics Our Reference		279030-1	279030-2	279030-3	279030-4	279030-5
Your Reference	UNITS	W2D	PUMP	279030-3 W7M	279030-4 E5	E5D
	UNITS	20/09/2021	20/09/2021	20/09/2021	20/09/2021	20/09/2021
Date Sampled						
Type of sample		Water	Water	Water	Water	Water
Date prepared	_	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed		28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Fluoride, F	mg/L	880	26	350	230	7.6
Total Cyanide	mg/L	46	0.068	25	18	0.17
Free Cyanide in Water	mg/L	0.011	<0.004	0.013	0.011	<0.004
Miscellaneous Inorganics						
Our Reference		279030-6	279030-7	279030-8	279030-9	279030-10
Your Reference	UNITS	G2	N8	N9	W6D	E11
Date Sampled		20/09/2021	20/09/2021	20/09/2021	20/09/2021	20/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Fluoride, F	mg/L	0.3	0.5	95	<0.1	76
Total Cyanide	mg/L	<0.004	0.10	0.83	<0.004	1.4
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Miscellaneous Inorganics						
Our Reference		279030-11	279030-12	279030-13	279030-14	279030-15
Your Reference	UNITS	N2	W5D	F6	G6	F5
Date Sampled		20/09/2021		0.4.10.0.10.00.4		
		20/03/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Type of sample		Water	21/09/2021 Water	21/09/2021 Water	21/09/2021 Water	21/09/2021 Water
Type of sample Date prepared	-					
	-	Water	Water	Water	Water	Water
Date prepared	- - mg/L	Water 28/09/2021	Water 28/09/2021	Water 28/09/2021	Water 28/09/2021	Water 28/09/2021
Date prepared Date analysed	- - mg/L mg/L	Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021
Date prepared Date analysed Fluoride, F	_	Water 28/09/2021 28/09/2021 0.9	Water 28/09/2021 28/09/2021 0.3	Water 28/09/2021 28/09/2021 0.4	Water 28/09/2021 28/09/2021 0.4	Water 28/09/2021 28/09/2021 0.2
Date prepared Date analysed Fluoride, F Total Cyanide	mg/L	Water 28/09/2021 28/09/2021 0.9 <0.004	Water 28/09/2021 28/09/2021 0.3 <0.004	Water 28/09/2021 28/09/2021 0.4 <0.004	Water 28/09/2021 28/09/2021 0.4 <0.004	Water 28/09/2021 28/09/2021 0.2 <0.004
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water	mg/L	Water 28/09/2021 28/09/2021 0.9 <0.004	Water 28/09/2021 28/09/2021 0.3 <0.004	Water 28/09/2021 28/09/2021 0.4 <0.004	Water 28/09/2021 28/09/2021 0.4 <0.004	Water 28/09/2021 28/09/2021 0.2 <0.004
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics	mg/L	Water 28/09/2021 28/09/2021 0.9 <0.004 <0.004	Water 28/09/2021 28/09/2021 0.3 <0.004 <0.004	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004	Water 28/09/2021 28/09/2021 0.2 <0.004 <0.004
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference	mg/L mg/L	Water 28/09/2021 28/09/2021 0.9 <0.004 <70.004	Water 28/09/2021 28/09/2021 0.3 <0.004 <70.004	Water 28/09/2021 28/09/2021 0.4 <0.004 <70.004	Water 28/09/2021 28/09/2021 0.4 <0.004 <70.004	Water 28/09/2021 28/09/2021 0.2 <0.004 <0.004
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference	mg/L mg/L	Water 28/09/2021 28/09/2021 0.9 <0.004 <0.004 279030-16 G5	Water 28/09/2021 28/09/2021 0.3 <0.004 <0.004 279030-17 W3S	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-18 A7	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-19 W1S	Water 28/09/2021 28/09/2021 0.2 <0.004 <0.004 279030-20 W1D
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled	mg/L mg/L	Water 28/09/2021 28/09/2021 0.9 <0.004 <0.004 279030-16 G5 21/09/2021	Water 28/09/2021 28/09/2021 0.3 <0.004 <0.004 279030-17 W3S 21/09/2021	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-18 A7 21/09/2021	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-19 W1S 21/09/2021	Water 28/09/2021 28/09/2021 0.2 <0.004 <0.004 279030-20 W1D 21/09/2021
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample	mg/L mg/L UNITS	Water 28/09/2021 28/09/2021 0.9 <0.004 <0.004 279030-16 G5 21/09/2021 Water	Water 28/09/2021 28/09/2021 0.3 <0.004 <0.004 279030-17 W3S 21/09/2021 Water	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-18 A7 21/09/2021 Water	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-19 W1S 21/09/2021 Water	Water 28/09/2021 28/09/2021 0.2 <0.004 <0.004 279030-20 W1D 21/09/2021 Water
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared	mg/L mg/L UNITS	Water 28/09/2021 28/09/2021 0.9 <0.004 <0.004 279030-16 G5 21/09/2021 Water 28/09/2021	Water 28/09/2021 28/09/2021 0.3 <0.004 <0.004 279030-17 W3S 21/09/2021 Water 28/09/2021	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-18 A7 21/09/2021 Water 28/09/2021	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-19 W1S 21/09/2021 Water 28/09/2021	Water 28/09/2021 28/09/2021 0.2 <0.004 <0.004 279030-20 W1D 21/09/2021 Water 28/09/2021
Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	mg/L mg/L UNITS	Water 28/09/2021 28/09/2021 0.9 <0.004 <0.004 279030-16 G5 21/09/2021 Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021 0.3 <0.004 <0.004 279030-17 W3S 21/09/2021 Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-18 A7 21/09/2021 Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021 0.4 <0.004 <0.004 279030-19 W1S 21/09/2021 Water 28/09/2021 28/09/2021	Water 28/09/2021 28/09/2021 0.2 <0.004 <0.004 279030-20 W1D 21/09/2021 Water 28/09/2021 28/09/2021

Miscellaneous Inorganics					
Our Reference		279030-21	279030-22	279030-23	279030-24
Your Reference	UNITS	E4	D01_20210920	D02_20210921	R01_20210921
Date Sampled		21/09/2021	20/09/2021	21/09/2021	21/09/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Fluoride, F	mg/L	570	7.7	0.3	<0.1
Total Cyanide	mg/L	47	0.20	<0.004	<0.004
Free Cyanide in Water	mg/L	0.008	<0.004	<0.004	<0.004

HM in water - dissolved						
Our Reference		279030-1	279030-2	279030-3	279030-4	279030-5
Your Reference	UNITS	W2D	PUMP	W7M	E5	E5D
Date Sampled		20/09/2021	20/09/2021	20/09/2021	20/09/2021	20/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Dissolved	μg/L	600	11,000	360	100	20
HM in water - dissolved						
Our Reference		279030-6	279030-7	279030-8	279030-9	279030-10
Your Reference	UNITS	G2	N8	N9	W6D	E11
Date Sampled		20/09/2021	20/09/2021	20/09/2021	20/09/2021	20/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Dissolved	μg/L	<10	40	600	50	90
HM in water - dissolved				I		
Our Reference		279030-11	279030-12	279030-13	279030-14	279030-15
Your Reference	UNITS	N2	W5D	F6	G6	F5
Date Sampled		20/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Dissolved	μg/L	3,400	<10	<10	5,900	2,200
HM in water - dissolved	<u> </u>					
Our Reference		279030-16	279030-17	279030-18	279030-19	279030-20
Your Reference	UNITS	G5	W3S	A7	W1S	W1D
Date Sampled		21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Dissolved	μg/L	30	620	230	110	50
HM in water - dissolved						
Our Reference		279030-21	279030-22	279030-23	279030-24	
Your Reference	UNITS	E4	D01_20210920	D02_20210921	R01_20210921	
Date Sampled		21/09/2021	20/09/2021	21/09/2021	21/09/2021	
Type of sample		Water	Water	Water	Water	
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	
Aluminium-Dissolved	μg/L	530	10	10	<10	

HM in water - total						
Our Reference		279030-1	279030-2	279030-3	279030-4	279030-5
Your Reference	UNITS	W2D	PUMP	W7M	E5	E5D
Date Sampled		20/09/2021	20/09/2021	20/09/2021	20/09/2021	20/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Total	μg/L	1,600	18,000	2,300	750	420
HM in water - total		<u>'</u>				
Our Reference		279030-6	279030-7	279030-8	279030-9	279030-10
Your Reference	UNITS	G2	N8	N9	W6D	E11
Date Sampled		20/09/2021	20/09/2021	20/09/2021	20/09/2021	20/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Total	μg/L	620	6,500	3,700	5,400	5,000
HM in water - total						
Our Reference		279030-11	279030-12	279030-13	279030-14	279030-15
Your Reference	UNITS	N2	W5D	F6	G6	F5
Date Sampled		20/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Total	μg/L	6,500	270	30	6,600	2,700
HM in water - total						
Our Reference		279030-16	279030-17	279030-18	279030-19	279030-20
Your Reference	UNITS	G5	W3S	A7	W1S	W1D
Date Sampled		21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	28/09/2021
Aluminium-Total	μg/L	180	3,100	1,000	4,700	320
HM in water - total						
Our Reference		279030-21	279030-22	279030-23	279030-24	
Your Reference	UNITS	E4	D01_20210920	D02_20210921	R01_20210921	
Date Sampled		21/09/2021	20/09/2021	21/09/2021	21/09/2021	
Type of sample		Water	Water	Water	Water	
Date prepared	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	
Date analysed	-	28/09/2021	28/09/2021	28/09/2021	28/09/2021	
Aluminium-Total	μg/L	70,000	370	400	<10	

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CO	NTROL: Mis	cellaneou	s Inorganics			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279030-2
Date prepared	-			28/09/2021	1	28/09/2021	28/09/2021		28/09/2021	28/09/2021
Date analysed	-			28/09/2021	1	28/09/2021	28/09/2021		28/09/2021	28/09/2021
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	880	830	6	88	99
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	46	50	8	96	114
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	0.011	0.01	10	101	87

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	279030-22
Date prepared	-			[NT]	11	28/09/2021	28/09/2021		28/09/2021	28/09/2021
Date analysed	-			[NT]	11	28/09/2021	28/09/2021		28/09/2021	28/09/2021
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	0.9	0.8	12	95	108
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	91	#
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	<0.004	0	92	#

QUALITY CO	NTROL: Mis	cellaneou	s Inorganics			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	20	28/09/2021	28/09/2021			[NT]
Date analysed	-			[NT]	20	28/09/2021	28/09/2021			[NT]
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	20	9.7	9.7	0		[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	20	0.23	[NT]			[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	20	<0.004	[NT]			[NT]

QUALITY CON	NTROL: Mis	cellaneou	s Inorganics		Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date prepared	-			[NT]	24	28/09/2021	28/09/2021			[NT]		
Date analysed	-			[NT]	24	28/09/2021	28/09/2021			[NT]		
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	24	<0.1	[NT]			[NT]		
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	24	<0.004	<0.004	0		[NT]		
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	24	<0.004	<0.004	0	[NT]	[NT]		

QUALITY CO	NTROL: HN	l in water	- dissolved		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	279030-2
Date prepared	-			28/09/2021	1	28/09/2021	28/09/2021		28/09/2021	28/09/2021
Date analysed	-			28/09/2021	1	28/09/2021	28/09/2021		28/09/2021	28/09/2021
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	600	570	5	98	#

QUALITY CO	NTROL: HM	l in water	- dissolved		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	279030-22	
Date prepared	-			[NT]	11	28/09/2021	28/09/2021		28/09/2021	28/09/2021	
Date analysed	-			[NT]	11	28/09/2021	28/09/2021		28/09/2021	28/09/2021	
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	11	3400	3300	3	99	99	

QUALITY CC	NTROL: HN	/l in water	- dissolved		Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date prepared	-			[NT]	21	28/09/2021	28/09/2021			[NT]		
Date analysed	-			[NT]	21	28/09/2021	28/09/2021			[NT]		
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	21	530	500	6	[NT]	[NT]		

QUALITY	CONTROL:	HM in wa	ter - total		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279030-2	
Date prepared	-			28/09/2021	1	28/09/2021	28/09/2021		28/09/2021	28/09/2021	
Date analysed	-			28/09/2021	1	28/09/2021	28/09/2021		28/09/2021	28/09/2021	
Aluminium-Total	μg/L	10	Metals-022	<10	1	1600	1300	21	91	#	

QUALITY	CONTROL:	HM in wa	ter - total		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	279030-20	
Date prepared	-			[NT]	10	28/09/2021	28/09/2021		28/09/2021	28/09/2021	
Date analysed	-			[NT]	10	28/09/2021	28/09/2021		28/09/2021	28/09/2021	
Aluminium-Total	μg/L	10	Metals-022	[NT]	10	5000	5000	0	98	#	

QUALITY CONTROL: HM in water - total			Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	19	28/09/2021	28/09/2021		[NT]	[NT]
Date analysed	-			[NT]	19	28/09/2021	28/09/2021		[NT]	[NT]
Aluminium-Total	μg/L	10	Metals-022	[NT]	19	4700	4600	2	[NT]	[NT]

QUALITY CONTROL: HM in water - total			Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	28/09/2021	28/09/2021		[NT]	[NT]
Date analysed	-			[NT]	21	28/09/2021	28/09/2021		[NT]	[NT]
Aluminium-Total	μg/L	10	Metals-022	[NT]	21	70000	74000	6	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Misc Inorg

#Low spike recovery was obtained for this sample. Sample matrix interference is suspected. However, an acceptable recovery was obtained for the LCS

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 279030 Page | 12 of 12

Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Kirsch

Sample Login Details	
Your reference	Hydro Groundwater Plume Monitoring - 318001103
Envirolab Reference	279030
Date Sample Received	24/09/2021
Date Instructions Received	24/09/2021
Date Results Expected to be Reported	01/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	24 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Fluoride, F	Total Cyanide	Free Cyanide in Water	HM in water - dissolved	HM in water - total
W2D	✓	✓	✓	✓	✓
PUMP	✓	✓	✓	✓	✓
W7M	✓	✓	_	✓	✓
E5	✓	√	√	✓	✓
E5D	✓	✓	✓	✓	✓
G2	✓	✓	√	✓	✓
N8	✓	✓	✓	✓	✓
N9	✓	✓ ✓ ✓	√	✓	✓
W6D	✓	✓	✓	✓	✓
E11	✓	✓ ✓ ✓ ✓ ✓	✓	✓	✓
N2	✓	✓	√	✓	✓
W5D	✓	✓	√	✓	✓
F6	✓	✓	✓	✓	✓
G6	✓	✓	✓	✓	✓
F5	✓	✓	✓	✓	✓
G5	✓	✓	✓ ✓ ✓	✓	✓
W3S	✓	✓	✓	✓	✓
A7	✓	✓	✓	✓	✓
W1S	✓	✓ ✓ ✓ ✓ ✓ ✓	√	✓	\[\lambda \] \[\lambda \] \[\lambda \lambda \] \[\lamb
W1D	✓	✓		✓	✓
E4	✓	✓	√	✓	✓
D01_20210920	✓	✓	✓	✓	✓
D02_20210921	V V V V V V V V V V V V V V V V V V V	✓	✓		✓

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS

Work Order : ES2134801

: RAMBOLL AUSTRALIA PTY LTD Laboratory

Contact : JORDYN KIRSCH

Address : 100 Pacific Hwy

NORTH SYDNEY 2060

Telephone : ----

Client

Project: Hydro Groundwater Plume Monitoring - 318001103

Order number : ---C-O-C number : ----

Sampler : JAB Site : ----

Quote number : EN/222

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 2

Laboratory : Environmental Division Sydney

Contact : Olivia Barbato

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 27-Sep-2021 16:45

Date Analysis Commenced : 29-Sep-2021

Issue Date : 05-Oct-2021 12:33

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 2 Work Order : ES2134801

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EK025sf: LOR raised for Free CN sample 1 due to sample matrix.

Analytical Results

7 many trous recounts						
Sub-Matrix: WATER (Matrix: WATER)			Sample ID	T01_20210920	 	
		Sampli	ng date / time	20-Sep-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2134801-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	10	μg/L	10	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	10	μg/L	260	 	
EK025SF: Free CN by Segmented Flow	Analyser					
Free Cyanide		0.004	mg/L	<0.040	 	
EK026SF: Total CN by Segmented Flow	Analyser					
Total Cyanide	57-12-5	0.004	mg/L	1.26	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	<0.1	 	

QUALITY CONTROL REPORT

Page

: 1 of 3

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : ES2134801

NORTH SYDNEY 2060

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : JORDYN KIRSCH : Olivia Barbato

Address : 100 Pacific Hwy Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : ---- Telephone : +61-2-8784 8555

Project : Hydro Groundwater Plume Monitoring - 318001103 Date Samples Received : 27-Sep-2021

Order number : ---- Date Analysis Commenced : 29-Sep-2021

C-O-C number : ---- Issue Date : 05-Oct-2021 Sampler : JAB

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: EN/222

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES2134801

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved N	Metals by ICP-MS (QC Lot: 3	928813)							
ES2134719-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.03	0.03	0.0	No Limit
ES2134719-011	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 39305	90)							
ES2134503-021	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.01	<0.01	0.0	No Limit
ES2134941-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK025SF: Free CN b	y Segmented Flow Analyse	r (QC Lot: 3927936)							
ES2134801-001	T01_20210920	EK025SF: Free Cyanide		0.004	mg/L	<0.040	<0.040	0.0	No Limit
EK026SF: Total CN I	by Segmented Flow Analyse	r (QC Lot: 3927935)							
ES2134801-001	T01_20210920	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	1.26	1.24	1.5	0% - 20%
EK040P: Fluoride by	PC Titrator (QC Lot: 39285	55)							
ES2134785-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
ES2134863-004	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit

Page : 3 of 3 Work Order : ES2134801

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER		Method Blank (MB)		Laboratory Control Spike (LCS) Report Spike Spike Recovery (%) Accepta Concentration LCS Low				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 3928813)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	95.2	80.0	116
EG020T: Total Metals by ICP-MS (QCLot: 3930590)								
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	95.7	82.0	120
EK025SF: Free CN by Segmented Flow Analyser (QCLot	3927936)							
EK025SF: Free Cyanide		0.004	mg/L	<0.004	0.2 mg/L	113	88.0	128
EK026SF: Total CN by Segmented Flow Analyser (QCLo	:: 3927935)							
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	123	73.0	133
EK040P: Fluoride by PC Titrator (QCLot: 3928555)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	98.2	82.0	116

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK025SF: Free C	N by Segmented Flow Analyser (QCLot: 3927936)						
ES2134801-001	T01_20210920	EK025SF: Free Cyanide		4 mg/L	99.6	70.0	130
EK026SF: Total C	N by Segmented Flow Analyser (QCLot: 3927935)						
ES2134801-001	T01_20210920	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	# Not	70.0	130
					Determined		
EK040P: Fluoride	by PC Titrator (QCLot: 3928555)						
ES2134785-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	80.0	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2134801** Page : 1 of 4

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : JORDYN KIRSCH Telephone : +61-2-8784 8555

Project : Hydro Groundwater Plume Monitoring - 318001103 Date Samples Received : 27-Sep-2021

Site :---- Issue Date : 05-Oct-2021

Sampler : JAB No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES2134801

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

	Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
N	latrix Spike (MS) Recoveries							
	EK026SF: Total CN by Segmented Flow Analyser	ES2134801001	T01_20210920	Total Cyanide	57-12-5	Not		MS recovery not determined,
						Determined		background level greater than or
								equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	: (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	3	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	11	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **WATER**Evaluation: **×** = Holding time breach; **√** = Within holding time.

MOUNT PATER				Lvaldation	. Holding time		ii nolaling anno
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) T01_20210920	20-Sep-2021				30-Sep-2021	19-Mar-2022	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) T01_20210920	20-Sep-2021	30-Sep-2021	19-Mar-2022	1	30-Sep-2021	19-Mar-2022	✓
EK025SF: Free CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK025SF) T01_20210920	20-Sep-2021				29-Sep-2021	04-Oct-2021	✓
EK026SF: Total CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK026SF) T01_20210920	20-Sep-2021				29-Sep-2021	04-Oct-2021	✓
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P) T01_20210920	20-Sep-2021				29-Sep-2021	18-Oct-2021	✓

Page : 3 of 4 Work Order ES2134801

RAMBOLL AUSTRALIA PTY LTD Client

Hydro Groundwater Plume Monitoring - 318001103 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: 🗴 = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	3	66.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	3	0.00	5.00	k	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	0	11	0.00	5.00	æ	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : ES2134801

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Fotal Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Free CN by Segmented Flow Analyser	EK025SF	WATER	In house: Referenced to ASTM D7237, APHA 4500-CN-C&O and ISO 14403: Using an automated segmented flow analyser, a sample at high pH (sodium hydroxide preserved) is buffered to pH 6.0. The hydrogen cyanide present passes across a gas dialysis membrane into an acceptor stream consisting of 0.01 M sodium hydroxide. The acceptor stream mixes with a buffer at pH 5.2 and reacts with chloramine-T to form cyanogen chloride. Cyanogen chloride reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour, measured at 600nm. This method is compliant with NEPM Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP

Client: Rambo	<u> </u>				Client	Projec	t Nam	e/Nu	mber ,	/ Site o	etc (ie r	eport 1	title):			rolab					
Contact perso	n: Jake Bourke					Hydro	Groun	dwate	r Plum	e Mon	itoring ·	<u>- 3180</u>	01103			•	•		•	NSW 2067	
Project Mgr: J	ordyn Kirsch				PO No	·:										e: 02 9				Fax :02 9910 6201	
Sampler: Jake	Bourke					lab Qu													labse	rvices.com.au	
Address: Leve	2 Suite 18, 50 Glebe Roa	ad,			Date r	esults	requir	ed:								act: Ai					
The Junction																				:/a MPL	
					Or cho	ose: s	tanda	rd / sa	me da	y / 1 d	lay / 2 d	lay / 3	day			-		•		: WA 6154	
Phone:	(02) 49625444	Mob:	04	67580473							Is required	d - surci	harge app	olies	Phon	e: 08 9	9317 2	250	5	Fax :08 9317 4163	
Fax:	_ (v-)				Lab co	mmen	ts: Hig	ihly co	ntami	nated						il: lab	-		n.au		
Email: j	kirsch@ramboll.com; jbou	ırke@ramboll.com									.,	1-1			Cont	act: Jo	shua	Lim			
-1-	Samp	ole information									Test	s Requ	iired							Comments	•
-Envirolab · Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Soluble Fluoride	Total Cyanide	Free Cyanide	Total Aluminium	Dissolved Aluminium											Provide as much information sample as you can	
1	W2S		1/12/2021	WATER	Х	Х	Х	Х	X		ļ ļ										
2	W2D		1/12/2021	WATER	X	х	X	X	X	_	\sqcup										
3	PUMP		1/12/2021	WATER	X	x	X	X	X	—	\sqcup		$\sqcup \sqcup$								·
4	W7S		1/12/2021	WATER	X	X	X	х	X		\sqcup										
5	W7M		1/12/2021	WATER	X	X	Х	х	X	ļ											_
6	E5 '		1/12/2021	WATER	х	X	X	X	X	<u> </u>								٠}	الألاكاك دووية		
. 7	E5D		1/12/2021	WATER	X	х	X	х	X	<u> </u>										Ph: (02) 9970	
8	G2		1/12/2021	WATER	X	X	Х	X	X	ļ								70	p Mo:	2344 10	
9	N9		1/12/2021	WATER .	X	х	X	X	X		igsquare								te Rec		
. 10	W6D	<u> </u>	1/12/2021	WATER	x _	х	X	· x	x											ceived: 1040	_
Ц	N8		1/12/2021	WATER	х	х	X	х	x	ļ	<u> </u>								ceived		
12	E11		1/12/2021	WATER	х	X	Х	х	X									16	iip:	ollAmbient	
13	W5S		1/12/2021	WATER	x	x	X	x	x								\perp			ン * 、	
14	W5D		1/12/2021	WATER	_x_	_x_	_X_	X	_x_	<u> </u>							<u></u> [
Relinquished	by (company):	Ramboll			Receiv	ved by	(comp	any):	<u> </u>	<u>ያ</u>					Lab us	se only:		_			
Print Name:		Jake Bourke			Print I	Name:		<u> </u>		في					Sampl	es Rece	ived:(C	ool o	Ambi	ent (circle one)	
Date & Time:		2/12/2021			Date 8	<u>k Time</u>	: <u>3/</u>	2/2	021			40			Temp	erature	Receive	ed at	47	(if applicable)	
Signature:					Signat	ture:	•					2	_		Trans	orted b	y: Han	d de	ivered	/ courier	

ENVIROLAB GROUP Envirolab Services Client Project Name / Number / Site etc (ie report title): Client: Ramboll Hydro Groundwater Plume Monitoring - 318001103 12 Ashley St, Chatswood, NSW 2067 Contact person: Jake Bourke Phone: 02 9910 6200 Fax:02 9910 6201 PO No.: Project Mgr: Jordyn Kirsch E-mail: ahie@envirolabservices.com.au Envirolab Quote No.: Sampler: Jake Bourke Date results required: Contact: Aileen Hie Address: Level 2 Suite 18, 50 Glebe Road, Envirolab Services WA t/a MPL The Junction 16-18 Hayden Crt, Myaree WA 6154 Or choose: standard / same day / 1 day / 2 day / 3 day Phone: 08 9317 2505 Fax:08 9317 4163 Note: Inform lab in advance if urgent turnaround is required - surcharge applies (02) 49625444 0467580473 Mob: Phone: Lab comments: Highly contaminated E-mail: lab@mpl.com.au Fax: Contact: Joshua Lim jkirsch@ramboll.com; jbourke@ramboll.com Email: **Tests Required** Comments Sample information Aluminium Total Aluminium Soluble Fluoride Total Cyanide Cyanide Provide as much Date Envirolab Client Sample ID or information about the Type of sample Depth sampled Sample ID information Dissolved sample as you can is N2 01/12/2021 WATER X X X X X G5 X X X X X 02/12/2021 WATER 16 02/12/2021 WATER X X X X X F₅ 17 X X 02/12/2021 WATER X X X G₆ 18 X X F₆ 02/12/2021 WATER X X X 19 X Х Х X X **W3S** 02/12/2021 WATER 20 02/12/2021 X X X X X 21 **A7** WATER X X **E4** 02/12/2021 WATER X X X 22 WIS X X X X X 23 02/12/202 WATER **Du** 02/12/2021 X X X X W1D WATER D01 20211202 X X X 25 01/12/202 WATER X X T01 20211202 01/12/2021 X X X X X Please forward to ALS WATER 7 26 D02 20211202 02/12/2021 WATER X X X X X X X Х X 24 R01 20211202 02/12/2021 WATER Received by (company): Lab use only: Relinguished by (company): Ramboll Than Print Name: Print Name: Jake Bourke Samples Received: Cool or Ambient (circle one) Birtron 1040 Date & Time: Temperature Received at: Date & Time: 02/12/2021 (if applicable) Transported by: Hand delivered / courier Signature: Signature:

Fransported by: Hand delivered / courier	Ilian			l		1				
remperature Received at: (if applicable)					Signature:	eis in	Ros			
The convedition of Ambient (circle one)	040	roter	<u>3</u> 2		Date & Time:	Da Da	2	05/15/2021		Signature:
Toles Received. Cool - Automate A	Sam	なると	# # P	ļ.	Print Name:	2 C	6 / 12 / 2	112/2021	0.5	Date & Time:
Lab use only;	Lab	3	pany): {	Received by (company):	Celved		7	Jake Bourke	ار	Print Name:
		<u> </u> 	L	-		0	Ery S. d	Ramboll		Relinquished by (company):
				-	<u> </u>					
		×	×	×	×	WATER	02/12/2021			
Please forward to ALS		×	×	×	×	_	1707/21/20		. 8	**************************************
	-	×	×	×	×	_	1707/21/10			À
	i elahuri ora	×	×	×	╀		1702/21/10		ı	1
+ 61-2-8794 8655	Telephone + 61-2-8	×	×	×	+-	-	01/12/2021		D01_20211202	×
		×	-	×	+	WATER	1702/21/20		W1D	£
		×	×	×	-	WATER	02/12/2021		Wis	73
		×	×	×	×	WATER	02/12/2021		F4	75
		×	×	×	×	WATER	02/12/2021		A7	21)
	7	×	×	×	×	WATER	1707/7/70		W3S	2
14330	ES212	×	×	×	×	WATER	1202/21/20		F6	SA.
Reference	Work Order Reference	×	×	+-	×	WATER	02/12/2021		66	188
	Cidada	×	×	+-	×	WATER	02/12/2021		55	y
Division	Exilipmental Division	×	×	+	 	WATER	02/12/2021		95	Ŕ
the first terms and the first terms of the first te			+	+	<u> </u>	WATER	01/12/2021		N2	10
Provide as much information about the sample as you can		Dissolved Alumin	Free Cyanide	Total Cyanid	Soluble Fluori	Type of sample	Date sampled	Depth	Client Sample ID or information	Envirolab Sample ID
Comments	Tests Required	nium			ide		·			
Contact: Joshua Lim							On .	Sample Information	San	
ne'	-	y contailinated	, finger				l.com	urke@rambol	jkirsch@ramboll.com; jbourke@ramboll.com	Email:
Phone: 08 9317 2505 Fax :08 9317 4163	f is required - surcharge applies	urgent turnard	High Well	nmente	Lab co					Fax:
16-18 Hayden Crt, Myaree WA 6154		saine day /	,	form tak in	Mote: In	0467580473	04	Mob:	(02) 49625444	Phone:
Envirolab Services WA t/a MPL			and sed /	OSP. ST	Or cho					
Contact: Aileen Hie	T-	•	. 4						5	The Junction
abse			Date results required.	esults n	Date			oad,	Address: Level 2 Suite 18, 50 Glebe Road,	Address: L
Phone: 02 9910 6200 Fax: 02 9910 6201				֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓					Sampler: Jake Bourke	Sampler: J.
12 Ashley St, Chatswood, NSW 2067	Hydro Groundwater Plume Monitoring - 318001103	ter Plume	roundwa	Hydro (2				Project Mgr: Jordyn Kirsch	Project Mg
Envirolab Services	/ Site etc (ie report title):	Number / 9	Client Project Name / Number	Project	Client				Contact person: Jake Bourke	Contact pe
EŃVIROLAB									nboll	Client: Ramboll
			ROU	AB G	P	ENVIROLAB GROUP				

re: Tras & 6/11/4 7:54

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2144330

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : JORDYN KIRSCH Contact : Olivia Barbato

Address : EASTPOINT COMPLEX SUITE 19B, Address : 277-289 Woodpark Road Smithfield

LEVEL 2 50 GLEBE ROAD NSW Australia 2164

THE JUNCTION NSW 2291

 Telephone
 : -- Telephone
 : +61-2-8784 8555

 Facsimile
 : -- Facsimile
 : +61-2-8784 8500

Project : Hydro Groundwater Plume Monitoring - Page : 1 of 2

318001103

 Order number
 : --- Quote number
 : EB2017ENVIAUS0001 (EN/222)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : Jake Bourke

Dates

Client Requested Due : 13-Dec-2021 Scheduled Reporting Date : 13-Dec-2021

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 9.2'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date · 06-Dec-2021

Page

2 of 2 ES2144330 Amendment 0 Work Order

Client : RAMBOLL AUSTRALIA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such VATER - EG020T otal Metals by ICP/MS (including digestion) as the determination of moisture content and preparation otal Cyanide by Segmented Flow Analyser tasks, that are included in the package. VATER - EK025SF ree CN By Segmented Flow Analyser If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date issolved Metals by ICP/MS is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Matrix: WATER Sample ID Laboratory sample Sampling date / ID time ES2144330-001 01-Dec-2021 00:00 T01_20211201

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

- A4 - AU Tax Invoice (INV)	Email	AsiaPac-Accounts@Ramboll.com
JAKE BOURKE		
- *AU Certificate of Analysis - NATA (COA)	Email	JBOURKE@ramboll.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	JBOURKE@ramboll.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	JBOURKE@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	JBOURKE@ramboll.com
- Chain of Custody (CoC) (COC)	Email	JBOURKE@ramboll.com
- EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON)	Email	JBOURKE@ramboll.com
- EDI Format - XTab (XTAB)	Email	JBOURKE@ramboll.com
JORDYN KIRSCH		
- *AU Certificate of Analysis - NATA (COA)	Email	jkirsch@ramboll.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	jkirsch@ramboll.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jkirsch@ramboll.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jkirsch@ramboll.com
- Chain of Custody (CoC) (COC)	Email	jkirsch@ramboll.com
- EDI Format - EQUIS_ENVIRON (EQUIS_ENVIRON)	Email	jkirsch@ramboll.com
- EDI Format - XTab (XTAB)	Email	jkirsch@ramboll.com

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 284490

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Bourke, J Kirsch
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>Hydro Groundwater Plume Monitoring - 318001103</u>
Number of Samples	27 Water
Date samples received	03/12/2021
Date completed instructions received	03/12/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	10/12/2021					
Date of Issue	31/01/2022					
Reissue Details	This report replaces R01 created on 20/12/2021 due to: revised report with #22 Total Cyanide result amended.					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/	EC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		284490-1	284490-2	284490-3	284490-4	284490-5
Your Reference	UNITS	W2S	W2D	PUMP	W7S	W7M
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021
Date analysed	-	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021
Fluoride, F	mg/L	24	1,000	17	33	360
Total Cyanide	mg/L	0.061	82	0.012	1.0	16
Free Cyanide in Water	mg/L	<0.004	0.009	<0.004	<0.004	0.008
Miscellaneous Inorganics						
Our Reference		284490-6	284490-7	284490-8	284490-9	284490-10
Your Reference	UNITS	E5	E5D	G2	N9	W6D
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021
Date analysed	-	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021
Fluoride, F	mg/L	320	7.9	0.5	82	0.1
Total Cyanide	mg/L	19	0.27	<0.004	0.18	<0.004
Free Cyanide in Water	mg/L	0.013	<0.004	<0.004	<0.004	<0.004
1						
Miscellaneous Inorganics						
Miscellaneous Inorganics Our Reference		284490-11	284490-12	284490-13	284490-14	284490-15
	UNITS	284490-11 N8	284490-12 E11	284490-13 W5S	284490-14 W5D	284490-15 N2
Our Reference	UNITS					
Our Reference Your Reference	UNITS	N8	E11	W5S	W5D	N2
Our Reference Your Reference Date Sampled	UNITS -	N8 1/12/2021	E11	W5S 1/12/2021	W5D 1/12/2021	N2 1/12/2021
Our Reference Your Reference Date Sampled Type of sample	UNITS - -	N8 1/12/2021 Water	E11 1/12/2021 Water	W5S 1/12/2021 Water	W5D 1/12/2021 Water	N2 1/12/2021 Water
Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS mg/L	N8 1/12/2021 Water 06/12/2021	E11 1/12/2021 Water 06/12/2021	W5S 1/12/2021 Water 06/12/2021	W5D 1/12/2021 Water 06/12/2021	N2 1/12/2021 Water 06/12/2021
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	-	N8 1/12/2021 Water 06/12/2021 06/12/2021	E11 1/12/2021 Water 06/12/2021 06/12/2021	W5S 1/12/2021 Water 06/12/2021 06/12/2021	W5D 1/12/2021 Water 06/12/2021 06/12/2021	N2 1/12/2021 Water 06/12/2021 06/12/2021
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F	- - mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5	E11 1/12/2021 Water 06/12/2021 06/12/2021 12	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide	- - mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5 <0.004	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water	- - mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5 <0.004	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics	- - mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041 <0.004	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17 <0.004	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34 <0.004	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5 <0.004 <0.004	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference	- - mg/L mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041 <0.004	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17 <0.004	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34 <0.004	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5 <0.004 <0.004	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004 <0.004
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference	- - mg/L mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041 <0.004 284490-16 G5	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17 <0.004	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34 <0.004 284490-18 G6	W5D 1/12/2021 Water 06/12/2021 0.5 <0.004 <0.004 284490-19 F6	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004 <0.004 284490-20 W3S
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled	- - mg/L mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041 <0.004 284490-16 G5 1/12/2021	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17 <0.004 284490-17 F5 1/12/2021	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34 <0.004 284490-18 G6 1/12/2021	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5 <0.004 <0.004 284490-19 F6 1/12/2021	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004 <0.004 284490-20 W3S 1/12/2021
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample	- - mg/L mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041 <0.004 284490-16 G5 1/12/2021 Water	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17 <0.004 284490-17 F5 1/12/2021 Water	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34 <0.004 284490-18 G6 1/12/2021 Water	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5 <0.004 <0.004 284490-19 F6 1/12/2021 Water	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004 <0.004 284490-20 W3S 1/12/2021 Water
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared	- - mg/L mg/L mg/L	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041 <0.004 284490-16 G5 1/12/2021 Water 06/12/2021	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17 <0.004 284490-17 F5 1/12/2021 Water 06/12/2021	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34 <0.004 284490-18 G6 1/12/2021 Water 06/12/2021	W5D 1/12/2021 Water 06/12/2021 0.5 <0.004 <0.004 284490-19 F6 1/12/2021 Water 06/12/2021	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004 <0.004 284490-20 W3S 1/12/2021 Water 06/12/2021
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Fluoride, F Total Cyanide Free Cyanide in Water Miscellaneous Inorganics Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	- mg/L mg/L UNITS	N8 1/12/2021 Water 06/12/2021 06/12/2021 0.5 0.041 <0.004 284490-16 G5 1/12/2021 Water 06/12/2021 06/12/2021	E11 1/12/2021 Water 06/12/2021 06/12/2021 12 0.17 <0.004 284490-17 F5 1/12/2021 Water 06/12/2021 06/12/2021	W5S 1/12/2021 Water 06/12/2021 06/12/2021 24 0.34 <0.004 284490-18 G6 1/12/2021 Water 06/12/2021 06/12/2021	W5D 1/12/2021 Water 06/12/2021 06/12/2021 0.5 <0.004 <0.004 284490-19 F6 1/12/2021 Water 06/12/2021 06/12/2021	N2 1/12/2021 Water 06/12/2021 06/12/2021 0.9 <0.004 <0.004 284490-20 W3S 1/12/2021 Water 06/12/2021 06/12/2021

Miscellaneous Inorganics								
Our Reference		284490-21	284490-22	284490-23	284490-24	284490-25		
Your Reference	UNITS	A7	E4	W1S	W1D	D01_20211201		
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021		
Type of sample		Water	Water	Water	Water	Water		
Date prepared	-	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021		
Date analysed	-	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021		
Fluoride, F	mg/L	360	680	13	10	0.5		
Total Cyanide	mg/L	18	82	0.35	0.10	<0.004		
Free Cyanide in Water	mg/L	<0.004	0.008	<0.004	<0.004	<0.004		

Miscellaneous Inorganics			
Our Reference		284490-26	284490-27
Your Reference	UNITS	D02_20211202	R01_20211202
Date Sampled		1/12/2021	1/12/2021
Type of sample		Water	Water
Date prepared	-	06/12/2021	06/12/2021
Date analysed	-	06/12/2021	06/12/2021
Fluoride, F	mg/L	0.3	<0.1
Total Cyanide	mg/L	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004

HM in water - dissolved						
Our Reference		284490-1	284490-2	284490-3	284490-4	284490-5
Your Reference	UNITS	W2S	W2D	PUMP	W7S	W7M
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Date analysed	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	4,200	560	2,100	9,100	370
HM in water - dissolved						
Our Reference		284490-6	284490-7	284490-8	284490-9	284490-10
Your Reference	UNITS	E5	E5D	G2	N9	W6D
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Date analysed	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	90	20	30	60	40
HM in water - dissolved						
Our Reference		284490-11	284490-12	284490-13	284490-14	284490-15
Your Reference	UNITS	N8	E11	W5S	W5D	N2
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Date analysed	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	40	2,000	14,000	20	3,000
HM in water - dissolved						
Our Reference		284490-16	284490-17	284490-18	284490-19	284490-20
Your Reference	UNITS	G5	F5	G6	F6	W3S
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Date analysed	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	30	2,000	5,600	<10	300
HM in water - dissolved						
Our Reference		284490-21	284490-22	284490-23	284490-24	284490-25
Your Reference	UNITS	A7	E4	W1S	W1D	D01_20211201
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Date analysed	-	08/12/2021	08/12/2021	08/12/2021	08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	150	290	70	80	20

HM in water - dissolved			
Our Reference		284490-26	284490-27
Your Reference	UNITS	D02_20211202	R01_20211202
Date Sampled		1/12/2021	1/12/2021
Type of sample		Water	Water
Date prepared	-	08/12/2021	08/12/2021
Date analysed	-	08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	30	<10

HM in water - total						
Our Reference		284490-1	284490-2	284490-3	284490-4	284490-5
Your Reference	UNITS	W2S	W2D	PUMP	W7S	W7M
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Date analysed	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Aluminium-Total	μg/L	9,600	680	4,100	86,000	6,800
HM in water - total						
Our Reference		284490-6	284490-7	284490-8	284490-9	284490-10
Your Reference	UNITS	E5	E5D	G2	N9	W6D
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Date analysed	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Aluminium-Total	μg/L	1,600	270	100	710	4,100
HM in water - total						
Our Reference		284490-11	284490-12	284490-13	284490-14	284490-15
Your Reference	UNITS	N8	E11	W5S	W5D	N2
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Date analysed	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Aluminium-Total	μg/L	200	4,800	32,000	380	4,400
HM in water - total						
Our Reference		284490-16	284490-17	284490-18	284490-19	284490-20
Your Reference	UNITS	G5	F5	G6	F6	W3S
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Date analysed	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Aluminium-Total	μg/L	60	2,400	7,400	<10	730
HM in water - total						
Our Reference		284490-21	284490-22	284490-23	284490-24	284490-25
Your Reference	UNITS	A7	E4	W1S	W1D	D01_20211201
Date Sampled		1/12/2021	1/12/2021	1/12/2021	1/12/2021	1/12/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Date analysed	-	09/12/2021	09/12/2021	09/12/2021	09/12/2021	09/12/2021
Aluminium-Total	μg/L	280	490	2,100	800	280

HM in water - total			
Our Reference		284490-26	284490-27
Your Reference	UNITS	D02_20211202	R01_20211202
Date Sampled		1/12/2021	1/12/2021
Type of sample		Water	Water
Date prepared	-	09/12/2021	09/12/2021
Date analysed	-	09/12/2021	09/12/2021
Aluminium-Total	μg/L	40	<10

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CO	QUALITY CONTROL: Miscellaneous Inorganics					Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	284490-2
Date prepared	-			06/12/2021	1	06/12/2021	06/12/2021		06/12/2021	06/12/2021
Date analysed	-			06/12/2021	1	06/12/2021	06/12/2021		06/12/2021	06/12/2021
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	24	24	0	113	103
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	0.061	[NT]		99	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	[NT]		103	[NT]

QUALITY CO	NTROL: Mis	cellaneou	is Inorganics		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	284490-14	
Date prepared	-			[NT]	3	06/12/2021	06/12/2021		06/12/2021	06/12/2021	
Date analysed	-			[NT]	3	06/12/2021	06/12/2021		06/12/2021	06/12/2021	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	3	17	18	6	109	[NT]	
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	3	0.012	0.011	9	99	89	
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	3	<0.004	<0.004	0	93	88	

QUALITY CO	NTROL: Mis	cellaneou	s Inorganics		Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	284490-22		
Date prepared	-			[NT]	11	06/12/2021	06/12/2021		[NT]	06/12/2021		
Date analysed	-			[NT]	11	06/12/2021	06/12/2021		[NT]	06/12/2021		
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	0.5	0.5	0	[NT]	121		
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	11	0.041	[NT]		[NT]	[NT]		
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	11	<0.004	[NT]		[NT]	[NT]		

QUALITY CO	QUALITY CONTROL: Miscellaneous Inorganics					Duplicate Sp				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	284490-27
Date prepared	-			[NT]	12	06/12/2021	06/12/2021		[NT]	06/12/2021
Date analysed	-			[NT]	12	06/12/2021	06/12/2021		[NT]	06/12/2021
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	12	12	12	0	[NT]	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	12	0.17	0.17	0	[NT]	101
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	12	<0.004	<0.004	0	[NT]	100

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	19	06/12/2021	06/12/2021				
Date analysed	-			[NT]	19	06/12/2021	06/12/2021				
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	19	0.6	[NT]				
Total Cyanide	mg/L	0.004	Inorg-014	[NT]	19	<0.004	<0.004	0			
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	19	<0.004	<0.004	0			

QUALITY COM	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				21	06/12/2021	06/12/2021			
Date analysed	-				21	06/12/2021	06/12/2021			
Fluoride, F	mg/L	0.1	Inorg-026		21	360	360	0		
Total Cyanide	mg/L	0.004	Inorg-014		21	18	[NT]			
Free Cyanide in Water	mg/L	0.004	Inorg-014	[NT]	21	<0.004	[NT]		[NT]	[NT]

QUALITY CO	NTROL: HM	l in water	- dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	284490-9
Date prepared	-			08/12/2021	8	08/12/2021	08/12/2021		08/12/2021	08/12/2021
Date analysed	-			08/12/2021	8	08/12/2021	08/12/2021		08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	10	Metals-022	<10	8	30	30	0	87	76

QUALITY CO	NTROL: HN	/l in water	- dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W6	284490-22
Date prepared	-			[NT]	17	08/12/2021	08/12/2021		08/12/2021	08/12/2021
Date analysed	-			[NT]	17	08/12/2021	08/12/2021		08/12/2021	08/12/2021
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	17	2000	2000	0	86	#

QUALITY CO	NTROL: HN	l in water	- dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	08/12/2021	08/12/2021		[NT]	[NT]
Date analysed	-			[NT]	21	08/12/2021	08/12/2021		[NT]	[NT]
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	21	150	150	0	[NT]	[NT]

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	284490-2	
Date prepared	-			09/12/2021	1	09/12/2021	09/12/2021		09/12/2021	09/12/2021	
Date analysed	-			09/12/2021	1	09/12/2021	09/12/2021		09/12/2021	09/12/2021	
Aluminium-Total	μg/L	10	Metals-022	<10	1	9600	9700	1	91	#	

QUALITY	CONTROL:	HM in wa	ter - total			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	284490-22
Date prepared	-				11	09/12/2021	09/12/2021		09/12/2021	09/12/2021
Date analysed	-				11	09/12/2021	09/12/2021		09/12/2021	09/12/2021
Aluminium-Total	μg/L	10	Metals-022	[NT]	11	200	210	5	88	#

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	21	09/12/2021	09/12/2021			[NT]	
Date analysed	-			[NT]	21	09/12/2021	09/12/2021			[NT]	
Aluminium-Total	μg/L	10	Metals-022	[NT]	21	280	280	0		[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 284490 Page | 15 of 15 R02

Revision No:

CERTIFICATE OF ANALYSIS

Work Order : ES2144330 Page : 1 of 2

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : JORDYN KIRSCH Contact : Olivia Barbato

Address : EASTPOINT COMPLEX SUITE 19B. LEVEL 2 50 GLEBE ROAD

THE JUNCTION NSW 2291

Address

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone

Telephone : +61-2-8784 8555

Project : Hydro Groundwater Plume Monitoring - 318001103 **Date Samples Received** : 06-Dec-2021 15:50

Order number

Date Analysis Commenced : 07-Dec-2021

C-O-C number

Issue Date · 13-Dec-2021 13:24

Sampler : Jake Bourke

Site

Quote number : EN/222

No. of samples received : 1 No. of samples analysed : 1

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 825

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Ivan Taylor Sydney Inorganics, Smithfield, NSW Analyst

Page : 2 of 2 Work Order : ES2144330

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	T01_20211201	 	
		Sampli	ng date / time	01-Dec-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2144330-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	<0.01	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.10	 	
EK025SF: Free CN by Segmented Flor	w Analyser					
Free Cyanide		0.004	mg/L	<0.004	 	
EK026SF: Total CN by Segmented Flo	w Analyser					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	

QUALITY CONTROL REPORT

Work Order : **ES2144330** Page : 1 of 3

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : JORDYN KIRSCH Contact : Olivia Barbato

Address : EASTPOINT COMPLEX SUITE 19B, LEVEL 2 50 GLEBE ROAD Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

THE JUNCTION NSW 2291

Telephone : ---- Telephone : +61-2-8784 8555

Project : Hydro Groundwater Plume Monitoring - 318001103 Date Samples Received : 06-Dec-2021
Order number : ---- Date Analysis Commenced : 07-Dec-2021

A.L. D. J.

Sampler : Jake Bourke

Site :---Quote number : EN/222

No. of samples analysed : 1

Accreditation No. 825

Accredited for compliance with

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: 1

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES2144330

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EG020F: Dissolved N	letals by ICP-MS (QC Lot: 4	067493)								
ES2145048-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
ES2143904-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.03	0.03	0.0	No Limit	
EG020T: Total Metals	by ICP-MS (QC Lot: 40652	27)								
ES2144286-033	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.03	0.03	0.0	No Limit	
ES2144293-001	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	2.65	2.54	4.3	0% - 20%	
EK025SF: Free CN b	y Segmented Flow Analyser	(QC Lot: 4067452)								
ES2144267-001	Anonymous	EK025SF: Free Cyanide		0.004	mg/L	<0.004	<0.004	0.0	No Limit	
EK026SF: Total CN t	by Segmented Flow Analyse	r (QC Lot: 4067449)								
ES2144463-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	0.089	0.089	0.0	0% - 20%	
ES2144267-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit	
EK040P: Fluoride by	PC Titrator (QC Lot: 406042	27)								
ES2144411-006	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit	
ES2144118-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.8	0.7	0.0	No Limit	

Page : 3 of 3 Work Order : ES2144330

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report				
	Report		Spike	Spike Recovery (%)	Acceptable Limits (%)					
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG020F: Dissolved Metals by ICP-MS (QCLot: 4067493)										
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	98.0	80.0	116		
EG020T: Total Metals by ICP-MS (QCLot: 4065227)										
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	91.4	82.0	120		
EK025SF: Free CN by Segmented Flow Analyser (QCLc	t: 4067452)									
EK025SF: Free Cyanide		0.004	mg/L	<0.004	0.2 mg/L	93.9	88.0	128		
EK026SF: Total CN by Segmented Flow Analyser (QCL	ot: 4067449)									
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	111	73.0	133		
EK040P: Fluoride by PC Titrator (QCLot: 4060427)										
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	90.6	82.0	116		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	ıb-Matrix: WATER					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EK025SF: Free Cf	N by Segmented Flow Analyser (QCLot: 4067452)										
ES2144267-001	Anonymous	EK025SF: Free Cyanide		0.2 mg/L	86.2	70.0	130				
EK026SF: Total C	EK026SF: Total CN by Segmented Flow Analyser (QCLot: 4067449)										
ES2144267-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	86.4	70.0	130				
EK040P: Fluoride	by PC Titrator (QCLot: 4060427)										
ES2144118-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	97.4	70.0	130				

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2144330** Page : 1 of 4

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : JORDYN KIRSCH : +61-2-8784 8555

Project : Hydro Groundwater Plume Monitoring - 318001103 Date Samples Received : 06-Dec-2021

Site :--- Issue Date : 13-Dec-2021
Sampler : Jake Bourke No. of samples received : 1

Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4
Work Order : ES2144330

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Count		e (%)	Quality Control Specification
Method	QC	Regular	Actual Expected		
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	8	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)						00.140000	_
T01_20211201	01-Dec-2021				10-Dec-2021	30-May-2022	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)							
T01_20211201	01-Dec-2021	09-Dec-2021	30-May-2022	<u> </u>	09-Dec-2021	30-May-2022	✓
EK025SF: Free CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK025SF)							
T01_20211201	01-Dec-2021				10-Dec-2021	15-Dec-2021	✓
EK026SF: Total CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK026SF)							
T01_20211201	01-Dec-2021				10-Dec-2021	15-Dec-2021	✓
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P)							
T01_20211201	01-Dec-2021				07-Dec-2021	29-Dec-2021	✓

Page : 3 of 4
Work Order : ES2144330

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

ne expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency not within specification frequency not within specification.							
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	8	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Free CN by Segmented Flow Analyser	EK025SF	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	0	9	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : ES2144330

Client : RAMBOLL AUSTRALIA PTY LTD

Project : Hydro Groundwater Plume Monitoring - 318001103

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Free CN by Segmented Flow Analyser	EK025SF	WATER	In house: Referenced to ASTM D7237, APHA 4500-CN-C&O and ISO 14403: Using an automated segmented flow analyser, a sample at high pH (sodium hydroxide preserved) is buffered to pH 6.0. The hydrogen cyanide present passes across a gas dialysis membrane into an acceptor stream consisting of 0.01 M sodium hydroxide. The acceptor stream mixes with a buffer at pH 5.2 and reacts with chloramine-T to form cyanogen chloride. Cyanogen chloride reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour, measured at 600nm. This method is compliant with NEPM Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

APPENDIX 6 CALIBRATION CERTIFICATES

Oil / Water Interface Meter

Instrument

Geotech Interface Meter (60M)

Serial No. 39

3953

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Compartment	✓	
	Capacity	✓	
Probe	Cleaned/Decon.	√	
	Operation	✓	
Connectors	Condition	✓	
,		1	
Tape Check	Cleaned	√	
Connectors	Checked for cuts	√	
Instrument Test	At surface level	✓	
x			

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:		Eloise Carroll
Calibration date:	5/03/2021	
Next calibration due:	4/05/2021	

SERVICE & CALIBRATION REPORT Water Quality Meter

Customer details:

Ramboll Australia Pty Ltd The Junction NSW 2291 Attn: Jake Bourke <u>Job no.</u> 210226

<u>Date:</u> 17 Feb 2021

Instrument model:

HORIBA U-52G/10m

Multi-parameter water quality meter

Instrument serial number:

4KV0033X 2020

PRE-DELIVERY CALIBRATION

Calibration: (in accordance with manufacturer's specifications)

Parameter - unit	Calibration value	After calibration	Comment
рН (рН)	7.01	7.01	Pass
рН (рН)	4.00	4.00	Pass
ORP (mV)	240	240	Pass
Conductivity (mS/cm	0.000	0.000	Pass
Conductivity (mS/cm)	0.718	0.718	Pass
Conductivity (mS/cm)	6.67	6.67	Pass
Conductivity (mS/cm)	58.6	58.6	Pass
Turbidity (NTU)	0.0	0.0	Pass
Turbidity (NTU)	8.0	8.0	Pass
Turbidity (NTU)	80	80	Pass
Turbidity (NTU)	400	400	Pass
D.O. zero (mg/L)	0.00	0.00	Pass
D.O span (mg/L)	8.93mg/L @ 22.2°C	8.93mg/L @ 22.2°C	Pass
Temperature (°C)	23.1°C	23.1 ⁰ C	Pass

Comments:

MAKE SURE pH reference electrode is refilled with soln #330 regularly. If the #330 soln solidifies inside the pH reference electrode, remove the liquid junction cap and rinse out the old soln with distilled water. Then refill with fresh soln #330. Please read the notes on pH maintenance.

Calibration carried out by:

Tim Adams

AUSTRALIAN SCIENTIFIC PTY LTD
(Exclusive HORIBA Agent for Australia)
11 McDougall Street, Kotara NSW 2289

TEL: 1800 021 083

E-mail: sales@austscientific.com.au

www.austscientific.com.au

pH Manual Calibration (two-points)

Instrument: Horiba U-52G/10m

Control Unit Serial No: TH06G239 Sensor Probe Unit Serial No: 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
	pH 4 standard solution phthalate	22.57	4.01	4.01
	pH 7 standard solution Neutral phosphate	22.54	6.86	6.86

Calibrated by: Jake Bourke

Calibration date: 16/03/2021

Table A: Change in pH with temperature (°C)

Temperature (°C)	pH 4 standard solution Phthalate	pH 7 standard solution Neutral phosphate	pH 9 standard solution Borate
0	4.01	6.98	9.46
5	4.01	6.95	9.39
10	4.00	6.92	9.33
15	4.00	6.90	9.27
20	4.00	6.88	9.22
25	4.01	6.86	9.18
30	4.01	6.85	9.14
35	4.02	6.84	9.10
40	4.03	6.84	9.07
45	4.04	6.84	9.04

pH Manual Calibration (two-points)

Instrument: Horiba U-52G/10m

Control Unit Serial No: TH06G239 Sensor Probe Unit Serial No: 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
	pH 4 standard solution phthalate	18.29	4.00	4.00
рН	pH 7 standard solution Neutral phosphate	18.36	6.88	6.88

Calibrated by: Jake Bourke

Calibration date: 25/03/2021

Table A: Change in pH with temperature (°C)

Temperature (°C)	pH 4 standard solution Phthalate	pH 7 standard solution Neutral phosphate	pH 9 standard solution Borate
0	4.01	6.98	9.46
5	4.01	6.95	9.39
10	4.00	6.92	9.33
15	4.00	6.90	9.27
20	4.00	6.88	9.22
25	4.01	6.86	9.18
30	4.01	6.85	9.14
35	4.02	6.84	9.10
40	4.03	6.84	9.07
45	4.04	6.84	9.04

Oil / Water Interface Meter

Instrument

Geotech Interface Meter (60m)

Serial No.

3955

Item	Test	Pass	Comments
Battery	Compartment	1	Comments
	Capacity	✓	
Probe	Cleaned/Decon.	✓	
	Operation	✓	
Connectors			
Tape Check	Cleaned	√	
Connectors	Checked for cuts	✓	
Instrument Test	At surface level	✓	
7			

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:	Darcy Keogh	
Calibration date:	20-May-21	

Next calibration due:

20-Jul-21

Instrument: Horiba U-52G/10m

Control Unit Serial No: TH06G239 Sensor Probe Unit Serial No: 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Parameter	Units	Temp. (°C)	Calibration Value	After Calibration	Comment
рН	рН	17.96	4.00	4.00	Pass
рН	рН	17.53	7.02	7.02	Pass
рН	рН	17.58	10.06	10.06	Pass
ORP	рН	-	240	240	Pass
Conductivity	mS/cm	-	0.00	0.00	Pass
Conductivity	mS/cm	14.76	0.581	0.581	Pass
Conductivity	mS/cm	14.8	5.39	5.39	Pass
Conductivity	mS/cm	16.28	48.50	48.50	Pass
D.O. Zero	mg/L	-	0.00	0.00	Pass
D.O. Span	mg/L	19.28	9.26	9.26	Pass

Calibrated by: Jake Bourke

Calibration date: 8/06/2021

Table A: Change in pH with temperature (°C)

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table B: Change in Conductivity with temperature (°C)

Temperature (°C)	Standard solution (0.718	Standard solution (6.67	Standard solution (58.6
remperature (C)	mS/cm)	mS/cm)	mS/cm)
10	0.512	4.76	41.80
11	0.526	4.88	42.90
12	0.540	5.01	44.10
13	0.533	0.51	45.20
14	0.567	5.27	46.30
15	0.581	5.39	47.40
16	0.595	5.52	48.50
17	0.608	5.65	49.60
18	0.622	5.87	50.80
19	0.636	5.90	51.90
20	0.649	6.03	53.00
21	0.663	6.16	54.10
22	0.677	6.29	55.20
23	0.691	6.41	56.40
24	0.704	6.54	57.50
25	0.718	6.67	58.60
26	0.732	6.79	59.70
27	0.745	6.92	60.80
28	0.759	7.05	62.00
29	0.773	7.18	63.10
30	0.787	7.30	64.20
31	0.800	7.43	65.30

Table C: Change in Dissolved Oxygen with Temperature at 100% Relative Humidity (Altitude:sea level)

Temperature	DO (100% R.H.)
(Celsius)	(ppm, mg/L)
0.00	14.60
1.00	14.19
2.00	13.81
3.00	13.44
4.00	13.09
5.00	12.75
6.00	12.43
7.00	12.12
8.00	11.83
9.00	11.55
10.00	11.27
11.00	11.01
12.00	10.76
13.00	10.52
14.00	10.29
15.00	10.07
16.00	9.85
17.00	9.65
18.00	9.45
19.00	9.26
20.00	9.07
21.00	8.90
22.00	8.72
23.00	8.56
24.00	8.40
25.00	8.24
26.00	8.09
27.00	7.95
28.00	7.81
29.00	7.67
30.00	7.54
31.00	7.41
32.00	7.28

Values are for pressure = 760 mm Hg for measurements at sea level.

For a given temperature, the concentration of dissolved oxygen concentration decreases by 0.3 mg/L with every 500 ft (152.4 m) increase in altitude.

pH Manual Calibration (two-points)

Instrument: Horiba U-52G/10m

Control Unit Serial No: TH06G239 Sensor Probe Unit Serial No: 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
pH phthalate pH 7 standard sol	pH 4 standard solution phthalate	12.71	7.04	7.04
	pH 7 standard solution Neutral phosphate	12.95	4.00	4.00

Calibrated by: Jake Bourke

Calibration date: 14/06/2021

Table A: Change in pH with temperature (°C)

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Oil / Water Interface Meter

Instrument

Geotech Interface Meter (30M)

Serial No.

4019

Item	Test	Pass	Comments
Battery	Compartment	√	
_	Capacity	✓	
Probe	Cleaned/Decon.	✓	
Probe		√	
	Operation	·	
Connectors	Condition	✓	
		✓	
Tape Check	Cleaned	✓	
Connectors	Checked for cuts	✓	
Instrument Test	At surface level	✓	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:	Gary Needs

Calibration date: 15-Sep-21

Next calibration due: 14-Nov-21

Instrument: Horiba U-52G/10m

Control Unit Serial No: TH06G239 Sensor Probe Unit Serial No: 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Parameter	Units	Temp. (°C)	Calibration Value	After Calibration	Comment
рН	рН	16.84	4.00	4.00	Pass
рН	рН	16.55	7.04	7.04	Pass
рН	рН	17.3	10.12	10.12	Pass
ORP	рН	-	240	240	Pass
Conductivity	mS/cm	-	0.00	0.00	Pass
Conductivity	mS/cm	17.41	0.608	0.608	Pass
Conductivity	mS/cm	17.45	5.65	5.65	Pass
Conductivity	mS/cm	17.63	50.80	50.80	Pass
D.O. Zero	mg/L	-	0.00	0.00	Pass
D.O. Span	mg/L	16.89	9.65	9.65	Pass
Turbidity	0	-	0.00	0.00	Pass
Turbidity	8	-	8.00	8.00	Pass
Turbidity	80	-	80.00	80.00	Pass
Turbidity	400	-	400.00	400.00	Pass

Calibrated by: Jake Bourke

Calibration date: 25/08/2021

Table A: Change in pH with temperature (°C)

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Table B: Change in Conductivity with temperature (°C)

Temperature (°C)	Standard solution (0.718	Standard solution (6.67	Standard solution (58.6
remperature (C)	mS/cm)	mS/cm)	mS/cm)
10	0.512	4.76	41.80
11	0.526	4.88	42.90
12	0.540	5.01	44.10
13	0.533	0.51	45.20
14	0.567	5.27	46.30
15	0.581	5.39	47.40
16	0.595	5.52	48.50
17	0.608	5.65	49.60
18	0.622	5.87	50.80
19	0.636	5.90	51.90
20	0.649	6.03	53.00
21	0.663	6.16	54.10
22	0.677	6.29	55.20
23	0.691	6.41	56.40
24	0.704	6.54	57.50
25	0.718	6.67	58.60
26	0.732	6.79	59.70
27	0.745	6.92	60.80
28	0.759	7.05	62.00
29	0.773	7.18	63.10
30	0.787	7.30	64.20
31	0.800	7.43	65.30

Table C: Change in Dissolved Oxygen with Temperature at 100% Relative Humidity (Altitude:sea level)

Temperature	DO (100% R.H.)
(Celsius)	(ppm, mg/L)
0.00	14.60
1.00	14.19
2.00	13.81
3.00	13.44
4.00	13.09
5.00	12.75
6.00	12.43
7.00	12.12
8.00	11.83
9.00	11.55
10.00	11.27
11.00	11.01
12.00	10.76
13.00	10.52
14.00	10.29
15.00	10.07
16.00	9.85
17.00	9.65
18.00	9.45
19.00	9.26
20.00	9.07
21.00	8.90
22.00	8.72
23.00	8.56
24.00	8.40
25.00	8.24
26.00	8.09
27.00	7.95
28.00	7.81
29.00	7.67
30.00	7.54
31.00	7.41
32.00	7.28

Values are for pressure = 760 mm Hg for measurements at sea level.

For a given temperature, the concentration of dissolved oxygen concentration decreases by 0.3 mg/L with every 500 ft (152.4 m) increase in altitude.

pH Manual Calibration (two-points)

Instrument: Horiba U-52G/10m

Control Unit Serial No: TH06G239 Sensor Probe Unit Serial No: 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
pH phthalate pH 7 standard solu	pH 4 standard solution phthalate	17.98	4.00	4.00
	pH 7 standard solution Neutral phosphate	17.99	7.02	7.02

Calibrated by: Jake Bourke

Calibration date: 18/09/2021

Table A: Change in pH with temperature (°C)

Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

Instrument

Geotech Water150m

Serial No.

4252

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Compartment	1	
•	Capacity	✓	
	above 7.9v	✓	
Probe	Cleaned/Decon.	✓	
TIODC	Operation	1	
	o poration.		
Connectors	Condition	✓	
		✓	
Tape Check	Cleaned	✓	
Connectors	Checked for cuts	✓	
Instrument Test	At surface level	√	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

		Darcy Keogh
Calibration date:	22-Oct-21	
Next calibration due:	20-Apr-22	

SERVICE & CALIBRATION REPORT Water Quality Meter

<u>Customer details:</u> <u>Job no.</u> <u>Date:</u>

Ramboll Australia Pty Ltd Lvl2, Suite 19B, 50 Glebe Road The Junction NSW 2291 211136 26 November 2021

Instrument model:

Instrument serial number:

4KV0033X 2020

HORIBA U-52G/10m

Multi-parameter water quality meter

Fault report:

Check turbidity sensor.

Repairs carried out:

Replaced glass cell inside turbidity sensor (no charge). Re-calibrated all sensors as follows:

<u>Calibration: (in accordance with manufacturer's specifications)</u>

Parameter - unit	Before Calibration	Calibration value	After calibration	Comment
рН (рН)	7.25	7.01	7.01	Pass
рН (рН)	4.09	4.00	4.00	Pass
ORP mV	229mV	225mV	225mV	Pass
Conductivity (mS/cm	0.000	0.000	0.000	Pass
Conductivity (mS/cm	n) 0.701	0.718	0.718	Pass
Conductivity (mS/cm	n) 6.48	6.67	6.67	Pass
Conductivity (mS/cm	n) 57.9	58.6	58.6	Pass
Turbidity (NTU)	0.0	0.0	0.0	Pass
Turbidity (NTU)	6.5	8.0	8.0	Pass
Turbidity (NTU)	77.3	80.0	80.0	Pass
Turbidity (NTU)	395	400	400	Pass
D.O. zero (mg/L)	0.00	0.00	0.00	Pass
D.O span (mg/L)	9.04mg/L@22°C	8.96mg/L@22°C	8.96mg/L@22ºC	Pass
Temperature (°C)	21.12°C	22.30°C	22.30°C	Pass

Comments:

MAKE SURE the pH reference electrode is refilled with soln #330 regularly. If the pH reference filling soln solidifies in the reference electrode, rinse out the pH reference electrode with distilled water. Then refill with fresh HORIBA soln #330

Calibration carried out by:

Tony Fincher

AUSTRALIAN SCIENTIFIC PTY LTD 11 McDougall Street, Kotara NSW 2289

TEL: 1800 021 083

E-mail: sales@austscientific.com.au www.austscientific.com.au

pH Manual Calibration (two-points)

Instrument: Horiba U-52G/10m

Control Unit Serial No: TH06G239 Sensor Probe Unit Serial No: 4KV0033X

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Temperature	Calibration Point	Measurement Value
На	pH 4 standard solution phthalate	20.02	4.00	4.00
	pH 7 standard solution Neutral phosphate	19.83	7.02	7.02

Calibrated by: Jake Bourke

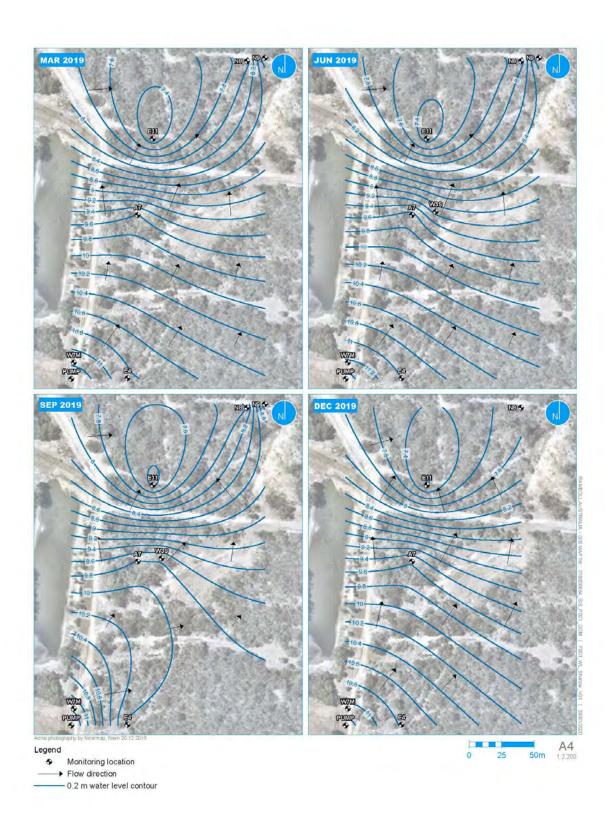
Calibration date: 1/12/2021

Table A: Change in pH with temperature (°C)

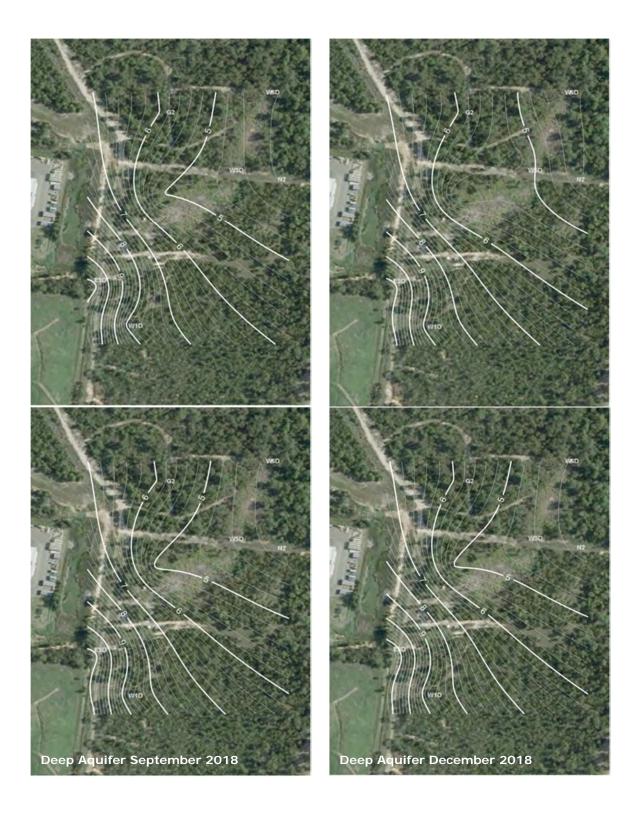
Temperature (°C)	pH 4 standard solution	pH 7 standard solution	pH 10 standard solution
5	4.00	7.09	10.24
10	4.00	7.06	10.19
15	4.00	7.04	10.12
20	4.00	7.02	10.06
30	4.01	7.00	9.96
35	4.02	6.99	9.92
40	4.03	6.97	9.90
50	4.06	6.95	9.82

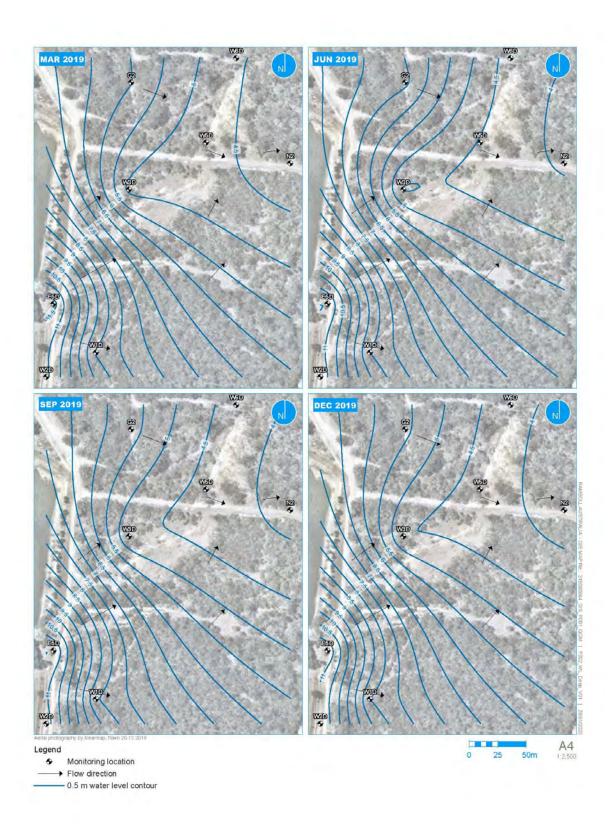
APPENDIX 7 HISTORICAL GROUNDWATER CONTOURS

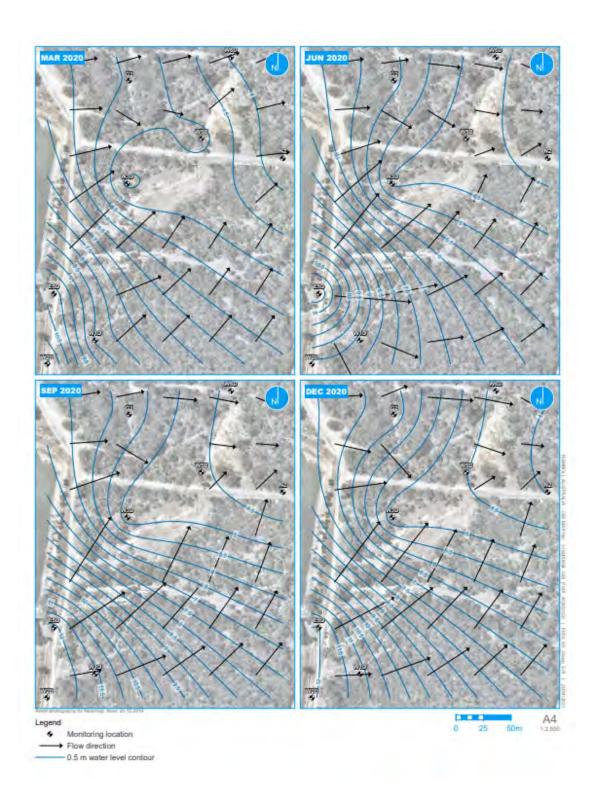
Groundwater Contours - Shallow Aquifer 2013-2020

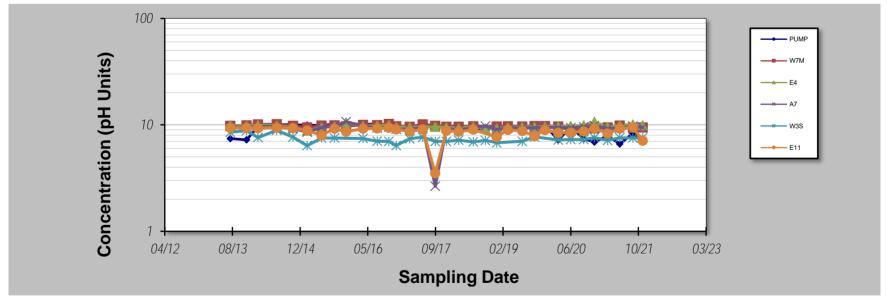


Groundwater Contours – Deep Aquifer 2013-2020







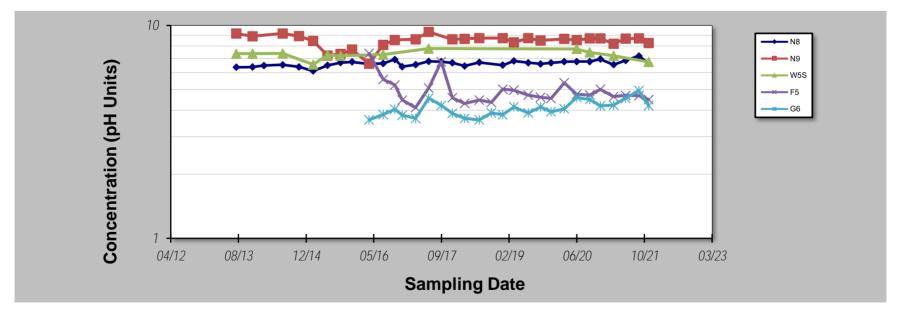


Hydro Aluminium - 2021 Annual Groundwater Monitoring Report

APPENDIX 8
MANN-KENDALL TREND ANALYSIS

Evaluation Date: 21-Dec-21	Job ID: 318001103
Facility Name: Hydro Kurri Kurri	Constituent: pH
Conducted By: Jake Bourke	Concentration Units: pH Units

						•		
Samp	oling Point ID:	PUMP	W7M	E4	A7	W3S	E11	
Sampling	Sampling			DH CO	NCENTRATION (p	H Inite)		
Event	Date			FII CO	ncentration (p	i i Offics)		
1	29-Jul-13	7.45	9.81	9.91	9.63	8.53	9.36	
2	26-Nov-13	7.24	9.87	9.79	9.47	8.82	9.36	
3	18-Feb-14	9.65	10.1	9.94	9.67	7.61	9.33	
4	7-Jul-14	10.14	10.12	9.84	9.66	8.89	9.41	
5	4-Nov-14	10.01	9.78	9.4	9.24	7.68	9.32	
6	17-Feb-15	9.95	9.44	8.84	8.56	6.38	8.86	
7	3-Jun-15	9.87	9.82	9.46	9.45	7.53	7.97	
8	7-Sep-15	10.22	9.91	9.62	9.8	7.53	9.23	
9	2-Dec-15	10.27	9.7	10.57	10.71		8.65	
10	5-Apr-16	10.13	9.99	9.73	9.75	7.46	9.2	
11	19-Jul-16	10.22	9.95	9.83	9.37	7.02	9.29	
12	12-Oct-16	9.98	10.17	9.94	9.57	7.01	9.41	
13	6-Dec-16	9.72	9.68	9.53	9.15	6.4	9.1	
14	15-Mar-17	9.56	9.61	9.53	9.12	7.4	8.7	
15	20-Jun-17	9.2	10.1		9.49	7.66	9.07	
16	21-Sep-17	9.9	9.8	9.59	2.65	7	3.51	
17	12-Dec-17	9.6	9.6	9.46	9.27	6.99	8.83	
18	13-Mar-18	9.73	9.61	9.32	8.96	7.19	8.62	
19	28-Jun-18	9.17	9.7	9.62	9.36	6.91	9.02	
20	26-Sep-18			9.29	9.75	7.14		
21	19-Dec-18	9.55	9.63	9.27	9.06	6.8	7.7	
22	11-Mar-19	9.42	9.68	9.47	9.38		8.99	
23	26-Jun-19	9.43	9.65	9.56	9.4	7.01	8.76	
24	24-Sep-19	9.89	9.73	9.58	9.39	7.7	7.87	
25	11-Dec-19	9.93	9.75	9.67	9.48		8.95	
26	17-Mar-20	7.2	9.67	9.65	9.46	7.21	8.41	
27	17-Jun-20	9.59	8.97	9.73	9.4	7.29	8.48	
28	22-Sep-20	7.4	9.1	9.87	9.6	7.28	8.69	
29	9-Dec-20	6.88	9.28	10.64	9.85	7.59	9.24	
30	17-Mar-21	7.9	9.47	9.56	9.26	7.14	8.3	
31	15-Jun-21	6.61	9.86	9.91	9.36	7.57	9.21	
32	20-Sep-21	8.32	9.42	10.1	9.73	7.53	9.48	
33	1-Dec-21	6.91	9.44	9.89	9.46	7.58	7.09	
34	ļļ							
35								
	t of Variation:	0.13	0.03	0.04	0.13	0.08	0.13	
Mann-Kendal		-213	-207	49	-12	-54	-164	
Confi	dence Factor:	>99.9%	>99.9%	78.1%	56.7%	82.7%	99.6%	
Concen	tration Trend:	Decreasing	Decreasing	No Trend	Stable	Stable	Decreasing	

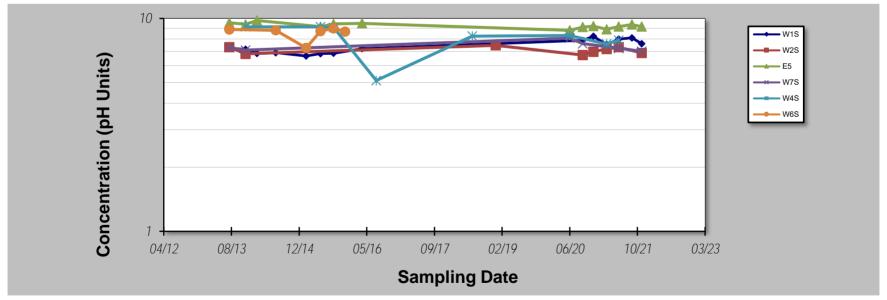


Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Evaluation Date: 21-Dec-21	Job ID: 318001103
Facility Name: Hydro Kurri Kurri	Constituent: pH
Conducted By: Jake Bourke	Concentration Units: pH Units

Samp	oling Point ID:	N8	N9	W5S	F5	G6		
Sampling	Sampling	PH CONCENTRATION (pH Units)						
Event	Date	0.00	0.40		1	,		
1	29-Jul-13	6.36	9.16	7.37				
2	26-Nov-13	6.38	8.9	7.37				
3	18-Feb-14	6.48	0.47	7.00				
5	7-Jul-14	6.53	9.17	7.39				
6	4-Nov-14	6.39	8.91	0.55				
7	17-Feb-15	6.11	8.46	6.55				ļ
	3-Jun-15	6.49	7.22	7.26				
9	7-Sep-15	6.69	7.34	7.2				
10	2-Dec-15	6.74	7.7 6.61		7.00	2.0		ļ
11	5-Apr-16	6.59		7.00	7.38	3.6		
12	19-Jul-16	6.63	8.11	7.29	5.58	3.82		
13	12-Oct-16	6.92	8.54		5.25	4.04		
14	6-Dec-16	6.4	0.04		4.46	3.79		
	15-Mar-17	6.54	8.61	7.70	4.11	3.66		
15	20-Jun-17	6.78	9.32	7.79	5.08	4.55		
16 17	21-Sep-17	6.76			6.75	4.21		
	12-Dec-17	6.67	8.6		4.57	3.86		
18	13-Mar-18	6.45	8.65		4.3	3.66		
19	28-Jun-18	6.71	8.72		4.46	3.6		
20	26-Sep-18	0.54	0.70		4.35	3.88		
21	19-Dec-18	6.51	8.72		5.02	3.81		
22	11-Mar-19	6.81	8.33		4.96	4.14		
23	26-Jun-19	6.68	8.71		4.71	3.88		
24	24-Sep-19	6.6	8.5		4.6	4.14		
25	11-Dec-19	6.67			4.54	3.93		
26	17-Mar-20	6.76	8.64		5.38	4.06		
27	17-Jun-20	6.77	8.53	7.76	4.75	4.59		
28	22-Sep-20	6.77	8.7	7.47	4.71	4.49		
29	9-Dec-20	6.95	8.69	7.0	5.01	4.19		
30	17-Mar-21	6.54	8.21	7.2	4.63	4.22		
31	15-Jun-21	6.85	8.67		4.69	4.55		
32	20-Sep-21	7.19	8.68	0.74	4.68	4.94		
33	1-Dec-21	6.63	8.27	6.74	4.48	4.2		
34								
35	h of Montaltan	0.00	0.07	0.05	0.45	0.00		
	t of Variation:	0.03	0.07	0.05	0.15	0.09		
Mann-Kendal		231	-11	-4	-42	139		
	dence Factor:	>99.9%	57.8%	58.0%	84.4%	>99.9%		
Concent	tration Trend:	Increasing	Stable	Stable	Stable	Increasing		

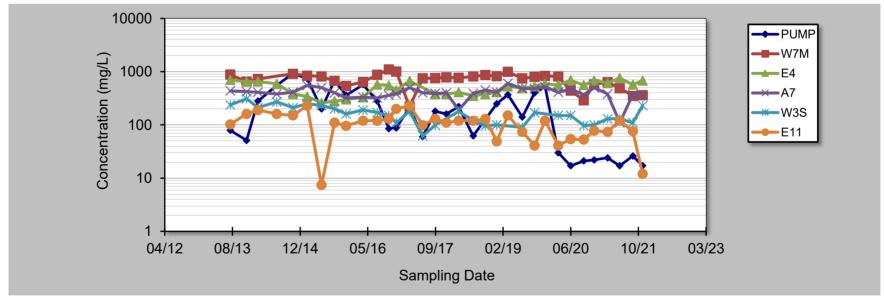


Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Evaluation Date: 21-Dec-21	Job ID: 318001103
Facility Name: Hydro Kurri Kurri	Constituent: pH
Conducted By: Jake Bourke	Concentration Units: pH Units

Samp	oling Point ID:	W1S	W2S	E5	W7S	W4S W6S			
Sampling Event	Sampling Date			PH CON	CENTRATION (p	oH Units)			
1	29-Jul-13	7.22	7.33	9.54	7.29		8.87		
2	26-Nov-13	7.17	6.82	9.37	7.1	9.13			
3	18-Feb-14	6.84		9.78					
4	7-Jul-14	6.9					8.79		
5	4-Nov-14								
6	17-Feb-15	6.66					7.27		
7	3-Jun-15	6.83		9.14		9.13	8.72		
8	7-Sep-15	6.86		9.42		9.07	8.98		
9	2-Dec-15						8.67		
10	5-Apr-16	7.21		9.48					
11	19-Jul-16					5.11			
12	12-Oct-16								
13	6-Dec-16								
14	15-Mar-17								
15	20-Jun-17								
16	21-Sep-17								
17	12-Dec-17								
18	13-Mar-18								
19	28-Jun-18					8.26			
20	26-Sep-18								
21	19-Dec-18		7.47						
22	11-Mar-19								
23	26-Jun-19								
24	24-Sep-19								
25	11-Dec-19								
26	17-Mar-20								
27	17-Jun-20			8.79	8.08	8.32			
28	22-Sep-20	7.89	6.73	9.11	7.61				
29	9-Dec-20	8.24	6.97	9.2					
30	17-Mar-21	7.55	7.19	8.89		7.58			
31	15-Jun-21	7.99	7.32	9.15	7.24	7.91			
32	20-Sep-21	8.11		9.36					
33	1-Dec-21	7.61	6.89	9.16	7.01				
34									
35									
	t of Variation:	0.07	0.04	0.03	0.05	0.16	0.07		
	II Statistic (S):	41	-2	-24	-5	-15	-3		
Confi	dence Factor:	98.7%	54.8%	91.8%	76.5%	95.8%	64.0%		
Concen	tration Trend:	Increasing	Stable	Prob. Decreasing	Stable	Decreasing	Stable		

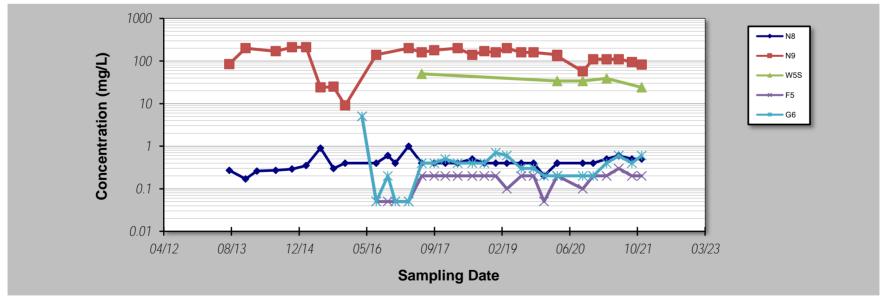


Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Evaluation Date: 21-Dec-21	Job ID: 318001103
Facility Name: Hydro Kurri Kurri	Constituent: Soluble Fluoride
Conducted By: Jake Bourke	Concentration Units: mg/L

, and the second se								
Samp	oling Point ID:	PUMP	W7M	E4	A7	W3S	E11	
Sampling	Sampling			SOLUBLE FLU	ORIDE CONCENT	DATION (ma/L)		
Event	Date			SULUBLE FLU	ORIDE CONCENT	RATION (IIIg/L)		
1	29-Jul-13	79	878	699	436	237	102	
2	26-Nov-13	51	650	650	420	310	160	
3	18-Feb-14	280	730	650	410	210	190	
4	7-Jul-14	550		590	380	270	160	
5	4-Nov-14	930	910	380	410	210	150	
6	17-Feb-15	740	840	340	550	250	230	
7	3-Jun-15	200	810	260	500	230	7.4	
8	7-Sep-15	680	670	280	400	200	110	
9	2-Dec-15	360	540	300	320	160	96	
10	5-Apr-16	570	640	330	330	190	120	
11	19-Jul-16	280	870	570	320	170	120	
12	12-Oct-16	85	1100	550	360	150	130	
13	6-Dec-16	88	1000	450	380	110	200	
14	15-Mar-17	210	220	670	500	180	230	
15	20-Jun-17	60	750		400	62	99	
16	21-Sep-17	180	760	380	390	99	130	
17	12-Dec-17	160	780	380	400		110	
18	13-Mar-18	220	770	410	190	180	120	
19	28-Jun-18	62	810	350	390	120	120	
20	26-Sep-18		860	380	450	96	130	
21	19-Dec-18	250	820	410	410	100	49	
22	11-Mar-19	370	990	530	600		150	
23	26-Jun-19	140	750	490	480	90	74	
24	24-Sep-19	400	800	530	480	170	41	
25	11-Dec-19	530	830	590	520		120	
26	17-Mar-20	30	810	560	410	150	41	
27	17-Jun-20	17	440	690	470	150	54	
28	22-Sep-20	21	290	560	370	97	53	
29	8-Dec-20	22	580	680	500	100	78	
30	17-Mar-21	24	630	610	380	130	74	
31	15-Jun-21	17	490	760	110	130	120	
32	20-Sep-21	26	350	570	370	110	76	
33	1-Dec-21	17	360	680	360	230	12	
34								
35								
	t of Variation:	1.02	0.30	0.28	0.23	0.38	0.50	
Mann-Kendal		-206	-128	143	-28	-207	-190	
Confi	dence Factor:	>99.9%	98.1%	99.0%	66.1%	>99.9%	99.9%	
Concen	tration Trend:	Decreasing	Decreasing	Increasing	Stable	Decreasing	Decreasing	



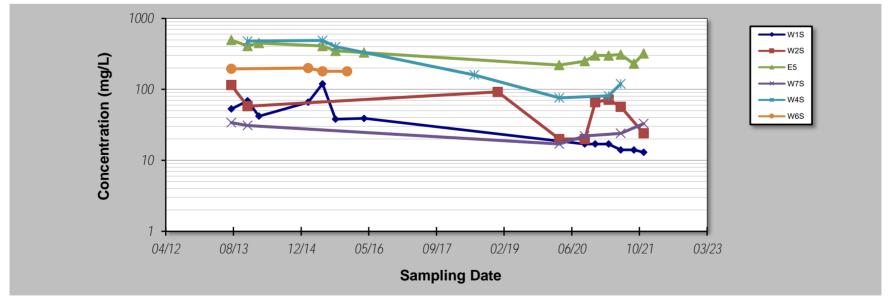
Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: 21-Dec-21 Facility Name: Hydro Kurri Kurri Conducted By: Jake Bourke				C		318001103 Soluble Fluorid mg/L	e	
Samp	lling Point ID:	N8	N9	W5S	F5	G6		
Sampling	Sampling			S∪LIIDI E ELI	JORIDE CONCENT	DATION (ma/L)		
Event	Date			SOLUBLE FLU	JURIDE CONCENT	RATION (IIIg/L)		
1	29-Jul-13	0.27	85					
2	26-Nov-13	0.17	200					
3	18-Feb-14	0.26						
4	7-Jul-14	0.27	170					
5	4-Nov-14	0.29	210					
6	17-Feb-15	0.35	210					
7	3-Jun-15	0.9	24					
8	7-Sep-15	0.3	25					
9	2-Dec-15	0.4	9					
10	5-Apr-16				5	5		
11	19-Jul-16	0.4	140		0.05	0.05		
12	12-Oct-16	0.6			0.05	0.2		
13	6-Dec-16	0.4			0.05	0.05		
14	15-Mar-17	1	200		0.05	0.05		
15	20-Jun-17	0.4	160	50	0.2	0.4		
16	21-Sep-17	0.4	180		0.2	0.4		
17	12-Dec-17	0.4			0.2	0.5		
18	13-Mar-18	0.4	200		0.2	0.4		
19	28-Jun-18	0.5	140		0.2	0.4		
20	26-Sep-18	0.4	170		0.2	0.4		
21	19-Dec-18	0.4	160		0.2	0.7		
22	11-Mar-19	0.4	200		0.1	0.6		
23	26-Jun-19	0.4	160		0.2	0.3		
24	24-Sep-19	0.4	160		0.2	0.3		
25	11-Dec-19	0.2			0.05	0.2		
26	17-Mar-20	0.4	140		0.2	0.2		
27	17-Mar-20	0.4	130	34	0.2	0.2		
28	22-Sep-20	0.4	57	34	0.1	0.2		
29	8-Dec-20	0.4	110		0.2	0.2		
30	17-Mar-21	0.5	110	39	0.2	0.4		
31	15-Jun-21	0.6	110		0.3	0.6		
32	20-Sep-21	0.5	95		0.2	0.4		

0-1							
35							
Coefficient	of Variation:	0.40	0.44	0.26	2.71	1.82	
Mann-Kendall	Statistic (S):	178	-103	-5	54	25	
Confid	dence Factor:	99.8%	98.4%	82.1%	90.5%	72.2%	
Concent	ration Trend:	Increasing	Decreasing	Stable	Prob. Increasing	No Trend	

Notes:

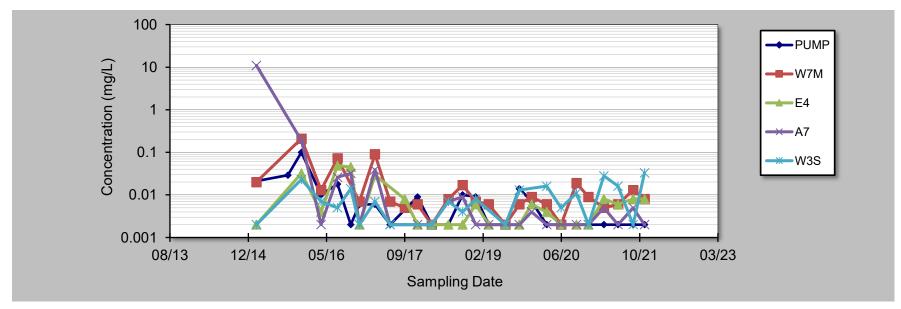

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

the state of the s			
Evaluation Date: 21-Dec-21	Job ID:	318001103	
Facility Name: Hydro Kurri Kurri	Constituent:	Soluble Fluoride	e
Conducted By: Jake Bourke	Concentration Units:	mg/L	

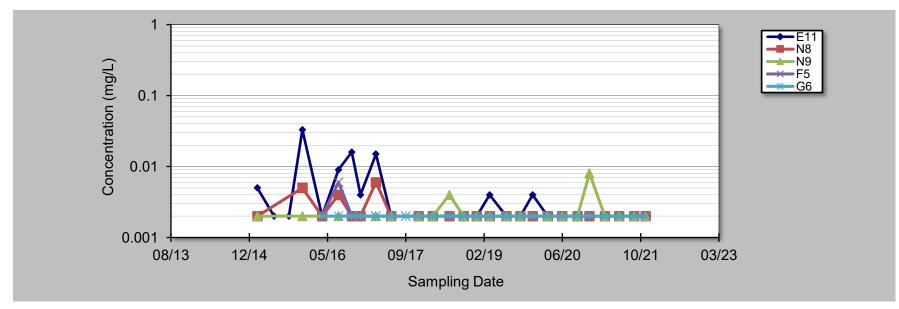
Samp	oling Point ID:	W1S	W2S	E5	W7S	W4S	W6S	
Sampling	Sampling			COLUDI E ELLI	ODIDE CONCENT			
Event	Date			SULUBLE FLU	ORIDE CONCENT	RATION (IIIg/L)		
1	29-Jul-13	53	115	495	34		195	
2	26-Nov-13	69	58	410	31	480		
3	18-Feb-14	42		450				
4	7-Jul-14							
5	4-Nov-14							
6	17-Feb-15	66					200	
7	3-Jun-15	120		410		490	180	
8	7-Sep-15	38		350		400		
9	2-Dec-15						180	
10	5-Apr-16	39		330				
11	19-Jul-16							
12	12-Oct-16							
13	6-Dec-16							
14	15-Mar-17							
15	20-Jun-17							
16	21-Sep-17							
17	12-Dec-17							
18	13-Mar-18							
19	28-Jun-18					160		
20	26-Sep-18							
21	19-Dec-18		92					
22	11-Mar-19							
23	26-Jun-19							
24	24-Sep-19							
25	11-Dec-19							
26	17-Mar-20							
27	17-Mar-20		20	220	17	76		
28	22-Sep-20	17	20	250	22			
29	8-Dec-20	17	66	300		0.1		
30	17-Mar-21	17	72	300	0.1	81		
31	15-Jun-21	14	57	310	24	120		
32	20-Sep-21	14	0.4	230				
33	1-Dec-21	13	24	320	33			
34 35								
	t of Variation	0.78	0.57	0.25	0.26	0.74	0.05	
	t of Variation:	-58	<u>0.57</u> -11	-42	-1	0.74 -13	0.05 -3	
Mann-Kendal	dence Factor:	-58 >99.9%	-11 84.6%	99.5%	-1 50.0%	96.5%	-3 72.9%	
Concen	tration Trend:	Decreasing	Stable	Decreasing	Stable	Decreasing	Stable	



Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

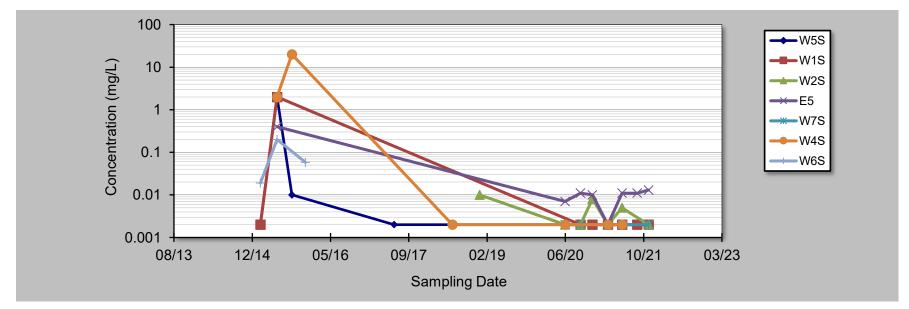
Evaluation Date: 21-Dec-21		Job ID:	318001103	
Facility Name: Hydro Kurri Kurri		Constituent:	Free Cyanide	
Conducted By: Jake Bourke	(Concentration Units:	mg/L	
0 11 0 1 110			11100	


Samı	pling Point ID:	PUMP	W7M	E4	A7	W3S	
Sampling	Sampling			FRFF CYAN	NIDE CONCENTRA	TION (ma/L)	
Event	Date					1 3 1	
1	17-Feb-15	0.021	0.02	0.002	11	0.002	
2	3-Jun-15						
3	7-Sep-15	0.029					
4	2-Dec-15	0.1	0.21	0.032	0.19	0.023	
5	5-Apr-16	0.01	0.013	0.004	0.002	0.007	
6	19-Jul-16	0.018	0.072	0.049	0.026	0.005	
7	12-Oct-16	0.002		0.045	0.032	0.014	
8	6-Dec-16	0.006	0.007	0.002	0.002	0.002	
9	15-Mar-17	0.006	0.09	0.029	0.039	0.007	
10	20-Jun-17	0.002	0.007		0.002	0.002	
11	21-Sep-17		0.005	0.008			
12	12-Dec-17	0.009	0.006	0.002	0.002		
13	13-Mar-18	0.002	0.002	0.002	0.002	0.002	
14	28-Jun-18	0.002	0.008	0.002	0.007	0.007	
15	26-Sep-18	0.01	0.017	0.002	0.009	0.004	
16	19-Dec-18	0.009	0.007	0.006	0.002	0.008	
17	11-Mar-19	0.002	0.006	0.002	0.002		
18	26-Jun-19	0.002	0.002	0.002	0.002	0.002	
19	24-Sep-19	0.014	0.006	0.002	0.002	0.013	
20	11-Dec-19	0.007	0.009	0.006	0.004		
21	17-Mar-20	0.002	0.006	0.004	0.002	0.016	
22	17-Jun-20	0.002	0.002	0.002	0.002	0.005	
23	22-Sep-20	0.002	0.019	0.002	0.002	0.011	
24	8-Dec-20	0.002	0.009	0.002	0.002	0.002	
25	17-Mar-21	0.002	0.005	0.008	0.005	0.028	
26	15-Jun-21	0.002	0.006	0.006	0.002	0.016	
27	20-Sep-21	0.002	0.013	0.008	0.005	0.002	
28	1-Dec-21	0.002	0.008	0.008	0.002	0.033	
29							
30							
	nt of Variation:	1.91	2.00	1.44	4.84	0.93	
	II Statistic (S):	-145	-70	-16	-82	43	
Confi	idence Factor:	99.9%	94.6%	63.6%	97.1%	88.0%	
Concen	tration Trend:	Decreasing	Prob. Decreasing	No Trend	Decreasing	No Trend	

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

aluation Date	21-Dec-21]	Job ID:	318001103	
	Hydro Kurri					Free Cyanide	
Conducted By: Jake Bourke		Co	oncentration Units:	mg/L			
Sam	pling Point ID:	E11	N8	N9	F5	G6	
Sampling Event	Sampling Date			FREE CYANI	DE CONCENTRA	TION (mg/L)	
1	17-Feb-15	0.005	0.002	0.002			
2	3-Jun-15	0.002	5.502	5.502			
3	7-Sep-15	0.002					
4	2-Dec-15	0.033	0.005	0.002			
5	5-Apr-16	0.002	0.002		0.002	0.002	
6	19-Jul-16	0.009	0.004	0.002	0.006	0.002	
7	12-Oct-16	0.016	0.002		0.002	0.002	
8 9	6-Dec-16	0.004	0.002	0.000	0.002	0.002	
10	15-Mar-17 20-Jun-17	0.015 0.002	0.006 0.002	0.002 0.002	0.002 0.002	0.002 0.002	
11	21-Sep-17	0.002	0.002	0.002	0.002	0.002	
12	12-Dec-17	0.002	0.002	0.002	0.002	0.002	
13	13-Mar-18	0.002	0.002	0.002	0.002	0.002	
14	28-Jun-18	0.002	0.002	0.004	0.002	0.002	
15	26-Sep-18	0.002	0.002	0.002	0.002	0.002	
16	19-Dec-18	0.002	0.002	0.002	0.002	0.002	
17	11-Mar-19	0.004	0.002	0.002	0.002	0.002	
18	26-Jun-19	0.002	0.002	0.002	0.002	0.002	
19 20	24-Sep-19	0.002	0.002	0.002	0.002	0.002	
21	11-Dec-19 17-Mar-20	0.004 0.002	0.002 0.002	0.002	0.002 0.002	0.002 0.002	
22	17-Mai-20 17-Jun-20	0.002	0.002	0.002	0.002	0.002	
23	22-Sep-20	0.002	0.002	0.002	0.002	0.002	
24	8-Dec-20	0.002	0.002	0.008	0.002	0.002	
25	17-Mar-21	0.002	0.002	0.002	0.002	0.002	
26	15-Jun-21	0.002	0.002	0.002	0.002	0.002	
27	20-Sep-21	0.002	0.002	0.002	0.002	0.002	
28	1-Dec-21	0.002	0.002	0.002	0.002	0.002	
29	+						
30	at of Variation	1 12	0.44	0.57	0.20	0.00	
	nt of Variation: all Statistic (S):	1.43 -95	0.44 -51	0.57	0.38 -21	0.00	
	idence Factor:	97.5%	87.7%	57.1%	68.9%	49.0%	
COIII	ntration Trend:	Decreasing	Stable	No Trend	Stable	Stable	


Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

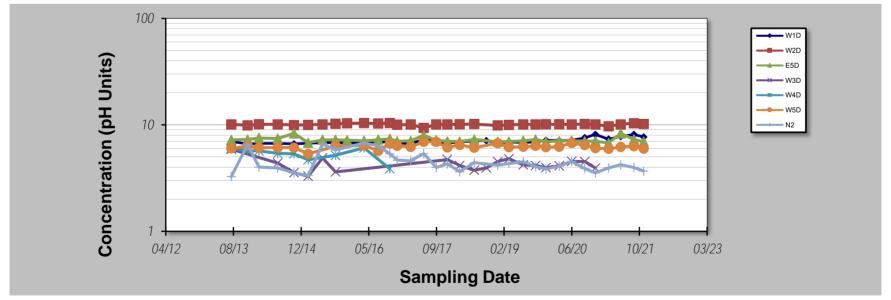
Facility Name: Conducted By: Jake Bourke for Constituent Trend Analysis Job ID: 318001103 Constituent: Free Cyanide Concentration Units: mg/L

GSI MANN-KENDALL TOOLKIT

Samp	oling Point ID:	W5S	W1S	W2S	E 5	W7S	W4S	W6S
Sampling Event	Sampling Date			FREE CYAN	NIDE CONCENTR <i>A</i>	ATION (mg/L)		
1	17-Feb-15	0.002	0.002		I	T		0.019
2	3-Jun-15	2	2		0.4		2	0.2
3	7-Sep-15	0.01					20	
4	2-Dec-15							0.058
5	5-Apr-16							
6	19-Jul-16							
7	12-Oct-16							
8	6-Dec-16							
9	15-Mar-17							
10	20-Jun-17	0.002						
11	21-Sep-17							
12	12-Dec-17							
13	13-Mar-18							
14	28-Jun-18						0.002	
15	26-Sep-18							
16	19-Dec-18			0.01				
17	11-Mar-19							
18	26-Jun-19							
19	24-Sep-19							
20	11-Dec-19							
21	17-Mar-20							
22	17-Jun-20	0.002		0.002	0.007	0.002	0.002	
23	22-Sep-20	0.002	0.002	0.002	0.011	0.002		
24	8-Dec-20		0.002	0.008	0.01			
25	17-Mar-21	0.002	0.002	0.002	0.002		0.002	
26	15-Jun-21		0.002	0.005	0.011	0.002	0.002	
27	20-Sep-21		0.002		0.011			
28	1-Dec-21	0.002	0.002	0.002	0.013	0.002		
29								
30								
	t of Variation:	2.79	2.81	0.76	2.38	0.00	2.19	1.03
Mann-Kenda		-9	-5	-5	3	0	-7	1
Confi	dence Factor:	83.2%	68.3%	71.9%	59.4%	37.5%	86.4%	

Notes:

Concentration Trend


At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

No Trend

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Evaluation Date: 21-Dec-21	Job ID: 318001103
Facility Name: Hydro Kurri Kurri	Constituent: pH
Conducted By: Jake Bourke	Concentration Units: pH Units

Compline Doint II								
Samı	oling Point ID:	W1D	W2D	E5D	W3D	W4D	W5D	N2
Sampling	Sampling			DLL CO	VICENTE ATION (n	IIIInita)		
Event	Date			PH CU	NCENTRATION (p	n uiils)		
1	29-Jul-13	6.98	10.09	7.22	5.91	6.02	6.02	3.26
2	26-Nov-13	6.62	9.9	7.29		5.7	6.32	6.54
3	18-Feb-14	6.7	10.13	7.53		5.7	6.1	4.01
4	7-Jul-14	6.71	10.1	7.44	4.38	5.4	6.11	3.94
5	4-Nov-14	6.63	9.94	8.32	3.56	5.36	6.11	3.54
6	17-Feb-15		9.99	6.8	3.29	4.69	5.34	3.34
7	3-Jun-15	6.82	10.11	7.23	4.89			6.61
8	7-Sep-15	6.79	10.27	7.23	3.62	5.18	6.32	5.81
9	2-Dec-15		10.34	7.18				
10	5-Apr-16	6.73	10.42	7.1		6.08	6.4	6.75
11	19-Jul-16	6.82	10.29	7.27			5.7	6.37
12	12-Oct-16	7.02	10.4	7.39		3.87	6.7	5.35
13	6-Dec-16	6.78	10.02	7			6.37	4.67
14	15-Mar-17	6.67	10.07	7.08			6.21	4.59
15	20-Jun-17	7.3	9.37	7.97			6.94	5.37
16	21-Sep-17	6.95	10.08	7.16			6.93	3.98
17	12-Dec-17	6.78	10.1	7	4.72		6.13	4.31
18	13-Mar-18	6.91	10.14	6.97	4.16		6.5	3.63
19	28-Jun-18	7.07	10.18	7.29	3.75		6.1	4.41
20	26-Sep-18	7.12			3.94			
21	19-Dec-18	6.76	9.87	6.95	4.53		6.72	4.18
22	11-Mar-19	6.92	9.99	6.96	4.81		6.18	4.34
23	26-Jun-19	6.83	10.1	7.1	4.21		6.23	4.51
24	24-Sep-19	6.91	10.08	7.3	4.15		6.35	4.05
25	11-Dec-19	7.16	10.14	6.95	3.96		6.16	3.85
26	17-Mar-20	7.12	10.12	7.05	4.14		6.24	4.09
27	17-Jun-20	7.17	10.11	7.1	4.54		6.76	4.54
28	22-Sep-20	7.57	10.18	7.04	4.53		6.46	3.88
29	9-Dec-20	8.14	10.09	7.02	3.93		6.05	3.55
30	17-Mar-21	7.34	9.72	6.77			5.95	3.94
31	15-Jun-21	7.78	10.11	8.32			6.21	4.22
32	20-Sep-21	8.13	10.37	7.31			6.31	3.98
33	1-Dec-21	7.71	10.19	6.95			6	3.68
34								
35	+ - 6 \ / 1 \ !	2.22	2.00	0.05	0.11	0.40	2.25	0.00
	it of Variation:	0.06	0.02	0.05	0.14	0.13	0.05	0.22
	Il Statistic (S):	287	51	-136	-2	-19	25	-105
	dence Factor:	>99.9%	79.0%	98.6%	51.4%	97.0%	66.4%	96.2%
Concen	tration Trend:	Increasing	No Trend	Decreasing	Stable	Decreasing	No Trend	Decreasing

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

for Constituent Trend Analysis Evaluation Date: 21-Dec-21 Job ID: **318001103** Facility Name: **Hydro Kurri Kurri** Constituent: pH Conducted By: Jake Bourke Concentration Units: pH Units Sampling Point ID: G2 W₆D G5 F6 29-Jul-13 6.04 6.49 2 26-Nov-13 6.09 6.11 18-Feb-14 6.09 5.75 4 7-Jul-14 6.1 5.83 5 4-Nov-14 6.03 5.54 6 17-Feb-15 5.7 8.22 3-Jun-15 6.01 5.84 8 7-Sep-15 6.04 5.81 9 2-Dec-15 7.87 5.5 10 5-Apr-16 6.11 5.79 6.36 6.99 11 19-Jul-16 6.09 5.58 6.77 6.67 12 12-Oct-16 6.33 6.17 6.72 7.05 13 6-Dec-16 6.22 5.96 5.88 6.54 14 15-Mar-17 5.71 5.88 5.73 6.29 20-Jun-17 15 6.08 6.19 5.96 7.08 16 21-Sep-17 6.16 5.9 6.15 4.03 17 5.9 12-Dec-17 6.19 5.77 6.68 18 13-Mar-18 6.05 5.65 5.8 6.88 19 28-Jun-18 6.05 5.7 6.23 6.67 20 26-Sep-18 6.42 21 19-Dec-18 6.53 6.65 5.64 6.66 11-Mar-19 22 6.16 5.81 5.99 6.73 23 26-Jun-19 6.35 5.71 6 6.57

GSI MANN-KENDALL TOOLKIT

55	1-060-21	0.24	5.70	0.09	7.00	<u> </u>	
34							
35							
Coefficient	of Variation:	0.06	0.08	0.07	0.10		
Mann-Kendall	Statistic (S):	158	-84	-123	12		
Confid	dence Factor:	99.3%	91.0%	>99.9%	61.3%		
Concent	ration Trend:	Increasing	Prob. Decreasing	Decreasing	No Trend		

6.13

5.7

6.38

5.86

5.85

5.61

5.26

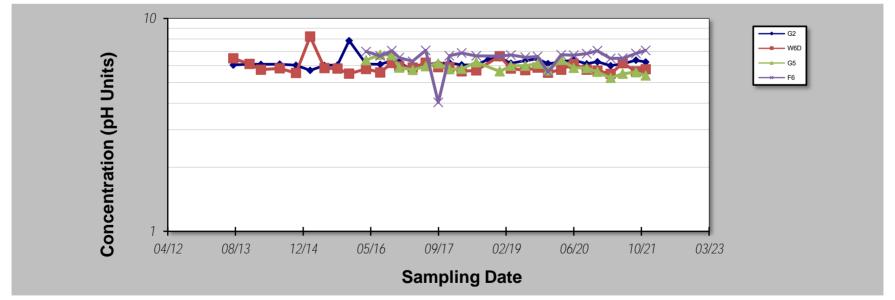
5.5

5.59

6.62

5.61

6.75


6.72

6.83

7.05

6.49

6.51

Notes:

24-Sep-19

11-Dec-19

17-Mar-20

17-Jun-20

22-Sep-20

9-Dec-20

17-Mar-21

15-Jun-21

20-Sep-21

1-Dec-21

6.46

6.13

6.26

6.37

6.12

6.26

6

6.12

6 24

5.87

5.56

5.75

6.12

5.75

5.69

5.49

6.16

5.65

24

25

26

27

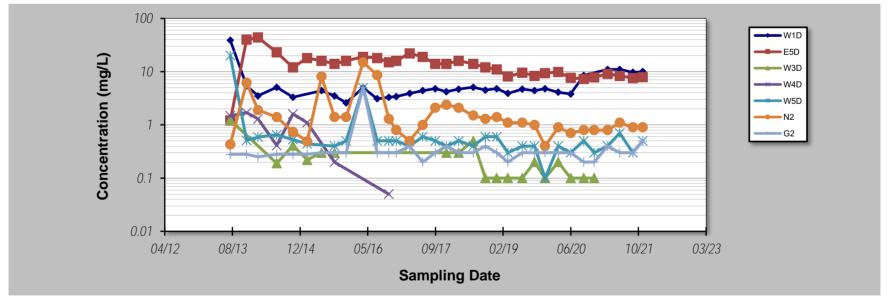
28

29

30

31

32


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

Evaluation Date: 21-Dec-21	Job ID:	318001103	
Facility Name: Hydro Kurri Kurri	Constituent:	Soluble Fluorid	e
Conducted By: Jake Bourke	Concentration Units:	mg/L	

Samı	oling Point ID:	W1D	E5D	W3D	W4D	W5D	N2	G2
Sampling	Sampling			SOLUBLE FLU	ORIDE CONCENT	RATION (ma/L)		
Event	Date		1.01			,	0.40	0.00
1	29-Jul-13	39	1.21	1.23	1.48	20	0.43	0.28
2	26-Nov-13	5.4	40		1.7	0.51	6.2	0.28
3	18-Feb-14	3.5	44		1.3	0.59	1.9	0.25
4	7-Jul-14	5.1	23	0.19	0.41	0.65	1.4	0.28
5	4-Nov-14	3.3	12	0.41	1.6	0.53	0.74	0.28
6	17-Feb-15		18	0.22	1.1	0.44	0.49	0.28
7	3-Jun-15	4.4	16	0.3			8.1	0.3
8	7-Sep-15	3.5	14	0.3	0.2	0.4	1.4	0.3
9	2-Dec-15	2.6	16			0.5	1.4	0.3
10	5-Apr-16	5	19			5	15	5
11	19-Jul-16	3.1	18			0.5	8.6	0.3
12	12-Oct-16	3.3	15		0.05	0.5	1.3	0.3
13	6-Dec-16	3.4	16			0.5	8.0	0.3
14	15-Mar-17	3.9	22			0.4	0.5	0.4
15	20-Jun-17	4.4	19			0.6	1	0.2
16	21-Sep-17	4.8	14			0.5	2.1	0.3
17	12-Dec-17	4.2	14	0.3		0.4	2.4	0.4
18	13-Mar-18	4.7	16	0.3		0.5	2.1	0.3
19	28-Jun-18	5.1	14	0.5		0.4	1.5	0.3
20	26-Sep-18	4.5	12	0.1		0.6	1.3	0.4
21	19-Dec-18	4.8	11	0.1		0.6	1.4	0.3
22	11-Mar-19	3.9	8.1	0.1		0.3	1.1	0.2
23	26-Jun-19	4.7	9.6	0.1		0.4	1.1	0.3
24	24-Sep-19	4.4	8.3	0.2		0.4	1	0.3
25	11-Dec-19	4.8	9.4	0.1		0.1	0.4	0.3
26	17-Mar-20	4.1	9.8	0.2		0.4	0.9	0.3
27	17-Jun-20	3.8	7.7	0.1		0.3	0.7	0.3
28	22-Sep-20	8.5	7.3	0.1		0.5	8.0	0.2
29	8-Dec-20		7.8	0.1		0.3	0.8	0.2
30	17-Mar-21	11	9.1			0.4	0.8	0.4
31	15-Jun-21	11	8.3			0.7	1.1	0.3
32	20-Sep-21	9.7	7.6			0.3	0.9	0.3
33	1-Dec-21	10	7.9			0.5	0.9	0.5
34								
35								
	it of Variation:	1.04	0.60	1.01	0.68	2.91	1.42	1.85
Mann-Kenda	II Statistic (S):	127	-310	-80	-18	-177	-139	98
Confi	dence Factor:	98.4%	>99.9%	99.8%	98.4%	99.8%	98.4%	93.3%
Concen	tration Trend:	Increasing	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing	Prob. Increasing

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 21-Dec-21 Job ID: **318001103** Constituent: Soluble Fluoride Facility Name: **Hydro Kurri Kurri** Conducted By: Jake Bourke Concentration Units: mg/L Sampling Point ID: W₆D G5 F6 29-Jul-13 1.19 2 26-Nov-13 0.25 18-Feb-14 0.21 4 7-Jul-14 0.4 5 4-Nov-14 0.19 6 17-Feb-15 0.3 3-Jun-15 0.1 8 7-Sep-15 0.1 9 2-Dec-15 10 5-Apr-16 5 5 5 11 19-Jul-16 0.2 0.4 0.6 12 12-Oct-16 0.05 0.5 0.1 13 6-Dec-16 0.1 0.3 0.5 14 15-Mar-17 0.6 0.5 15 20-Jun-17 0.3 0.3 0.5 16 21-Sep-17 0.1 0.3 0.5 17 12-Dec-17 0.2 0.3 0.6 18 13-Mar-18 0.3 0.2 0.9 19 28-Jun-18 0.05 0.4 0.5 20 26-Sep-18 0.2 1.3 1 21 19-Dec-18 0.2 0.2 0.6 22 11-Mar-19 0.05 0.05 0.4 23 26-Jun-19 0.05 0.2 0.5 24-Sep-19 24 0.05 0.2 0.5 25 11-Dec-19 0.05 0.1 0.4 26 17-Mar-20 0.05 0.2 0.6 27 17-Jun-20 0.05 0.5 0.05 28 22-Sep-20 0.05 0.05 0.4 29 8-Dec-20 0.05 0.05 0.6 30 17-Mar-21 0.05 0.5 0.1 31 15-Jun-21 0.05 0.6 32 20-Sep-21 0.05 0.05 0.4 33 1-Dec-21 0.1 0.3 0.6 34 Coefficient of Variation 2.48 2.22 1.25 Mann-Kendall Statistic (S) -241 -121 -38 Confidence Factor >99.9% 99.9% 81.9% Concentration Trend No Trend 10 Concentration (mg/L) **G**5 0.1

Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

05/16

12/14

08/13

04/12

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

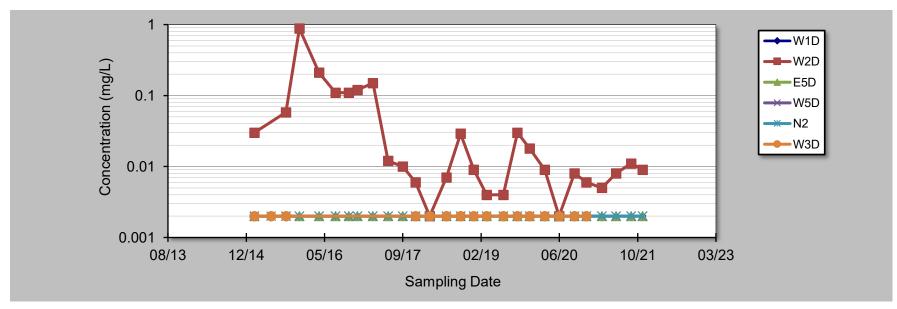
09/17

Sampling Date

02/19

06/20

10/21


03/23

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 21-Dec-21 Job ID: **318001103** Constituent: Soluble Fluoride Facility Name: **Hydro Kurri Kurri** Conducted By: Jake Bourke Concentration Units: mg/L Sampling Point ID: W2D 29-Jul-13 682 2 26-Nov-13 790 18-Feb-14 880 4 7-Jul-14 930 5 4-Nov-14 1080 6 17-Feb-15 1279 3-Jun-15 1300 8 7-Sep-15 1300 9 2-Dec-15 1300 10 5-Apr-16 1300 11 19-Jul-16 1400 12 12-Oct-16 1500 13 6-Dec-16 1400 14 15-Mar-17 1700 15 20-Jun-17 1300 16 21-Sep-17 1300 17 12-Dec-17 1200 18 13-Mar-18 1200 19 28-Jun-18 1200 20 26-Sep-18 1200 21 19-Dec-18 1200 11-Mar-19 22 1500 23 26-Jun-19 1200 24-Sep-19 24 1300 11-Dec-19 25 1400 26 17-Mar-20 1300 27 17-Jun-20 1100 28 22-Sep-20 800 29 8-Dec-20 1000 17-Mar-21 30 1000 31 15-Jun-21 860 32 20-Sep-21 880 33 1-Dec-21 1000 34 Coefficient of Variation 0.20 Mann-Kendall Statistic (S) -41 Confidence Factor 73.1% Concentration Trend 1800 1600 Concentration (mg/L) 1400 1200 1000 800 12/14 04/12 08/13 05/16 09/17 02/19 06/20 10/21 03/23 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: 318001103 Evaluation Date: 21-Dec-21 Facility Name: **Hydro Kurri Kurri** Constituent: Free Cyanide Conducted By: Jake Bourke Concentration Units: mg/L W1D Sampling Point ID: W2D E₅D W5D W3D FREE CYANIDE CONCENTRATION (mg/L) 17-Feb-15 0.03 0.002 0.002 0.002 0.002 3-Jun-15 0.002 2 0.002 7-Sep-15 0.058 0.002 0.002 0.002 4 2-Dec-15 0.88 0.002 0.002 0.002 5 5-Apr-16 0.002 0.21 0.002 0.002 0.002 0.002 0.002 6 19-Jul-16 0.002 0.11 0.002 7 12-Oct-16 0.002 0.11 0.002 0.002 0.002 0.002 0.002 0.002 0.002 8 6-Dec-16 0.12 9 15-Mar-17 0.002 0.15 0.002 0.002 0.002 10 20-Jun-17 0.002 0.012 0.002 0.002 0.002 11 21-Sep-17 0.01 0.002 0.002 0.002 12 0.002 0.006 0.002 0.002 0.002 0.002 12-Dec-17 13 13-Mar-18 0.002 0.002 0.002 0.002 0.002 0.002 0.002 14 28-Jun-18 0.002 0.007 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 15 26-Sep-18 0.029 0.002 0.002 0.002 16 0.009 0.002 0.002 19-Dec-18 11-Mar-19 17 0.002 0.004 0.002 0.002 0.002 0.002 18 26-Jun-19 0.002 0.004 0.002 0.002 0.002 0.002 19 24-Sep-19 0.002 0.03 0.002 0.002 0.002 0.002 20 11-Dec-19 0.002 0.002 0.002 0.018 0.002 0.002 21 17-Mar-20 0.002 0.009 0.002 0.002 0.002 0.002 22 17-Jun-20 0.002 0.002 0.002 0.002 0.002 0.002 23 22-Sep-20 0.002800.0 0.002 0.002 0.002 0.002 24 8-Dec-20 0.002 0.006 0.002 0.002 0.002 0.002 25 17-Mar-21 0.002 0.005 0.002 0.002 0.002 26 15-Jun-21 0.002 0.008 0.002 0.002 0.002 27 20-Sep-21 0.002 0.011 0.002 0.002 0.002 28 1-Dec-21 0.002 0.009 0.002 0.002 0.002

0.00

49.1%

0.00

49.2%

0.00

49.2%

0.00

48.2%

Notes:

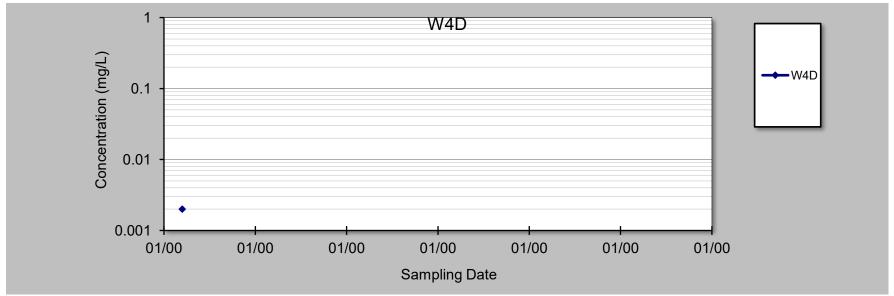
29 30

Coefficient of Variation

Confidence Factor
Concentration Trend

Mann-Kendall Statistic (S)

0.00


48.9%

2.48

Decreasing

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- **3.** Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis											
acility Name	21-Dec-21 Hydro Kurri I Jake Bourke			(318001103 Free Cyanide					
	pling Point ID:	G2	W6D	G5	F6	W4D					
Sampling	Sampling			FRFF CYAN	IIDE CONCENTRA	TION (ma/L)					
Event	Date			11122 31711	IIDE GONGENTION						
1	17-Feb-15	0.002	0.002			0.002	-	-			
2	3-Jun-15	0.002	0.000					_			
3 4	7-Sep-15	0.002	0.002								
5	2-Dec-15 5-Apr-16	0.002 0.002	0.002 0.002	0.002	0.002						
6	5-Apr-16 19-Jul-16	0.002	0.002	0.002	0.002		-				
7	19-Jul-16 12-Oct-16	0.002	0.002	0.006	0.002		 	+			
8	6-Dec-16	0.002	0.002	0.002	0.002			1			
9	15-Mar-17	0.002	0.002	0.002	0.002						
10	20-Jun-17	0.002	0.002	0.002	0.002			-			
11	21-Sep-17	0.002	0.002	0.002	0.002			+			
12	12-Dec-17	0.002	0.002	0.002	0.002			+			
13	13-Mar-18	0.002	0.002	0.002	0.002						
14	28-Jun-18	0.002	0.002	0.002	0.002						
15	26-Sep-18	0.002	0.002	0.002	0.002						
16	19-Dec-18	0.002	0.002	0.002	0.002						
17	11-Mar-19	0.002	0.002	0.002	0.002						
18	26-Jun-19	0.002	0.002	0.002	0.002						
19	24-Sep-19	0.002	0.002	0.002	0.002						
20	11-Dec-19	0.002	0.002	0.002	0.002						
21	17-Mar-20	0.002	0.002	0.002	0.002						
22	17-Jun-20	0.002	0.002	0.002	0.002						
23	22-Sep-20	0.002	0.002	0.002	0.002			İ			
24	8-Dec-20	0.002	0.002	0.002	0.002						
25	17-Mar-21	0.002	0.002	0.002	0.002						
26	15-Jun-21	0.002	0.002	0.002	0.002						
27	20-Sep-21	0.002	0.002	0.002	0.002	-					
28	1-Dec-21	0.002	0.002	0.002	0.002						
29											
30											
	nt of Variation:	0.00	0.00	0.38	0.00						
	II Statistic (S):	0	0	-21	0						
Conf	idence Factor:	49.2%	49.2%	68.9%	49.0%						
Concer	ntration Trend:	Stable	Stable	Stable	Stable						
	1 —						_				

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.